xref: /freebsd/contrib/xz/src/liblzma/lz/lz_encoder.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lz_encoder.c
4 /// \brief      LZ in window
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "lz_encoder.h"
15 #include "lz_encoder_hash.h"
16 
17 // See lz_encoder_hash.h. This is a bit hackish but avoids making
18 // endianness a conditional in makefiles.
19 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
20 #	include "lz_encoder_hash_table.h"
21 #endif
22 
23 #include "memcmplen.h"
24 
25 
26 typedef struct {
27 	/// LZ-based encoder e.g. LZMA
28 	lzma_lz_encoder lz;
29 
30 	/// History buffer and match finder
31 	lzma_mf mf;
32 
33 	/// Next coder in the chain
34 	lzma_next_coder next;
35 } lzma_coder;
36 
37 
38 /// \brief      Moves the data in the input window to free space for new data
39 ///
40 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
41 /// bytes of input history available all the time. Now and then we need to
42 /// "slide" the buffer to make space for the new data to the end of the
43 /// buffer. At the same time, data older than keep_size_before is dropped.
44 ///
45 static void
46 move_window(lzma_mf *mf)
47 {
48 	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
49 	// like LZMA use the lowest bits of mf->read_pos to know the
50 	// alignment of the uncompressed data. We also get better speed
51 	// for memmove() with aligned buffers.
52 	assert(mf->read_pos > mf->keep_size_before);
53 	const uint32_t move_offset
54 		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
55 
56 	assert(mf->write_pos > move_offset);
57 	const size_t move_size = mf->write_pos - move_offset;
58 
59 	assert(move_offset + move_size <= mf->size);
60 
61 	memmove(mf->buffer, mf->buffer + move_offset, move_size);
62 
63 	mf->offset += move_offset;
64 	mf->read_pos -= move_offset;
65 	mf->read_limit -= move_offset;
66 	mf->write_pos -= move_offset;
67 
68 	return;
69 }
70 
71 
72 /// \brief      Tries to fill the input window (mf->buffer)
73 ///
74 /// If we are the last encoder in the chain, our input data is in in[].
75 /// Otherwise we call the next filter in the chain to process in[] and
76 /// write its output to mf->buffer.
77 ///
78 /// This function must not be called once it has returned LZMA_STREAM_END.
79 ///
80 static lzma_ret
81 fill_window(lzma_coder *coder, const lzma_allocator *allocator,
82 		const uint8_t *in, size_t *in_pos, size_t in_size,
83 		lzma_action action)
84 {
85 	assert(coder->mf.read_pos <= coder->mf.write_pos);
86 
87 	// Move the sliding window if needed.
88 	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
89 		move_window(&coder->mf);
90 
91 	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
92 	// (which I find cleanest), but we need size_t here when filling
93 	// the history window.
94 	size_t write_pos = coder->mf.write_pos;
95 	lzma_ret ret;
96 	if (coder->next.code == NULL) {
97 		// Not using a filter, simply memcpy() as much as possible.
98 		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
99 				&write_pos, coder->mf.size);
100 
101 		ret = action != LZMA_RUN && *in_pos == in_size
102 				? LZMA_STREAM_END : LZMA_OK;
103 
104 	} else {
105 		ret = coder->next.code(coder->next.coder, allocator,
106 				in, in_pos, in_size,
107 				coder->mf.buffer, &write_pos,
108 				coder->mf.size, action);
109 	}
110 
111 	coder->mf.write_pos = write_pos;
112 
113 	// Silence Valgrind. lzma_memcmplen() can read extra bytes
114 	// and Valgrind will give warnings if those bytes are uninitialized
115 	// because Valgrind cannot see that the values of the uninitialized
116 	// bytes are eventually ignored.
117 	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
118 
119 	// If end of stream has been reached or flushing completed, we allow
120 	// the encoder to process all the input (that is, read_pos is allowed
121 	// to reach write_pos). Otherwise we keep keep_size_after bytes
122 	// available as prebuffer.
123 	if (ret == LZMA_STREAM_END) {
124 		assert(*in_pos == in_size);
125 		ret = LZMA_OK;
126 		coder->mf.action = action;
127 		coder->mf.read_limit = coder->mf.write_pos;
128 
129 	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
130 		// This needs to be done conditionally, because if we got
131 		// only little new input, there may be too little input
132 		// to do any encoding yet.
133 		coder->mf.read_limit = coder->mf.write_pos
134 				- coder->mf.keep_size_after;
135 	}
136 
137 	// Restart the match finder after finished LZMA_SYNC_FLUSH.
138 	if (coder->mf.pending > 0
139 			&& coder->mf.read_pos < coder->mf.read_limit) {
140 		// Match finder may update coder->pending and expects it to
141 		// start from zero, so use a temporary variable.
142 		const uint32_t pending = coder->mf.pending;
143 		coder->mf.pending = 0;
144 
145 		// Rewind read_pos so that the match finder can hash
146 		// the pending bytes.
147 		assert(coder->mf.read_pos >= pending);
148 		coder->mf.read_pos -= pending;
149 
150 		// Call the skip function directly instead of using
151 		// mf_skip(), since we don't want to touch mf->read_ahead.
152 		coder->mf.skip(&coder->mf, pending);
153 	}
154 
155 	return ret;
156 }
157 
158 
159 static lzma_ret
160 lz_encode(void *coder_ptr, const lzma_allocator *allocator,
161 		const uint8_t *restrict in, size_t *restrict in_pos,
162 		size_t in_size,
163 		uint8_t *restrict out, size_t *restrict out_pos,
164 		size_t out_size, lzma_action action)
165 {
166 	lzma_coder *coder = coder_ptr;
167 
168 	while (*out_pos < out_size
169 			&& (*in_pos < in_size || action != LZMA_RUN)) {
170 		// Read more data to coder->mf.buffer if needed.
171 		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
172 				>= coder->mf.read_limit)
173 			return_if_error(fill_window(coder, allocator,
174 					in, in_pos, in_size, action));
175 
176 		// Encode
177 		const lzma_ret ret = coder->lz.code(coder->lz.coder,
178 				&coder->mf, out, out_pos, out_size);
179 		if (ret != LZMA_OK) {
180 			// Setting this to LZMA_RUN for cases when we are
181 			// flushing. It doesn't matter when finishing or if
182 			// an error occurred.
183 			coder->mf.action = LZMA_RUN;
184 			return ret;
185 		}
186 	}
187 
188 	return LZMA_OK;
189 }
190 
191 
192 static bool
193 lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
194 		const lzma_lz_options *lz_options)
195 {
196 	// For now, the dictionary size is limited to 1.5 GiB. This may grow
197 	// in the future if needed, but it needs a little more work than just
198 	// changing this check.
199 	if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
200 			|| lz_options->dict_size
201 				> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
202 			|| lz_options->nice_len > lz_options->match_len_max)
203 		return true;
204 
205 	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
206 
207 	mf->keep_size_after = lz_options->after_size
208 			+ lz_options->match_len_max;
209 
210 	// To avoid constant memmove()s, allocate some extra space. Since
211 	// memmove()s become more expensive when the size of the buffer
212 	// increases, we reserve more space when a large dictionary is
213 	// used to make the memmove() calls rarer.
214 	//
215 	// This works with dictionaries up to about 3 GiB. If bigger
216 	// dictionary is wanted, some extra work is needed:
217 	//   - Several variables in lzma_mf have to be changed from uint32_t
218 	//     to size_t.
219 	//   - Memory usage calculation needs something too, e.g. use uint64_t
220 	//     for mf->size.
221 	uint32_t reserve = lz_options->dict_size / 2;
222 	if (reserve > (UINT32_C(1) << 30))
223 		reserve /= 2;
224 
225 	reserve += (lz_options->before_size + lz_options->match_len_max
226 			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
227 
228 	const uint32_t old_size = mf->size;
229 	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
230 
231 	// Deallocate the old history buffer if it exists but has different
232 	// size than what is needed now.
233 	if (mf->buffer != NULL && old_size != mf->size) {
234 		lzma_free(mf->buffer, allocator);
235 		mf->buffer = NULL;
236 	}
237 
238 	// Match finder options
239 	mf->match_len_max = lz_options->match_len_max;
240 	mf->nice_len = lz_options->nice_len;
241 
242 	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
243 	// mean limiting dictionary size to less than 2 GiB. With a match
244 	// finder that uses multibyte resolution (hashes start at e.g. every
245 	// fourth byte), cyclic_size would stay below 2 Gi even when
246 	// dictionary size is greater than 2 GiB.
247 	//
248 	// It would be possible to allow cyclic_size >= 2 Gi, but then we
249 	// would need to be careful to use 64-bit types in various places
250 	// (size_t could do since we would need bigger than 32-bit address
251 	// space anyway). It would also require either zeroing a multigigabyte
252 	// buffer at initialization (waste of time and RAM) or allow
253 	// normalization in lz_encoder_mf.c to access uninitialized
254 	// memory to keep the code simpler. The current way is simple and
255 	// still allows pretty big dictionaries, so I don't expect these
256 	// limits to change.
257 	mf->cyclic_size = lz_options->dict_size + 1;
258 
259 	// Validate the match finder ID and setup the function pointers.
260 	switch (lz_options->match_finder) {
261 #ifdef HAVE_MF_HC3
262 	case LZMA_MF_HC3:
263 		mf->find = &lzma_mf_hc3_find;
264 		mf->skip = &lzma_mf_hc3_skip;
265 		break;
266 #endif
267 #ifdef HAVE_MF_HC4
268 	case LZMA_MF_HC4:
269 		mf->find = &lzma_mf_hc4_find;
270 		mf->skip = &lzma_mf_hc4_skip;
271 		break;
272 #endif
273 #ifdef HAVE_MF_BT2
274 	case LZMA_MF_BT2:
275 		mf->find = &lzma_mf_bt2_find;
276 		mf->skip = &lzma_mf_bt2_skip;
277 		break;
278 #endif
279 #ifdef HAVE_MF_BT3
280 	case LZMA_MF_BT3:
281 		mf->find = &lzma_mf_bt3_find;
282 		mf->skip = &lzma_mf_bt3_skip;
283 		break;
284 #endif
285 #ifdef HAVE_MF_BT4
286 	case LZMA_MF_BT4:
287 		mf->find = &lzma_mf_bt4_find;
288 		mf->skip = &lzma_mf_bt4_skip;
289 		break;
290 #endif
291 
292 	default:
293 		return true;
294 	}
295 
296 	// Calculate the sizes of mf->hash and mf->son and check that
297 	// nice_len is big enough for the selected match finder.
298 	const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
299 	if (hash_bytes > mf->nice_len)
300 		return true;
301 
302 	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
303 	uint32_t hs;
304 
305 	if (hash_bytes == 2) {
306 		hs = 0xFFFF;
307 	} else {
308 		// Round dictionary size up to the next 2^n - 1 so it can
309 		// be used as a hash mask.
310 		hs = lz_options->dict_size - 1;
311 		hs |= hs >> 1;
312 		hs |= hs >> 2;
313 		hs |= hs >> 4;
314 		hs |= hs >> 8;
315 		hs >>= 1;
316 		hs |= 0xFFFF;
317 
318 		if (hs > (UINT32_C(1) << 24)) {
319 			if (hash_bytes == 3)
320 				hs = (UINT32_C(1) << 24) - 1;
321 			else
322 				hs >>= 1;
323 		}
324 	}
325 
326 	mf->hash_mask = hs;
327 
328 	++hs;
329 	if (hash_bytes > 2)
330 		hs += HASH_2_SIZE;
331 	if (hash_bytes > 3)
332 		hs += HASH_3_SIZE;
333 /*
334 	No match finder uses this at the moment.
335 	if (mf->hash_bytes > 4)
336 		hs += HASH_4_SIZE;
337 */
338 
339 	const uint32_t old_hash_count = mf->hash_count;
340 	const uint32_t old_sons_count = mf->sons_count;
341 	mf->hash_count = hs;
342 	mf->sons_count = mf->cyclic_size;
343 	if (is_bt)
344 		mf->sons_count *= 2;
345 
346 	// Deallocate the old hash array if it exists and has different size
347 	// than what is needed now.
348 	if (old_hash_count != mf->hash_count
349 			|| old_sons_count != mf->sons_count) {
350 		lzma_free(mf->hash, allocator);
351 		mf->hash = NULL;
352 
353 		lzma_free(mf->son, allocator);
354 		mf->son = NULL;
355 	}
356 
357 	// Maximum number of match finder cycles
358 	mf->depth = lz_options->depth;
359 	if (mf->depth == 0) {
360 		if (is_bt)
361 			mf->depth = 16 + mf->nice_len / 2;
362 		else
363 			mf->depth = 4 + mf->nice_len / 4;
364 	}
365 
366 	return false;
367 }
368 
369 
370 static bool
371 lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
372 		const lzma_lz_options *lz_options)
373 {
374 	// Allocate the history buffer.
375 	if (mf->buffer == NULL) {
376 		// lzma_memcmplen() is used for the dictionary buffer
377 		// so we need to allocate a few extra bytes to prevent
378 		// it from reading past the end of the buffer.
379 		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
380 				allocator);
381 		if (mf->buffer == NULL)
382 			return true;
383 
384 		// Keep Valgrind happy with lzma_memcmplen() and initialize
385 		// the extra bytes whose value may get read but which will
386 		// effectively get ignored.
387 		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
388 	}
389 
390 	// Use cyclic_size as initial mf->offset. This allows
391 	// avoiding a few branches in the match finders. The downside is
392 	// that match finder needs to be normalized more often, which may
393 	// hurt performance with huge dictionaries.
394 	mf->offset = mf->cyclic_size;
395 	mf->read_pos = 0;
396 	mf->read_ahead = 0;
397 	mf->read_limit = 0;
398 	mf->write_pos = 0;
399 	mf->pending = 0;
400 
401 #if UINT32_MAX >= SIZE_MAX / 4
402 	// Check for integer overflow. (Huge dictionaries are not
403 	// possible on 32-bit CPU.)
404 	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
405 			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
406 		return true;
407 #endif
408 
409 	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
410 	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
411 	//
412 	// We don't need to initialize mf->son, but not doing that may
413 	// make Valgrind complain in normalization (see normalize() in
414 	// lz_encoder_mf.c). Skipping the initialization is *very* good
415 	// when big dictionary is used but only small amount of data gets
416 	// actually compressed: most of the mf->son won't get actually
417 	// allocated by the kernel, so we avoid wasting RAM and improve
418 	// initialization speed a lot.
419 	if (mf->hash == NULL) {
420 		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
421 				allocator);
422 		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
423 				allocator);
424 
425 		if (mf->hash == NULL || mf->son == NULL) {
426 			lzma_free(mf->hash, allocator);
427 			mf->hash = NULL;
428 
429 			lzma_free(mf->son, allocator);
430 			mf->son = NULL;
431 
432 			return true;
433 		}
434 	} else {
435 /*
436 		for (uint32_t i = 0; i < mf->hash_count; ++i)
437 			mf->hash[i] = EMPTY_HASH_VALUE;
438 */
439 		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
440 	}
441 
442 	mf->cyclic_pos = 0;
443 
444 	// Handle preset dictionary.
445 	if (lz_options->preset_dict != NULL
446 			&& lz_options->preset_dict_size > 0) {
447 		// If the preset dictionary is bigger than the actual
448 		// dictionary, use only the tail.
449 		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
450 		memcpy(mf->buffer, lz_options->preset_dict
451 				+ lz_options->preset_dict_size - mf->write_pos,
452 				mf->write_pos);
453 		mf->action = LZMA_SYNC_FLUSH;
454 		mf->skip(mf, mf->write_pos);
455 	}
456 
457 	mf->action = LZMA_RUN;
458 
459 	return false;
460 }
461 
462 
463 extern uint64_t
464 lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
465 {
466 	// Old buffers must not exist when calling lz_encoder_prepare().
467 	lzma_mf mf = {
468 		.buffer = NULL,
469 		.hash = NULL,
470 		.son = NULL,
471 		.hash_count = 0,
472 		.sons_count = 0,
473 	};
474 
475 	// Setup the size information into mf.
476 	if (lz_encoder_prepare(&mf, NULL, lz_options))
477 		return UINT64_MAX;
478 
479 	// Calculate the memory usage.
480 	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
481 			+ mf.size + sizeof(lzma_coder);
482 }
483 
484 
485 static void
486 lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
487 {
488 	lzma_coder *coder = coder_ptr;
489 
490 	lzma_next_end(&coder->next, allocator);
491 
492 	lzma_free(coder->mf.son, allocator);
493 	lzma_free(coder->mf.hash, allocator);
494 	lzma_free(coder->mf.buffer, allocator);
495 
496 	if (coder->lz.end != NULL)
497 		coder->lz.end(coder->lz.coder, allocator);
498 	else
499 		lzma_free(coder->lz.coder, allocator);
500 
501 	lzma_free(coder, allocator);
502 	return;
503 }
504 
505 
506 static lzma_ret
507 lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
508 		const lzma_filter *filters_null lzma_attribute((__unused__)),
509 		const lzma_filter *reversed_filters)
510 {
511 	lzma_coder *coder = coder_ptr;
512 
513 	if (coder->lz.options_update == NULL)
514 		return LZMA_PROG_ERROR;
515 
516 	return_if_error(coder->lz.options_update(
517 			coder->lz.coder, reversed_filters));
518 
519 	return lzma_next_filter_update(
520 			&coder->next, allocator, reversed_filters + 1);
521 }
522 
523 
524 extern lzma_ret
525 lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
526 		const lzma_filter_info *filters,
527 		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
528 			const lzma_allocator *allocator, const void *options,
529 			lzma_lz_options *lz_options))
530 {
531 #ifdef HAVE_SMALL
532 	// We need that the CRC32 table has been initialized.
533 	lzma_crc32_init();
534 #endif
535 
536 	// Allocate and initialize the base data structure.
537 	lzma_coder *coder = next->coder;
538 	if (coder == NULL) {
539 		coder = lzma_alloc(sizeof(lzma_coder), allocator);
540 		if (coder == NULL)
541 			return LZMA_MEM_ERROR;
542 
543 		next->coder = coder;
544 		next->code = &lz_encode;
545 		next->end = &lz_encoder_end;
546 		next->update = &lz_encoder_update;
547 
548 		coder->lz.coder = NULL;
549 		coder->lz.code = NULL;
550 		coder->lz.end = NULL;
551 
552 		// mf.size is initialized to silence Valgrind
553 		// when used on optimized binaries (GCC may reorder
554 		// code in a way that Valgrind gets unhappy).
555 		coder->mf.buffer = NULL;
556 		coder->mf.size = 0;
557 		coder->mf.hash = NULL;
558 		coder->mf.son = NULL;
559 		coder->mf.hash_count = 0;
560 		coder->mf.sons_count = 0;
561 
562 		coder->next = LZMA_NEXT_CODER_INIT;
563 	}
564 
565 	// Initialize the LZ-based encoder.
566 	lzma_lz_options lz_options;
567 	return_if_error(lz_init(&coder->lz, allocator,
568 			filters[0].options, &lz_options));
569 
570 	// Setup the size information into coder->mf and deallocate
571 	// old buffers if they have wrong size.
572 	if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
573 		return LZMA_OPTIONS_ERROR;
574 
575 	// Allocate new buffers if needed, and do the rest of
576 	// the initialization.
577 	if (lz_encoder_init(&coder->mf, allocator, &lz_options))
578 		return LZMA_MEM_ERROR;
579 
580 	// Initialize the next filter in the chain, if any.
581 	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
582 }
583 
584 
585 extern LZMA_API(lzma_bool)
586 lzma_mf_is_supported(lzma_match_finder mf)
587 {
588 	bool ret = false;
589 
590 #ifdef HAVE_MF_HC3
591 	if (mf == LZMA_MF_HC3)
592 		ret = true;
593 #endif
594 
595 #ifdef HAVE_MF_HC4
596 	if (mf == LZMA_MF_HC4)
597 		ret = true;
598 #endif
599 
600 #ifdef HAVE_MF_BT2
601 	if (mf == LZMA_MF_BT2)
602 		ret = true;
603 #endif
604 
605 #ifdef HAVE_MF_BT3
606 	if (mf == LZMA_MF_BT3)
607 		ret = true;
608 #endif
609 
610 #ifdef HAVE_MF_BT4
611 	if (mf == LZMA_MF_BT4)
612 		ret = true;
613 #endif
614 
615 	return ret;
616 }
617