1 /////////////////////////////////////////////////////////////////////////////// 2 // 3 /// \file stream_decoder_mt.c 4 /// \brief Multithreaded .xz Stream decoder 5 // 6 // Authors: Sebastian Andrzej Siewior 7 // Lasse Collin 8 // 9 // This file has been put into the public domain. 10 // You can do whatever you want with this file. 11 // 12 /////////////////////////////////////////////////////////////////////////////// 13 14 #include "common.h" 15 #include "block_decoder.h" 16 #include "stream_decoder.h" 17 #include "index.h" 18 #include "outqueue.h" 19 20 21 typedef enum { 22 /// Waiting for work. 23 /// Main thread may change this to THR_RUN or THR_EXIT. 24 THR_IDLE, 25 26 /// Decoding is in progress. 27 /// Main thread may change this to THR_STOP or THR_EXIT. 28 /// The worker thread may change this to THR_IDLE. 29 THR_RUN, 30 31 /// The main thread wants the thread to stop whatever it was doing 32 /// but not exit. Main thread may change this to THR_EXIT. 33 /// The worker thread may change this to THR_IDLE. 34 THR_STOP, 35 36 /// The main thread wants the thread to exit. 37 THR_EXIT, 38 39 } worker_state; 40 41 42 typedef enum { 43 /// Partial updates (storing of worker thread progress 44 /// to lzma_outbuf) are disabled. 45 PARTIAL_DISABLED, 46 47 /// Main thread requests partial updates to be enabled but 48 /// no partial update has been done by the worker thread yet. 49 /// 50 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires 51 /// use of the worker-thread mutex. Other transitions don't 52 /// need a mutex. 53 PARTIAL_START, 54 55 /// Partial updates are enabled and the worker thread has done 56 /// at least one partial update. 57 PARTIAL_ENABLED, 58 59 } partial_update_mode; 60 61 62 struct worker_thread { 63 /// Worker state is protected with our mutex. 64 worker_state state; 65 66 /// Input buffer that will contain the whole Block except Block Header. 67 uint8_t *in; 68 69 /// Amount of memory allocated for "in" 70 size_t in_size; 71 72 /// Number of bytes written to "in" by the main thread 73 size_t in_filled; 74 75 /// Number of bytes consumed from "in" by the worker thread. 76 size_t in_pos; 77 78 /// Amount of uncompressed data that has been decoded. This local 79 /// copy is needed because updating outbuf->pos requires locking 80 /// the main mutex (coder->mutex). 81 size_t out_pos; 82 83 /// Pointer to the main structure is needed to (1) lock the main 84 /// mutex (coder->mutex) when updating outbuf->pos and (2) when 85 /// putting this thread back to the stack of free threads. 86 struct lzma_stream_coder *coder; 87 88 /// The allocator is set by the main thread. Since a copy of the 89 /// pointer is kept here, the application must not change the 90 /// allocator before calling lzma_end(). 91 const lzma_allocator *allocator; 92 93 /// Output queue buffer to which the uncompressed data is written. 94 lzma_outbuf *outbuf; 95 96 /// Amount of compressed data that has already been decompressed. 97 /// This is updated from in_pos when our mutex is locked. 98 /// This is size_t, not uint64_t, because per-thread progress 99 /// is limited to sizes of allocated buffers. 100 size_t progress_in; 101 102 /// Like progress_in but for uncompressed data. 103 size_t progress_out; 104 105 /// Updating outbuf->pos requires locking the main mutex 106 /// (coder->mutex). Since the main thread will only read output 107 /// from the oldest outbuf in the queue, only the worker thread 108 /// that is associated with the oldest outbuf needs to update its 109 /// outbuf->pos. This avoids useless mutex contention that would 110 /// happen if all worker threads were frequently locking the main 111 /// mutex to update their outbuf->pos. 112 /// 113 /// Only when partial_update is something else than PARTIAL_DISABLED, 114 /// this worker thread will update outbuf->pos after each call to 115 /// the Block decoder. 116 partial_update_mode partial_update; 117 118 /// Block decoder 119 lzma_next_coder block_decoder; 120 121 /// Thread-specific Block options are needed because the Block 122 /// decoder modifies the struct given to it at initialization. 123 lzma_block block_options; 124 125 /// Filter chain memory usage 126 uint64_t mem_filters; 127 128 /// Next structure in the stack of free worker threads. 129 struct worker_thread *next; 130 131 mythread_mutex mutex; 132 mythread_cond cond; 133 134 /// The ID of this thread is used to join the thread 135 /// when it's not needed anymore. 136 mythread thread_id; 137 }; 138 139 140 struct lzma_stream_coder { 141 enum { 142 SEQ_STREAM_HEADER, 143 SEQ_BLOCK_HEADER, 144 SEQ_BLOCK_INIT, 145 SEQ_BLOCK_THR_INIT, 146 SEQ_BLOCK_THR_RUN, 147 SEQ_BLOCK_DIRECT_INIT, 148 SEQ_BLOCK_DIRECT_RUN, 149 SEQ_INDEX_WAIT_OUTPUT, 150 SEQ_INDEX_DECODE, 151 SEQ_STREAM_FOOTER, 152 SEQ_STREAM_PADDING, 153 SEQ_ERROR, 154 } sequence; 155 156 /// Block decoder 157 lzma_next_coder block_decoder; 158 159 /// Every Block Header will be decoded into this structure. 160 /// This is also used to initialize a Block decoder when in 161 /// direct mode. In threaded mode, a thread-specific copy will 162 /// be made for decoder initialization because the Block decoder 163 /// will modify the structure given to it. 164 lzma_block block_options; 165 166 /// Buffer to hold a filter chain for Block Header decoding and 167 /// initialization. These are freed after successful Block decoder 168 /// initialization or at stream_decoder_mt_end(). The thread-specific 169 /// copy of block_options won't hold a pointer to filters[] after 170 /// initialization. 171 lzma_filter filters[LZMA_FILTERS_MAX + 1]; 172 173 /// Stream Flags from Stream Header 174 lzma_stream_flags stream_flags; 175 176 /// Index is hashed so that it can be compared to the sizes of Blocks 177 /// with O(1) memory usage. 178 lzma_index_hash *index_hash; 179 180 181 /// Maximum wait time if cannot use all the input and cannot 182 /// fill the output buffer. This is in milliseconds. 183 uint32_t timeout; 184 185 186 /// Error code from a worker thread. 187 /// 188 /// \note Use mutex. 189 lzma_ret thread_error; 190 191 /// Error code to return after pending output has been copied out. If 192 /// set in read_output_and_wait(), this is a mirror of thread_error. 193 /// If set in stream_decode_mt() then it's, for example, error that 194 /// occurred when decoding Block Header. 195 lzma_ret pending_error; 196 197 /// Number of threads that will be created at maximum. 198 uint32_t threads_max; 199 200 /// Number of thread structures that have been initialized from 201 /// "threads", and thus the number of worker threads actually 202 /// created so far. 203 uint32_t threads_initialized; 204 205 /// Array of allocated thread-specific structures. When no threads 206 /// are in use (direct mode) this is NULL. In threaded mode this 207 /// points to an array of threads_max number of worker_thread structs. 208 struct worker_thread *threads; 209 210 /// Stack of free threads. When a thread finishes, it puts itself 211 /// back into this stack. This starts as empty because threads 212 /// are created only when actually needed. 213 /// 214 /// \note Use mutex. 215 struct worker_thread *threads_free; 216 217 /// The most recent worker thread to which the main thread writes 218 /// the new input from the application. 219 struct worker_thread *thr; 220 221 /// Output buffer queue for decompressed data from the worker threads 222 /// 223 /// \note Use mutex with operations that need it. 224 lzma_outq outq; 225 226 mythread_mutex mutex; 227 mythread_cond cond; 228 229 230 /// Memory usage that will not be exceeded in multi-threaded mode. 231 /// Single-threaded mode can exceed this even by a large amount. 232 uint64_t memlimit_threading; 233 234 /// Memory usage limit that should never be exceeded. 235 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible 236 /// even in single-threaded mode without exceeding this limit. 237 uint64_t memlimit_stop; 238 239 /// Amount of memory in use by the direct mode decoder 240 /// (coder->block_decoder). In threaded mode this is 0. 241 uint64_t mem_direct_mode; 242 243 /// Amount of memory needed by the running worker threads. 244 /// This doesn't include the memory needed by the output buffer. 245 /// 246 /// \note Use mutex. 247 uint64_t mem_in_use; 248 249 /// Amount of memory used by the idle (cached) threads. 250 /// 251 /// \note Use mutex. 252 uint64_t mem_cached; 253 254 255 /// Amount of memory needed for the filter chain of the next Block. 256 uint64_t mem_next_filters; 257 258 /// Amount of memory needed for the thread-specific input buffer 259 /// for the next Block. 260 uint64_t mem_next_in; 261 262 /// Amount of memory actually needed to decode the next Block 263 /// in threaded mode. This is 264 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf. 265 uint64_t mem_next_block; 266 267 268 /// Amount of compressed data in Stream Header + Blocks that have 269 /// already been finished. 270 /// 271 /// \note Use mutex. 272 uint64_t progress_in; 273 274 /// Amount of uncompressed data in Blocks that have already 275 /// been finished. 276 /// 277 /// \note Use mutex. 278 uint64_t progress_out; 279 280 281 /// If true, LZMA_NO_CHECK is returned if the Stream has 282 /// no integrity check. 283 bool tell_no_check; 284 285 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has 286 /// an integrity check that isn't supported by this liblzma build. 287 bool tell_unsupported_check; 288 289 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header. 290 bool tell_any_check; 291 292 /// If true, we will tell the Block decoder to skip calculating 293 /// and verifying the integrity check. 294 bool ignore_check; 295 296 /// If true, we will decode concatenated Streams that possibly have 297 /// Stream Padding between or after them. LZMA_STREAM_END is returned 298 /// once the application isn't giving us any new input (LZMA_FINISH), 299 /// and we aren't in the middle of a Stream, and possible 300 /// Stream Padding is a multiple of four bytes. 301 bool concatenated; 302 303 /// If true, we will return any errors immediately instead of first 304 /// producing all output before the location of the error. 305 bool fail_fast; 306 307 308 /// When decoding concatenated Streams, this is true as long as we 309 /// are decoding the first Stream. This is needed to avoid misleading 310 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic 311 /// bytes. 312 bool first_stream; 313 314 /// This is used to track if the previous call to stream_decode_mt() 315 /// had output space (*out_pos < out_size) and managed to fill the 316 /// output buffer (*out_pos == out_size). This may be set to true 317 /// in read_output_and_wait(). This is read and then reset to false 318 /// at the beginning of stream_decode_mt(). 319 /// 320 /// This is needed to support applications that call lzma_code() in 321 /// such a way that more input is provided only when lzma_code() 322 /// didn't fill the output buffer completely. Basically, this makes 323 /// it easier to convert such applications from single-threaded 324 /// decoder to multi-threaded decoder. 325 bool out_was_filled; 326 327 /// Write position in buffer[] and position in Stream Padding 328 size_t pos; 329 330 /// Buffer to hold Stream Header, Block Header, and Stream Footer. 331 /// Block Header has biggest maximum size. 332 uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX]; 333 }; 334 335 336 /// Enables updating of outbuf->pos. This is a callback function that is 337 /// used with lzma_outq_enable_partial_output(). 338 static void 339 worker_enable_partial_update(void *thr_ptr) 340 { 341 struct worker_thread *thr = thr_ptr; 342 343 mythread_sync(thr->mutex) { 344 thr->partial_update = PARTIAL_START; 345 mythread_cond_signal(&thr->cond); 346 } 347 } 348 349 350 /// Things do to at THR_STOP or when finishing a Block. 351 /// This is called with thr->mutex locked. 352 static void 353 worker_stop(struct worker_thread *thr) 354 { 355 // Update memory usage counters. 356 thr->coder->mem_in_use -= thr->in_size; 357 thr->in_size = 0; // thr->in was freed above. 358 359 thr->coder->mem_in_use -= thr->mem_filters; 360 thr->coder->mem_cached += thr->mem_filters; 361 362 // Put this thread to the stack of free threads. 363 thr->next = thr->coder->threads_free; 364 thr->coder->threads_free = thr; 365 366 mythread_cond_signal(&thr->coder->cond); 367 return; 368 } 369 370 371 static MYTHREAD_RET_TYPE 372 worker_decoder(void *thr_ptr) 373 { 374 struct worker_thread *thr = thr_ptr; 375 size_t in_filled; 376 partial_update_mode partial_update; 377 lzma_ret ret; 378 379 next_loop_lock: 380 381 mythread_mutex_lock(&thr->mutex); 382 next_loop_unlocked: 383 384 if (thr->state == THR_IDLE) { 385 mythread_cond_wait(&thr->cond, &thr->mutex); 386 goto next_loop_unlocked; 387 } 388 389 if (thr->state == THR_EXIT) { 390 mythread_mutex_unlock(&thr->mutex); 391 392 lzma_free(thr->in, thr->allocator); 393 lzma_next_end(&thr->block_decoder, thr->allocator); 394 395 mythread_mutex_destroy(&thr->mutex); 396 mythread_cond_destroy(&thr->cond); 397 398 return MYTHREAD_RET_VALUE; 399 } 400 401 if (thr->state == THR_STOP) { 402 thr->state = THR_IDLE; 403 mythread_mutex_unlock(&thr->mutex); 404 405 mythread_sync(thr->coder->mutex) { 406 worker_stop(thr); 407 } 408 409 goto next_loop_lock; 410 } 411 412 assert(thr->state == THR_RUN); 413 414 // Update progress info for get_progress(). 415 thr->progress_in = thr->in_pos; 416 thr->progress_out = thr->out_pos; 417 418 // If we don't have any new input, wait for a signal from the main 419 // thread except if partial output has just been enabled. In that 420 // case we will do one normal run so that the partial output info 421 // gets passed to the main thread. The call to block_decoder.code() 422 // is useless but harmless as it can occur only once per Block. 423 in_filled = thr->in_filled; 424 partial_update = thr->partial_update; 425 426 if (in_filled == thr->in_pos && partial_update != PARTIAL_START) { 427 mythread_cond_wait(&thr->cond, &thr->mutex); 428 goto next_loop_unlocked; 429 } 430 431 mythread_mutex_unlock(&thr->mutex); 432 433 // Pass the input in small chunks to the Block decoder. 434 // This way we react reasonably fast if we are told to stop/exit, 435 // and (when partial update is enabled) we tell about our progress 436 // to the main thread frequently enough. 437 const size_t chunk_size = 16384; 438 if ((in_filled - thr->in_pos) > chunk_size) 439 in_filled = thr->in_pos + chunk_size; 440 441 ret = thr->block_decoder.code( 442 thr->block_decoder.coder, thr->allocator, 443 thr->in, &thr->in_pos, in_filled, 444 thr->outbuf->buf, &thr->out_pos, 445 thr->outbuf->allocated, LZMA_RUN); 446 447 if (ret == LZMA_OK) { 448 if (partial_update != PARTIAL_DISABLED) { 449 // The main thread uses thr->mutex to change from 450 // PARTIAL_DISABLED to PARTIAL_START. The main thread 451 // doesn't care about this variable after that so we 452 // can safely change it here to PARTIAL_ENABLED 453 // without a mutex. 454 thr->partial_update = PARTIAL_ENABLED; 455 456 // The main thread is reading decompressed data 457 // from thr->outbuf. Tell the main thread about 458 // our progress. 459 // 460 // NOTE: It's possible that we consumed input without 461 // producing any new output so it's possible that 462 // only in_pos has changed. In case of PARTIAL_START 463 // it is possible that neither in_pos nor out_pos has 464 // changed. 465 mythread_sync(thr->coder->mutex) { 466 thr->outbuf->pos = thr->out_pos; 467 thr->outbuf->decoder_in_pos = thr->in_pos; 468 mythread_cond_signal(&thr->coder->cond); 469 } 470 } 471 472 goto next_loop_lock; 473 } 474 475 // Either we finished successfully (LZMA_STREAM_END) or an error 476 // occurred. Both cases are handled almost identically. The error 477 // case requires updating thr->coder->thread_error. 478 // 479 // The sizes are in the Block Header and the Block decoder 480 // checks that they match, thus we know these: 481 assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size); 482 assert(ret != LZMA_STREAM_END 483 || thr->out_pos == thr->block_options.uncompressed_size); 484 485 // Free the input buffer. Don't update in_size as we need 486 // it later to update thr->coder->mem_in_use. 487 lzma_free(thr->in, thr->allocator); 488 thr->in = NULL; 489 490 mythread_sync(thr->mutex) { 491 if (thr->state != THR_EXIT) 492 thr->state = THR_IDLE; 493 } 494 495 mythread_sync(thr->coder->mutex) { 496 // Move our progress info to the main thread. 497 thr->coder->progress_in += thr->in_pos; 498 thr->coder->progress_out += thr->out_pos; 499 thr->progress_in = 0; 500 thr->progress_out = 0; 501 502 // Mark the outbuf as finished. 503 thr->outbuf->pos = thr->out_pos; 504 thr->outbuf->decoder_in_pos = thr->in_pos; 505 thr->outbuf->finished = true; 506 thr->outbuf->finish_ret = ret; 507 thr->outbuf = NULL; 508 509 // If an error occurred, tell it to the main thread. 510 if (ret != LZMA_STREAM_END 511 && thr->coder->thread_error == LZMA_OK) 512 thr->coder->thread_error = ret; 513 514 worker_stop(thr); 515 } 516 517 goto next_loop_lock; 518 } 519 520 521 /// Tells the worker threads to exit and waits for them to terminate. 522 static void 523 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator) 524 { 525 for (uint32_t i = 0; i < coder->threads_initialized; ++i) { 526 mythread_sync(coder->threads[i].mutex) { 527 coder->threads[i].state = THR_EXIT; 528 mythread_cond_signal(&coder->threads[i].cond); 529 } 530 } 531 532 for (uint32_t i = 0; i < coder->threads_initialized; ++i) 533 mythread_join(coder->threads[i].thread_id); 534 535 lzma_free(coder->threads, allocator); 536 coder->threads_initialized = 0; 537 coder->threads = NULL; 538 coder->threads_free = NULL; 539 540 // The threads don't update these when they exit. Do it here. 541 coder->mem_in_use = 0; 542 coder->mem_cached = 0; 543 544 return; 545 } 546 547 548 static void 549 threads_stop(struct lzma_stream_coder *coder) 550 { 551 for (uint32_t i = 0; i < coder->threads_initialized; ++i) { 552 mythread_sync(coder->threads[i].mutex) { 553 // The state must be changed conditionally because 554 // THR_IDLE -> THR_STOP is not a valid state change. 555 if (coder->threads[i].state != THR_IDLE) { 556 coder->threads[i].state = THR_STOP; 557 mythread_cond_signal(&coder->threads[i].cond); 558 } 559 } 560 } 561 562 return; 563 } 564 565 566 /// Initialize a new worker_thread structure and create a new thread. 567 static lzma_ret 568 initialize_new_thread(struct lzma_stream_coder *coder, 569 const lzma_allocator *allocator) 570 { 571 // Allocate the coder->threads array if needed. It's done here instead 572 // of when initializing the decoder because we don't need this if we 573 // use the direct mode (we may even free coder->threads in the middle 574 // of the file if we switch from threaded to direct mode). 575 if (coder->threads == NULL) { 576 coder->threads = lzma_alloc( 577 coder->threads_max * sizeof(struct worker_thread), 578 allocator); 579 580 if (coder->threads == NULL) 581 return LZMA_MEM_ERROR; 582 } 583 584 // Pick a free structure. 585 assert(coder->threads_initialized < coder->threads_max); 586 struct worker_thread *thr 587 = &coder->threads[coder->threads_initialized]; 588 589 if (mythread_mutex_init(&thr->mutex)) 590 goto error_mutex; 591 592 if (mythread_cond_init(&thr->cond)) 593 goto error_cond; 594 595 thr->state = THR_IDLE; 596 thr->in = NULL; 597 thr->in_size = 0; 598 thr->allocator = allocator; 599 thr->coder = coder; 600 thr->outbuf = NULL; 601 thr->block_decoder = LZMA_NEXT_CODER_INIT; 602 thr->mem_filters = 0; 603 604 if (mythread_create(&thr->thread_id, worker_decoder, thr)) 605 goto error_thread; 606 607 ++coder->threads_initialized; 608 coder->thr = thr; 609 610 return LZMA_OK; 611 612 error_thread: 613 mythread_cond_destroy(&thr->cond); 614 615 error_cond: 616 mythread_mutex_destroy(&thr->mutex); 617 618 error_mutex: 619 return LZMA_MEM_ERROR; 620 } 621 622 623 static lzma_ret 624 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator) 625 { 626 // If there is a free structure on the stack, use it. 627 mythread_sync(coder->mutex) { 628 if (coder->threads_free != NULL) { 629 coder->thr = coder->threads_free; 630 coder->threads_free = coder->threads_free->next; 631 632 // The thread is no longer in the cache so substract 633 // it from the cached memory usage. Don't add it 634 // to mem_in_use though; the caller will handle it 635 // since it knows how much memory it will actually 636 // use (the filter chain might change). 637 coder->mem_cached -= coder->thr->mem_filters; 638 } 639 } 640 641 if (coder->thr == NULL) { 642 assert(coder->threads_initialized < coder->threads_max); 643 644 // Initialize a new thread. 645 return_if_error(initialize_new_thread(coder, allocator)); 646 } 647 648 coder->thr->in_filled = 0; 649 coder->thr->in_pos = 0; 650 coder->thr->out_pos = 0; 651 652 coder->thr->progress_in = 0; 653 coder->thr->progress_out = 0; 654 655 coder->thr->partial_update = PARTIAL_DISABLED; 656 657 return LZMA_OK; 658 } 659 660 661 static lzma_ret 662 read_output_and_wait(struct lzma_stream_coder *coder, 663 const lzma_allocator *allocator, 664 uint8_t *restrict out, size_t *restrict out_pos, 665 size_t out_size, 666 bool *input_is_possible, 667 bool waiting_allowed, 668 mythread_condtime *wait_abs, bool *has_blocked) 669 { 670 lzma_ret ret = LZMA_OK; 671 672 mythread_sync(coder->mutex) { 673 do { 674 // Get as much output from the queue as is possible 675 // without blocking. 676 const size_t out_start = *out_pos; 677 do { 678 ret = lzma_outq_read(&coder->outq, allocator, 679 out, out_pos, out_size, 680 NULL, NULL); 681 682 // If a Block was finished, tell the worker 683 // thread of the next Block (if it is still 684 // running) to start telling the main thread 685 // when new output is available. 686 if (ret == LZMA_STREAM_END) 687 lzma_outq_enable_partial_output( 688 &coder->outq, 689 &worker_enable_partial_update); 690 691 // Loop until a Block wasn't finished. 692 // It's important to loop around even if 693 // *out_pos == out_size because there could 694 // be an empty Block that will return 695 // LZMA_STREAM_END without needing any 696 // output space. 697 } while (ret == LZMA_STREAM_END); 698 699 // Check if lzma_outq_read reported an error from 700 // the Block decoder. 701 if (ret != LZMA_OK) 702 break; 703 704 // If the output buffer is now full but it wasn't full 705 // when this function was called, set out_was_filled. 706 // This way the next call to stream_decode_mt() knows 707 // that some output was produced and no output space 708 // remained in the previous call to stream_decode_mt(). 709 if (*out_pos == out_size && *out_pos != out_start) 710 coder->out_was_filled = true; 711 712 // Check if any thread has indicated an error. 713 if (coder->thread_error != LZMA_OK) { 714 // If LZMA_FAIL_FAST was used, report errors 715 // from worker threads immediately. 716 if (coder->fail_fast) { 717 ret = coder->thread_error; 718 break; 719 } 720 721 // Otherwise set pending_error. The value we 722 // set here will not actually get used other 723 // than working as a flag that an error has 724 // occurred. This is because in SEQ_ERROR 725 // all output before the error will be read 726 // first by calling this function, and once we 727 // reach the location of the (first) error the 728 // error code from the above lzma_outq_read() 729 // will be returned to the application. 730 // 731 // Use LZMA_PROG_ERROR since the value should 732 // never leak to the application. It's 733 // possible that pending_error has already 734 // been set but that doesn't matter: if we get 735 // here, pending_error only works as a flag. 736 coder->pending_error = LZMA_PROG_ERROR; 737 } 738 739 // Check if decoding of the next Block can be started. 740 // The memusage of the active threads must be low 741 // enough, there must be a free buffer slot in the 742 // output queue, and there must be a free thread 743 // (that can be either created or an existing one 744 // reused). 745 // 746 // NOTE: This is checked after reading the output 747 // above because reading the output can free a slot in 748 // the output queue and also reduce active memusage. 749 // 750 // NOTE: If output queue is empty, then input will 751 // always be possible. 752 if (input_is_possible != NULL 753 && coder->memlimit_threading 754 - coder->mem_in_use 755 - coder->outq.mem_in_use 756 >= coder->mem_next_block 757 && lzma_outq_has_buf(&coder->outq) 758 && (coder->threads_initialized 759 < coder->threads_max 760 || coder->threads_free 761 != NULL)) { 762 *input_is_possible = true; 763 break; 764 } 765 766 // If the caller doesn't want us to block, return now. 767 if (!waiting_allowed) 768 break; 769 770 // This check is needed only when input_is_possible 771 // is NULL. We must return if we aren't waiting for 772 // input to become possible and there is no more 773 // output coming from the queue. 774 if (lzma_outq_is_empty(&coder->outq)) { 775 assert(input_is_possible == NULL); 776 break; 777 } 778 779 // If there is more data available from the queue, 780 // our out buffer must be full and we need to return 781 // so that the application can provide more output 782 // space. 783 // 784 // NOTE: In general lzma_outq_is_readable() can return 785 // true also when there are no more bytes available. 786 // This can happen when a Block has finished without 787 // providing any new output. We know that this is not 788 // the case because in the beginning of this loop we 789 // tried to read as much as possible even when we had 790 // no output space left and the mutex has been locked 791 // all the time (so worker threads cannot have changed 792 // anything). Thus there must be actual pending output 793 // in the queue. 794 if (lzma_outq_is_readable(&coder->outq)) { 795 assert(*out_pos == out_size); 796 break; 797 } 798 799 // If the application stops providing more input 800 // in the middle of a Block, there will eventually 801 // be one worker thread left that is stuck waiting for 802 // more input (that might never arrive) and a matching 803 // outbuf which the worker thread cannot finish due 804 // to lack of input. We must detect this situation, 805 // otherwise we would end up waiting indefinitely 806 // (if no timeout is in use) or keep returning 807 // LZMA_TIMED_OUT while making no progress. Thus, the 808 // application would never get LZMA_BUF_ERROR from 809 // lzma_code() which would tell the application that 810 // no more progress is possible. No LZMA_BUF_ERROR 811 // means that, for example, truncated .xz files could 812 // cause an infinite loop. 813 // 814 // A worker thread doing partial updates will 815 // store not only the output position in outbuf->pos 816 // but also the matching input position in 817 // outbuf->decoder_in_pos. Here we check if that 818 // input position matches the amount of input that 819 // the worker thread has been given (in_filled). 820 // If so, we must return and not wait as no more 821 // output will be coming without first getting more 822 // input to the worker thread. If the application 823 // keeps calling lzma_code() without providing more 824 // input, it will eventually get LZMA_BUF_ERROR. 825 // 826 // NOTE: We can read partial_update and in_filled 827 // without thr->mutex as only the main thread 828 // modifies these variables. decoder_in_pos requires 829 // coder->mutex which we are already holding. 830 if (coder->thr != NULL && coder->thr->partial_update 831 != PARTIAL_DISABLED) { 832 // There is exactly one outbuf in the queue. 833 assert(coder->thr->outbuf == coder->outq.head); 834 assert(coder->thr->outbuf == coder->outq.tail); 835 836 if (coder->thr->outbuf->decoder_in_pos 837 == coder->thr->in_filled) 838 break; 839 } 840 841 // Wait for input or output to become possible. 842 if (coder->timeout != 0) { 843 // See the comment in stream_encoder_mt.c 844 // about why mythread_condtime_set() is used 845 // like this. 846 // 847 // FIXME? 848 // In contrast to the encoder, this calls 849 // _condtime_set while the mutex is locked. 850 if (!*has_blocked) { 851 *has_blocked = true; 852 mythread_condtime_set(wait_abs, 853 &coder->cond, 854 coder->timeout); 855 } 856 857 if (mythread_cond_timedwait(&coder->cond, 858 &coder->mutex, 859 wait_abs) != 0) { 860 ret = LZMA_TIMED_OUT; 861 break; 862 } 863 } else { 864 mythread_cond_wait(&coder->cond, 865 &coder->mutex); 866 } 867 } while (ret == LZMA_OK); 868 } 869 870 // If we are returning an error, then the application cannot get 871 // more output from us and thus keeping the threads running is 872 // useless and waste of CPU time. 873 if (ret != LZMA_OK && ret != LZMA_TIMED_OUT) 874 threads_stop(coder); 875 876 return ret; 877 } 878 879 880 static lzma_ret 881 decode_block_header(struct lzma_stream_coder *coder, 882 const lzma_allocator *allocator, const uint8_t *restrict in, 883 size_t *restrict in_pos, size_t in_size) 884 { 885 if (*in_pos >= in_size) 886 return LZMA_OK; 887 888 if (coder->pos == 0) { 889 // Detect if it's Index. 890 if (in[*in_pos] == 0x00) 891 return LZMA_INDEX_DETECTED; 892 893 // Calculate the size of the Block Header. Note that 894 // Block Header decoder wants to see this byte too 895 // so don't advance *in_pos. 896 coder->block_options.header_size 897 = lzma_block_header_size_decode( 898 in[*in_pos]); 899 } 900 901 // Copy the Block Header to the internal buffer. 902 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 903 coder->block_options.header_size); 904 905 // Return if we didn't get the whole Block Header yet. 906 if (coder->pos < coder->block_options.header_size) 907 return LZMA_OK; 908 909 coder->pos = 0; 910 911 // Version 1 is needed to support the .ignore_check option. 912 coder->block_options.version = 1; 913 914 // Block Header decoder will initialize all members of this array 915 // so we don't need to do it here. 916 coder->block_options.filters = coder->filters; 917 918 // Decode the Block Header. 919 return_if_error(lzma_block_header_decode(&coder->block_options, 920 allocator, coder->buffer)); 921 922 // If LZMA_IGNORE_CHECK was used, this flag needs to be set. 923 // It has to be set after lzma_block_header_decode() because 924 // it always resets this to false. 925 coder->block_options.ignore_check = coder->ignore_check; 926 927 // coder->block_options is ready now. 928 return LZMA_STREAM_END; 929 } 930 931 932 /// Get the size of the Compressed Data + Block Padding + Check. 933 static size_t 934 comp_blk_size(const struct lzma_stream_coder *coder) 935 { 936 return vli_ceil4(coder->block_options.compressed_size) 937 + lzma_check_size(coder->stream_flags.check); 938 } 939 940 941 /// Returns true if the size (compressed or uncompressed) is such that 942 /// threaded decompression cannot be used. Sizes that are too big compared 943 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations 944 /// when lzma_vli is assigned to a size_t. 945 static bool 946 is_direct_mode_needed(lzma_vli size) 947 { 948 return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3; 949 } 950 951 952 static lzma_ret 953 stream_decoder_reset(struct lzma_stream_coder *coder, 954 const lzma_allocator *allocator) 955 { 956 // Initialize the Index hash used to verify the Index. 957 coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator); 958 if (coder->index_hash == NULL) 959 return LZMA_MEM_ERROR; 960 961 // Reset the rest of the variables. 962 coder->sequence = SEQ_STREAM_HEADER; 963 coder->pos = 0; 964 965 return LZMA_OK; 966 } 967 968 969 static lzma_ret 970 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator, 971 const uint8_t *restrict in, size_t *restrict in_pos, 972 size_t in_size, 973 uint8_t *restrict out, size_t *restrict out_pos, 974 size_t out_size, lzma_action action) 975 { 976 struct lzma_stream_coder *coder = coder_ptr; 977 978 mythread_condtime wait_abs; 979 bool has_blocked = false; 980 981 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should 982 // tell read_output_and_wait() to wait until it can fill the output 983 // buffer (or a timeout occurs). Two conditions must be met: 984 // 985 // (1) If the caller provided no new input. The reason for this 986 // can be, for example, the end of the file or that there is 987 // a pause in the input stream and more input is available 988 // a little later. In this situation we should wait for output 989 // because otherwise we would end up in a busy-waiting loop where 990 // we make no progress and the application just calls us again 991 // without providing any new input. This would then result in 992 // LZMA_BUF_ERROR even though more output would be available 993 // once the worker threads decode more data. 994 // 995 // (2) Even if (1) is true, we will not wait if the previous call to 996 // this function managed to produce some output and the output 997 // buffer became full. This is for compatibility with applications 998 // that call lzma_code() in such a way that new input is provided 999 // only when the output buffer didn't become full. Without this 1000 // trick such applications would have bad performance (bad 1001 // parallelization due to decoder not getting input fast enough). 1002 // 1003 // NOTE: Such loops might require that timeout is disabled (0) 1004 // if they assume that output-not-full implies that all input has 1005 // been consumed. If and only if timeout is enabled, we may return 1006 // when output isn't full *and* not all input has been consumed. 1007 // 1008 // However, if LZMA_FINISH is used, the above is ignored and we always 1009 // wait (timeout can still cause us to return) because we know that 1010 // we won't get any more input. This matters if the input file is 1011 // truncated and we are doing single-shot decoding, that is, 1012 // timeout = 0 and LZMA_FINISH is used on the first call to 1013 // lzma_code() and the output buffer is known to be big enough 1014 // to hold all uncompressed data: 1015 // 1016 // - If LZMA_FINISH wasn't handled specially, we could return 1017 // LZMA_OK before providing all output that is possible with the 1018 // truncated input. The rest would be available if lzma_code() was 1019 // called again but then it's not single-shot decoding anymore. 1020 // 1021 // - By handling LZMA_FINISH specially here, the first call will 1022 // produce all the output, matching the behavior of the 1023 // single-threaded decoder. 1024 // 1025 // So it's a very specific corner case but also easy to avoid. Note 1026 // that this special handling of LZMA_FINISH has no effect for 1027 // single-shot decoding when the input file is valid (not truncated); 1028 // premature LZMA_OK wouldn't be possible as long as timeout = 0. 1029 const bool waiting_allowed = action == LZMA_FINISH 1030 || (*in_pos == in_size && !coder->out_was_filled); 1031 coder->out_was_filled = false; 1032 1033 while (true) 1034 switch (coder->sequence) { 1035 case SEQ_STREAM_HEADER: { 1036 // Copy the Stream Header to the internal buffer. 1037 const size_t in_old = *in_pos; 1038 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 1039 LZMA_STREAM_HEADER_SIZE); 1040 coder->progress_in += *in_pos - in_old; 1041 1042 // Return if we didn't get the whole Stream Header yet. 1043 if (coder->pos < LZMA_STREAM_HEADER_SIZE) 1044 return LZMA_OK; 1045 1046 coder->pos = 0; 1047 1048 // Decode the Stream Header. 1049 const lzma_ret ret = lzma_stream_header_decode( 1050 &coder->stream_flags, coder->buffer); 1051 if (ret != LZMA_OK) 1052 return ret == LZMA_FORMAT_ERROR && !coder->first_stream 1053 ? LZMA_DATA_ERROR : ret; 1054 1055 // If we are decoding concatenated Streams, and the later 1056 // Streams have invalid Header Magic Bytes, we give 1057 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR. 1058 coder->first_stream = false; 1059 1060 // Copy the type of the Check so that Block Header and Block 1061 // decoders see it. 1062 coder->block_options.check = coder->stream_flags.check; 1063 1064 // Even if we return LZMA_*_CHECK below, we want 1065 // to continue from Block Header decoding. 1066 coder->sequence = SEQ_BLOCK_HEADER; 1067 1068 // Detect if there's no integrity check or if it is 1069 // unsupported if those were requested by the application. 1070 if (coder->tell_no_check && coder->stream_flags.check 1071 == LZMA_CHECK_NONE) 1072 return LZMA_NO_CHECK; 1073 1074 if (coder->tell_unsupported_check 1075 && !lzma_check_is_supported( 1076 coder->stream_flags.check)) 1077 return LZMA_UNSUPPORTED_CHECK; 1078 1079 if (coder->tell_any_check) 1080 return LZMA_GET_CHECK; 1081 } 1082 1083 // Fall through 1084 1085 case SEQ_BLOCK_HEADER: { 1086 const size_t in_old = *in_pos; 1087 const lzma_ret ret = decode_block_header(coder, allocator, 1088 in, in_pos, in_size); 1089 coder->progress_in += *in_pos - in_old; 1090 1091 if (ret == LZMA_OK) { 1092 // We didn't decode the whole Block Header yet. 1093 // 1094 // Read output from the queue before returning. This 1095 // is important because it is possible that the 1096 // application doesn't have any new input available 1097 // immediately. If we didn't try to copy output from 1098 // the output queue here, lzma_code() could end up 1099 // returning LZMA_BUF_ERROR even though queued output 1100 // is available. 1101 // 1102 // If the lzma_code() call provided at least one input 1103 // byte, only copy as much data from the output queue 1104 // as is available immediately. This way the 1105 // application will be able to provide more input 1106 // without a delay. 1107 // 1108 // On the other hand, if lzma_code() was called with 1109 // an empty input buffer(*), treat it specially: try 1110 // to fill the output buffer even if it requires 1111 // waiting for the worker threads to provide output 1112 // (timeout, if specified, can still cause us to 1113 // return). 1114 // 1115 // - This way the application will be able to get all 1116 // data that can be decoded from the input provided 1117 // so far. 1118 // 1119 // - We avoid both premature LZMA_BUF_ERROR and 1120 // busy-waiting where the application repeatedly 1121 // calls lzma_code() which immediately returns 1122 // LZMA_OK without providing new data. 1123 // 1124 // - If the queue becomes empty, we won't wait 1125 // anything and will return LZMA_OK immediately 1126 // (coder->timeout is completely ignored). 1127 // 1128 // (*) See the comment at the beginning of this 1129 // function how waiting_allowed is determined 1130 // and why there is an exception to the rule 1131 // of "called with an empty input buffer". 1132 assert(*in_pos == in_size); 1133 1134 // If LZMA_FINISH was used we know that we won't get 1135 // more input, so the file must be truncated if we 1136 // get here. If worker threads don't detect any 1137 // errors, eventually there will be no more output 1138 // while we keep returning LZMA_OK which gets 1139 // converted to LZMA_BUF_ERROR in lzma_code(). 1140 // 1141 // If fail-fast is enabled then we will return 1142 // immediately using LZMA_DATA_ERROR instead of 1143 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the 1144 // error code: 1145 // 1146 // - Worker threads may have a large amount of 1147 // not-yet-decoded input data and we don't 1148 // know for sure if all data is valid. Bad 1149 // data there would result in LZMA_DATA_ERROR 1150 // when fail-fast isn't used. 1151 // 1152 // - Immediate LZMA_BUF_ERROR would be a bit weird 1153 // considering the older liblzma code. lzma_code() 1154 // even has an assertion to prevent coders from 1155 // returning LZMA_BUF_ERROR directly. 1156 // 1157 // The downside of this is that with fail-fast apps 1158 // cannot always distinguish between corrupt and 1159 // truncated files. 1160 if (action == LZMA_FINISH && coder->fail_fast) { 1161 // We won't produce any more output. Stop 1162 // the unfinished worker threads so they 1163 // won't waste CPU time. 1164 threads_stop(coder); 1165 return LZMA_DATA_ERROR; 1166 } 1167 1168 // read_output_and_wait() will call threads_stop() 1169 // if needed so with that we can use return_if_error. 1170 return_if_error(read_output_and_wait(coder, allocator, 1171 out, out_pos, out_size, 1172 NULL, waiting_allowed, 1173 &wait_abs, &has_blocked)); 1174 1175 if (coder->pending_error != LZMA_OK) { 1176 coder->sequence = SEQ_ERROR; 1177 break; 1178 } 1179 1180 return LZMA_OK; 1181 } 1182 1183 if (ret == LZMA_INDEX_DETECTED) { 1184 coder->sequence = SEQ_INDEX_WAIT_OUTPUT; 1185 break; 1186 } 1187 1188 // See if an error occurred. 1189 if (ret != LZMA_STREAM_END) { 1190 // NOTE: Here and in all other places where 1191 // pending_error is set, it may overwrite the value 1192 // (LZMA_PROG_ERROR) set by read_output_and_wait(). 1193 // That function might overwrite value set here too. 1194 // These are fine because when read_output_and_wait() 1195 // sets pending_error, it actually works as a flag 1196 // variable only ("some error has occurred") and the 1197 // actual value of pending_error is not used in 1198 // SEQ_ERROR. In such cases SEQ_ERROR will eventually 1199 // get the correct error code from the return value of 1200 // a later read_output_and_wait() call. 1201 coder->pending_error = ret; 1202 coder->sequence = SEQ_ERROR; 1203 break; 1204 } 1205 1206 // Calculate the memory usage of the filters / Block decoder. 1207 coder->mem_next_filters = lzma_raw_decoder_memusage( 1208 coder->filters); 1209 1210 if (coder->mem_next_filters == UINT64_MAX) { 1211 // One or more unknown Filter IDs. 1212 coder->pending_error = LZMA_OPTIONS_ERROR; 1213 coder->sequence = SEQ_ERROR; 1214 break; 1215 } 1216 1217 coder->sequence = SEQ_BLOCK_INIT; 1218 } 1219 1220 // Fall through 1221 1222 case SEQ_BLOCK_INIT: { 1223 // Check if decoding is possible at all with the current 1224 // memlimit_stop which we must never exceed. 1225 // 1226 // This needs to be the first thing in SEQ_BLOCK_INIT 1227 // to make it possible to restart decoding after increasing 1228 // memlimit_stop with lzma_memlimit_set(). 1229 if (coder->mem_next_filters > coder->memlimit_stop) { 1230 // Flush pending output before returning 1231 // LZMA_MEMLIMIT_ERROR. If the application doesn't 1232 // want to increase the limit, at least it will get 1233 // all the output possible so far. 1234 return_if_error(read_output_and_wait(coder, allocator, 1235 out, out_pos, out_size, 1236 NULL, true, &wait_abs, &has_blocked)); 1237 1238 if (!lzma_outq_is_empty(&coder->outq)) 1239 return LZMA_OK; 1240 1241 return LZMA_MEMLIMIT_ERROR; 1242 } 1243 1244 // Check if the size information is available in Block Header. 1245 // If it is, check if the sizes are small enough that we don't 1246 // need to worry *too* much about integer overflows later in 1247 // the code. If these conditions are not met, we must use the 1248 // single-threaded direct mode. 1249 if (is_direct_mode_needed(coder->block_options.compressed_size) 1250 || is_direct_mode_needed( 1251 coder->block_options.uncompressed_size)) { 1252 coder->sequence = SEQ_BLOCK_DIRECT_INIT; 1253 break; 1254 } 1255 1256 // Calculate the amount of memory needed for the input and 1257 // output buffers in threaded mode. 1258 // 1259 // These cannot overflow because we already checked that 1260 // the sizes are small enough using is_direct_mode_needed(). 1261 coder->mem_next_in = comp_blk_size(coder); 1262 const uint64_t mem_buffers = coder->mem_next_in 1263 + lzma_outq_outbuf_memusage( 1264 coder->block_options.uncompressed_size); 1265 1266 // Add the amount needed by the filters. 1267 // Avoid integer overflows. 1268 if (UINT64_MAX - mem_buffers < coder->mem_next_filters) { 1269 // Use direct mode if the memusage would overflow. 1270 // This is a theoretical case that shouldn't happen 1271 // in practice unless the input file is weird (broken 1272 // or malicious). 1273 coder->sequence = SEQ_BLOCK_DIRECT_INIT; 1274 break; 1275 } 1276 1277 // Amount of memory needed to decode this Block in 1278 // threaded mode: 1279 coder->mem_next_block = coder->mem_next_filters + mem_buffers; 1280 1281 // If this alone would exceed memlimit_threading, then we must 1282 // use the single-threaded direct mode. 1283 if (coder->mem_next_block > coder->memlimit_threading) { 1284 coder->sequence = SEQ_BLOCK_DIRECT_INIT; 1285 break; 1286 } 1287 1288 // Use the threaded mode. Free the direct mode decoder in 1289 // case it has been initialized. 1290 lzma_next_end(&coder->block_decoder, allocator); 1291 coder->mem_direct_mode = 0; 1292 1293 // Since we already know what the sizes are supposed to be, 1294 // we can already add them to the Index hash. The Block 1295 // decoder will verify the values while decoding. 1296 const lzma_ret ret = lzma_index_hash_append(coder->index_hash, 1297 lzma_block_unpadded_size( 1298 &coder->block_options), 1299 coder->block_options.uncompressed_size); 1300 if (ret != LZMA_OK) { 1301 coder->pending_error = ret; 1302 coder->sequence = SEQ_ERROR; 1303 break; 1304 } 1305 1306 coder->sequence = SEQ_BLOCK_THR_INIT; 1307 } 1308 1309 // Fall through 1310 1311 case SEQ_BLOCK_THR_INIT: { 1312 // We need to wait for a multiple conditions to become true 1313 // until we can initialize the Block decoder and let a worker 1314 // thread decode it: 1315 // 1316 // - Wait for the memory usage of the active threads to drop 1317 // so that starting the decoding of this Block won't make 1318 // us go over memlimit_threading. 1319 // 1320 // - Wait for at least one free output queue slot. 1321 // 1322 // - Wait for a free worker thread. 1323 // 1324 // While we wait, we must copy decompressed data to the out 1325 // buffer and catch possible decoder errors. 1326 // 1327 // read_output_and_wait() does all the above. 1328 bool block_can_start = false; 1329 1330 return_if_error(read_output_and_wait(coder, allocator, 1331 out, out_pos, out_size, 1332 &block_can_start, true, 1333 &wait_abs, &has_blocked)); 1334 1335 if (coder->pending_error != LZMA_OK) { 1336 coder->sequence = SEQ_ERROR; 1337 break; 1338 } 1339 1340 if (!block_can_start) { 1341 // It's not a timeout because return_if_error handles 1342 // it already. Output queue cannot be empty either 1343 // because in that case block_can_start would have 1344 // been true. Thus the output buffer must be full and 1345 // the queue isn't empty. 1346 assert(*out_pos == out_size); 1347 assert(!lzma_outq_is_empty(&coder->outq)); 1348 return LZMA_OK; 1349 } 1350 1351 // We know that we can start decoding this Block without 1352 // exceeding memlimit_threading. However, to stay below 1353 // memlimit_threading may require freeing some of the 1354 // cached memory. 1355 // 1356 // Get a local copy of variables that require locking the 1357 // mutex. It is fine if the worker threads modify the real 1358 // values after we read these as those changes can only be 1359 // towards more favorable conditions (less memory in use, 1360 // more in cache). 1361 uint64_t mem_in_use; 1362 uint64_t mem_cached; 1363 struct worker_thread *thr = NULL; // Init to silence warning. 1364 1365 mythread_sync(coder->mutex) { 1366 mem_in_use = coder->mem_in_use; 1367 mem_cached = coder->mem_cached; 1368 thr = coder->threads_free; 1369 } 1370 1371 // The maximum amount of memory that can be held by other 1372 // threads and cached buffers while allowing us to start 1373 // decoding the next Block. 1374 const uint64_t mem_max = coder->memlimit_threading 1375 - coder->mem_next_block; 1376 1377 // If the existing allocations are so large that starting 1378 // to decode this Block might exceed memlimit_threads, 1379 // try to free memory from the output queue cache first. 1380 // 1381 // NOTE: This math assumes the worst case. It's possible 1382 // that the limit wouldn't be exceeded if the existing cached 1383 // allocations are reused. 1384 if (mem_in_use + mem_cached + coder->outq.mem_allocated 1385 > mem_max) { 1386 // Clear the outq cache except leave one buffer in 1387 // the cache if its size is correct. That way we 1388 // don't free and almost immediately reallocate 1389 // an identical buffer. 1390 lzma_outq_clear_cache2(&coder->outq, allocator, 1391 coder->block_options.uncompressed_size); 1392 } 1393 1394 // If there is at least one worker_thread in the cache and 1395 // the existing allocations are so large that starting to 1396 // decode this Block might exceed memlimit_threads, free 1397 // memory by freeing cached Block decoders. 1398 // 1399 // NOTE: The comparison is different here than above. 1400 // Here we don't care about cached buffers in outq anymore 1401 // and only look at memory actually in use. This is because 1402 // if there is something in outq cache, it's a single buffer 1403 // that can be used as is. We ensured this in the above 1404 // if-block. 1405 uint64_t mem_freed = 0; 1406 if (thr != NULL && mem_in_use + mem_cached 1407 + coder->outq.mem_in_use > mem_max) { 1408 // Don't free the first Block decoder if its memory 1409 // usage isn't greater than what this Block will need. 1410 // Typically the same filter chain is used for all 1411 // Blocks so this way the allocations can be reused 1412 // when get_thread() picks the first worker_thread 1413 // from the cache. 1414 if (thr->mem_filters <= coder->mem_next_filters) 1415 thr = thr->next; 1416 1417 while (thr != NULL) { 1418 lzma_next_end(&thr->block_decoder, allocator); 1419 mem_freed += thr->mem_filters; 1420 thr->mem_filters = 0; 1421 thr = thr->next; 1422 } 1423 } 1424 1425 // Update the memory usage counters. Note that coder->mem_* 1426 // may have changed since we read them so we must substract 1427 // or add the changes. 1428 mythread_sync(coder->mutex) { 1429 coder->mem_cached -= mem_freed; 1430 1431 // Memory needed for the filters and the input buffer. 1432 // The output queue takes care of its own counter so 1433 // we don't touch it here. 1434 // 1435 // NOTE: After this, coder->mem_in_use + 1436 // coder->mem_cached might count the same thing twice. 1437 // If so, this will get corrected in get_thread() when 1438 // a worker_thread is picked from coder->free_threads 1439 // and its memory usage is substracted from mem_cached. 1440 coder->mem_in_use += coder->mem_next_in 1441 + coder->mem_next_filters; 1442 } 1443 1444 // Allocate memory for the output buffer in the output queue. 1445 lzma_ret ret = lzma_outq_prealloc_buf( 1446 &coder->outq, allocator, 1447 coder->block_options.uncompressed_size); 1448 if (ret != LZMA_OK) { 1449 threads_stop(coder); 1450 return ret; 1451 } 1452 1453 // Set up coder->thr. 1454 ret = get_thread(coder, allocator); 1455 if (ret != LZMA_OK) { 1456 threads_stop(coder); 1457 return ret; 1458 } 1459 1460 // The new Block decoder memory usage is already counted in 1461 // coder->mem_in_use. Store it in the thread too. 1462 coder->thr->mem_filters = coder->mem_next_filters; 1463 1464 // Initialize the Block decoder. 1465 coder->thr->block_options = coder->block_options; 1466 ret = lzma_block_decoder_init( 1467 &coder->thr->block_decoder, allocator, 1468 &coder->thr->block_options); 1469 1470 // Free the allocated filter options since they are needed 1471 // only to initialize the Block decoder. 1472 lzma_filters_free(coder->filters, allocator); 1473 coder->thr->block_options.filters = NULL; 1474 1475 // Check if memory usage calculation and Block encoder 1476 // initialization succeeded. 1477 if (ret != LZMA_OK) { 1478 coder->pending_error = ret; 1479 coder->sequence = SEQ_ERROR; 1480 break; 1481 } 1482 1483 // Allocate the input buffer. 1484 coder->thr->in_size = coder->mem_next_in; 1485 coder->thr->in = lzma_alloc(coder->thr->in_size, allocator); 1486 if (coder->thr->in == NULL) { 1487 threads_stop(coder); 1488 return LZMA_MEM_ERROR; 1489 } 1490 1491 // Get the preallocated output buffer. 1492 coder->thr->outbuf = lzma_outq_get_buf( 1493 &coder->outq, coder->thr); 1494 1495 // Start the decoder. 1496 mythread_sync(coder->thr->mutex) { 1497 assert(coder->thr->state == THR_IDLE); 1498 coder->thr->state = THR_RUN; 1499 mythread_cond_signal(&coder->thr->cond); 1500 } 1501 1502 // Enable output from the thread that holds the oldest output 1503 // buffer in the output queue (if such a thread exists). 1504 mythread_sync(coder->mutex) { 1505 lzma_outq_enable_partial_output(&coder->outq, 1506 &worker_enable_partial_update); 1507 } 1508 1509 coder->sequence = SEQ_BLOCK_THR_RUN; 1510 } 1511 1512 // Fall through 1513 1514 case SEQ_BLOCK_THR_RUN: { 1515 if (action == LZMA_FINISH && coder->fail_fast) { 1516 // We know that we won't get more input and that 1517 // the caller wants fail-fast behavior. If we see 1518 // that we don't have enough input to finish this 1519 // Block, return LZMA_DATA_ERROR immediately. 1520 // See SEQ_BLOCK_HEADER for the error code rationale. 1521 const size_t in_avail = in_size - *in_pos; 1522 const size_t in_needed = coder->thr->in_size 1523 - coder->thr->in_filled; 1524 if (in_avail < in_needed) { 1525 threads_stop(coder); 1526 return LZMA_DATA_ERROR; 1527 } 1528 } 1529 1530 // Copy input to the worker thread. 1531 size_t cur_in_filled = coder->thr->in_filled; 1532 lzma_bufcpy(in, in_pos, in_size, coder->thr->in, 1533 &cur_in_filled, coder->thr->in_size); 1534 1535 // Tell the thread how much we copied. 1536 mythread_sync(coder->thr->mutex) { 1537 coder->thr->in_filled = cur_in_filled; 1538 1539 // NOTE: Most of the time we are copying input faster 1540 // than the thread can decode so most of the time 1541 // calling mythread_cond_signal() is useless but 1542 // we cannot make it conditional because thr->in_pos 1543 // is updated without a mutex. And the overhead should 1544 // be very much negligible anyway. 1545 mythread_cond_signal(&coder->thr->cond); 1546 } 1547 1548 // Read output from the output queue. Just like in 1549 // SEQ_BLOCK_HEADER, we wait to fill the output buffer 1550 // only if waiting_allowed was set to true in the beginning 1551 // of this function (see the comment there). 1552 return_if_error(read_output_and_wait(coder, allocator, 1553 out, out_pos, out_size, 1554 NULL, waiting_allowed, 1555 &wait_abs, &has_blocked)); 1556 1557 if (coder->pending_error != LZMA_OK) { 1558 coder->sequence = SEQ_ERROR; 1559 break; 1560 } 1561 1562 // Return if the input didn't contain the whole Block. 1563 if (coder->thr->in_filled < coder->thr->in_size) { 1564 assert(*in_pos == in_size); 1565 return LZMA_OK; 1566 } 1567 1568 // The whole Block has been copied to the thread-specific 1569 // buffer. Continue from the next Block Header or Index. 1570 coder->thr = NULL; 1571 coder->sequence = SEQ_BLOCK_HEADER; 1572 break; 1573 } 1574 1575 case SEQ_BLOCK_DIRECT_INIT: { 1576 // Wait for the threads to finish and that all decoded data 1577 // has been copied to the output. That is, wait until the 1578 // output queue becomes empty. 1579 // 1580 // NOTE: No need to check for coder->pending_error as 1581 // we aren't consuming any input until the queue is empty 1582 // and if there is a pending error, read_output_and_wait() 1583 // will eventually return it before the queue is empty. 1584 return_if_error(read_output_and_wait(coder, allocator, 1585 out, out_pos, out_size, 1586 NULL, true, &wait_abs, &has_blocked)); 1587 if (!lzma_outq_is_empty(&coder->outq)) 1588 return LZMA_OK; 1589 1590 // Free the cached output buffers. 1591 lzma_outq_clear_cache(&coder->outq, allocator); 1592 1593 // Get rid of the worker threads, including the coder->threads 1594 // array. 1595 threads_end(coder, allocator); 1596 1597 // Initialize the Block decoder. 1598 const lzma_ret ret = lzma_block_decoder_init( 1599 &coder->block_decoder, allocator, 1600 &coder->block_options); 1601 1602 // Free the allocated filter options since they are needed 1603 // only to initialize the Block decoder. 1604 lzma_filters_free(coder->filters, allocator); 1605 coder->block_options.filters = NULL; 1606 1607 // Check if Block decoder initialization succeeded. 1608 if (ret != LZMA_OK) 1609 return ret; 1610 1611 // Make the memory usage visible to _memconfig(). 1612 coder->mem_direct_mode = coder->mem_next_filters; 1613 1614 coder->sequence = SEQ_BLOCK_DIRECT_RUN; 1615 } 1616 1617 // Fall through 1618 1619 case SEQ_BLOCK_DIRECT_RUN: { 1620 const size_t in_old = *in_pos; 1621 const size_t out_old = *out_pos; 1622 const lzma_ret ret = coder->block_decoder.code( 1623 coder->block_decoder.coder, allocator, 1624 in, in_pos, in_size, out, out_pos, out_size, 1625 action); 1626 coder->progress_in += *in_pos - in_old; 1627 coder->progress_out += *out_pos - out_old; 1628 1629 if (ret != LZMA_STREAM_END) 1630 return ret; 1631 1632 // Block decoded successfully. Add the new size pair to 1633 // the Index hash. 1634 return_if_error(lzma_index_hash_append(coder->index_hash, 1635 lzma_block_unpadded_size( 1636 &coder->block_options), 1637 coder->block_options.uncompressed_size)); 1638 1639 coder->sequence = SEQ_BLOCK_HEADER; 1640 break; 1641 } 1642 1643 case SEQ_INDEX_WAIT_OUTPUT: 1644 // Flush the output from all worker threads so that we can 1645 // decode the Index without thinking about threading. 1646 return_if_error(read_output_and_wait(coder, allocator, 1647 out, out_pos, out_size, 1648 NULL, true, &wait_abs, &has_blocked)); 1649 1650 if (!lzma_outq_is_empty(&coder->outq)) 1651 return LZMA_OK; 1652 1653 coder->sequence = SEQ_INDEX_DECODE; 1654 1655 // Fall through 1656 1657 case SEQ_INDEX_DECODE: { 1658 // If we don't have any input, don't call 1659 // lzma_index_hash_decode() since it would return 1660 // LZMA_BUF_ERROR, which we must not do here. 1661 if (*in_pos >= in_size) 1662 return LZMA_OK; 1663 1664 // Decode the Index and compare it to the hash calculated 1665 // from the sizes of the Blocks (if any). 1666 const size_t in_old = *in_pos; 1667 const lzma_ret ret = lzma_index_hash_decode(coder->index_hash, 1668 in, in_pos, in_size); 1669 coder->progress_in += *in_pos - in_old; 1670 if (ret != LZMA_STREAM_END) 1671 return ret; 1672 1673 coder->sequence = SEQ_STREAM_FOOTER; 1674 } 1675 1676 // Fall through 1677 1678 case SEQ_STREAM_FOOTER: { 1679 // Copy the Stream Footer to the internal buffer. 1680 const size_t in_old = *in_pos; 1681 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 1682 LZMA_STREAM_HEADER_SIZE); 1683 coder->progress_in += *in_pos - in_old; 1684 1685 // Return if we didn't get the whole Stream Footer yet. 1686 if (coder->pos < LZMA_STREAM_HEADER_SIZE) 1687 return LZMA_OK; 1688 1689 coder->pos = 0; 1690 1691 // Decode the Stream Footer. The decoder gives 1692 // LZMA_FORMAT_ERROR if the magic bytes don't match, 1693 // so convert that return code to LZMA_DATA_ERROR. 1694 lzma_stream_flags footer_flags; 1695 const lzma_ret ret = lzma_stream_footer_decode( 1696 &footer_flags, coder->buffer); 1697 if (ret != LZMA_OK) 1698 return ret == LZMA_FORMAT_ERROR 1699 ? LZMA_DATA_ERROR : ret; 1700 1701 // Check that Index Size stored in the Stream Footer matches 1702 // the real size of the Index field. 1703 if (lzma_index_hash_size(coder->index_hash) 1704 != footer_flags.backward_size) 1705 return LZMA_DATA_ERROR; 1706 1707 // Compare that the Stream Flags fields are identical in 1708 // both Stream Header and Stream Footer. 1709 return_if_error(lzma_stream_flags_compare( 1710 &coder->stream_flags, &footer_flags)); 1711 1712 if (!coder->concatenated) 1713 return LZMA_STREAM_END; 1714 1715 coder->sequence = SEQ_STREAM_PADDING; 1716 } 1717 1718 // Fall through 1719 1720 case SEQ_STREAM_PADDING: 1721 assert(coder->concatenated); 1722 1723 // Skip over possible Stream Padding. 1724 while (true) { 1725 if (*in_pos >= in_size) { 1726 // Unless LZMA_FINISH was used, we cannot 1727 // know if there's more input coming later. 1728 if (action != LZMA_FINISH) 1729 return LZMA_OK; 1730 1731 // Stream Padding must be a multiple of 1732 // four bytes. 1733 return coder->pos == 0 1734 ? LZMA_STREAM_END 1735 : LZMA_DATA_ERROR; 1736 } 1737 1738 // If the byte is not zero, it probably indicates 1739 // beginning of a new Stream (or the file is corrupt). 1740 if (in[*in_pos] != 0x00) 1741 break; 1742 1743 ++*in_pos; 1744 ++coder->progress_in; 1745 coder->pos = (coder->pos + 1) & 3; 1746 } 1747 1748 // Stream Padding must be a multiple of four bytes (empty 1749 // Stream Padding is OK). 1750 if (coder->pos != 0) { 1751 ++*in_pos; 1752 ++coder->progress_in; 1753 return LZMA_DATA_ERROR; 1754 } 1755 1756 // Prepare to decode the next Stream. 1757 return_if_error(stream_decoder_reset(coder, allocator)); 1758 break; 1759 1760 case SEQ_ERROR: 1761 if (!coder->fail_fast) { 1762 // Let the application get all data before the point 1763 // where the error was detected. This matches the 1764 // behavior of single-threaded use. 1765 // 1766 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here, 1767 // they are returned immediately. Thus in rare cases 1768 // the output will be less than in the single-threaded 1769 // mode. Maybe this doesn't matter much in practice. 1770 return_if_error(read_output_and_wait(coder, allocator, 1771 out, out_pos, out_size, 1772 NULL, true, &wait_abs, &has_blocked)); 1773 1774 // We get here only if the error happened in the main 1775 // thread, for example, unsupported Block Header. 1776 if (!lzma_outq_is_empty(&coder->outq)) 1777 return LZMA_OK; 1778 } 1779 1780 // We only get here if no errors were detected by the worker 1781 // threads. Errors from worker threads would have already been 1782 // returned by the call to read_output_and_wait() above. 1783 return coder->pending_error; 1784 1785 default: 1786 assert(0); 1787 return LZMA_PROG_ERROR; 1788 } 1789 1790 // Never reached 1791 } 1792 1793 1794 static void 1795 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator) 1796 { 1797 struct lzma_stream_coder *coder = coder_ptr; 1798 1799 threads_end(coder, allocator); 1800 lzma_outq_end(&coder->outq, allocator); 1801 1802 lzma_next_end(&coder->block_decoder, allocator); 1803 lzma_filters_free(coder->filters, allocator); 1804 lzma_index_hash_end(coder->index_hash, allocator); 1805 1806 lzma_free(coder, allocator); 1807 return; 1808 } 1809 1810 1811 static lzma_check 1812 stream_decoder_mt_get_check(const void *coder_ptr) 1813 { 1814 const struct lzma_stream_coder *coder = coder_ptr; 1815 return coder->stream_flags.check; 1816 } 1817 1818 1819 static lzma_ret 1820 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage, 1821 uint64_t *old_memlimit, uint64_t new_memlimit) 1822 { 1823 // NOTE: This function gets/sets memlimit_stop. For now, 1824 // memlimit_threading cannot be modified after initialization. 1825 // 1826 // *memusage will include cached memory too. Excluding cached memory 1827 // would be misleading and it wouldn't help the applications to 1828 // know how much memory is actually needed to decompress the file 1829 // because the higher the number of threads and the memlimits are 1830 // the more memory the decoder may use. 1831 // 1832 // Setting a new limit includes the cached memory too and too low 1833 // limits will be rejected. Alternative could be to free the cached 1834 // memory immediately if that helps to bring the limit down but 1835 // the current way is the simplest. It's unlikely that limit needs 1836 // to be lowered in the middle of a file anyway; the typical reason 1837 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR 1838 // and even such use isn't common. 1839 struct lzma_stream_coder *coder = coder_ptr; 1840 1841 mythread_sync(coder->mutex) { 1842 *memusage = coder->mem_direct_mode 1843 + coder->mem_in_use 1844 + coder->mem_cached 1845 + coder->outq.mem_allocated; 1846 } 1847 1848 // If no filter chains are allocated, *memusage may be zero. 1849 // Always return at least LZMA_MEMUSAGE_BASE. 1850 if (*memusage < LZMA_MEMUSAGE_BASE) 1851 *memusage = LZMA_MEMUSAGE_BASE; 1852 1853 *old_memlimit = coder->memlimit_stop; 1854 1855 if (new_memlimit != 0) { 1856 if (new_memlimit < *memusage) 1857 return LZMA_MEMLIMIT_ERROR; 1858 1859 coder->memlimit_stop = new_memlimit; 1860 } 1861 1862 return LZMA_OK; 1863 } 1864 1865 1866 static void 1867 stream_decoder_mt_get_progress(void *coder_ptr, 1868 uint64_t *progress_in, uint64_t *progress_out) 1869 { 1870 struct lzma_stream_coder *coder = coder_ptr; 1871 1872 // Lock coder->mutex to prevent finishing threads from moving their 1873 // progress info from the worker_thread structure to lzma_stream_coder. 1874 mythread_sync(coder->mutex) { 1875 *progress_in = coder->progress_in; 1876 *progress_out = coder->progress_out; 1877 1878 for (size_t i = 0; i < coder->threads_initialized; ++i) { 1879 mythread_sync(coder->threads[i].mutex) { 1880 *progress_in += coder->threads[i].progress_in; 1881 *progress_out += coder->threads[i] 1882 .progress_out; 1883 } 1884 } 1885 } 1886 1887 return; 1888 } 1889 1890 1891 static lzma_ret 1892 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator, 1893 const lzma_mt *options) 1894 { 1895 struct lzma_stream_coder *coder; 1896 1897 if (options->threads == 0 || options->threads > LZMA_THREADS_MAX) 1898 return LZMA_OPTIONS_ERROR; 1899 1900 if (options->flags & ~LZMA_SUPPORTED_FLAGS) 1901 return LZMA_OPTIONS_ERROR; 1902 1903 lzma_next_coder_init(&stream_decoder_mt_init, next, allocator); 1904 1905 coder = next->coder; 1906 if (!coder) { 1907 coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator); 1908 if (coder == NULL) 1909 return LZMA_MEM_ERROR; 1910 1911 next->coder = coder; 1912 1913 if (mythread_mutex_init(&coder->mutex)) { 1914 lzma_free(coder, allocator); 1915 return LZMA_MEM_ERROR; 1916 } 1917 1918 if (mythread_cond_init(&coder->cond)) { 1919 mythread_mutex_destroy(&coder->mutex); 1920 lzma_free(coder, allocator); 1921 return LZMA_MEM_ERROR; 1922 } 1923 1924 next->code = &stream_decode_mt; 1925 next->end = &stream_decoder_mt_end; 1926 next->get_check = &stream_decoder_mt_get_check; 1927 next->memconfig = &stream_decoder_mt_memconfig; 1928 next->get_progress = &stream_decoder_mt_get_progress; 1929 1930 coder->filters[0].id = LZMA_VLI_UNKNOWN; 1931 memzero(&coder->outq, sizeof(coder->outq)); 1932 1933 coder->block_decoder = LZMA_NEXT_CODER_INIT; 1934 coder->mem_direct_mode = 0; 1935 1936 coder->index_hash = NULL; 1937 coder->threads = NULL; 1938 coder->threads_free = NULL; 1939 coder->threads_initialized = 0; 1940 } 1941 1942 // Cleanup old filter chain if one remains after unfinished decoding 1943 // of a previous Stream. 1944 lzma_filters_free(coder->filters, allocator); 1945 1946 // By allocating threads from scratch we can start memory-usage 1947 // accounting from scratch, too. Changes in filter and block sizes may 1948 // affect number of threads. 1949 // 1950 // FIXME? Reusing should be easy but unlike the single-threaded 1951 // decoder, with some types of input file combinations reusing 1952 // could leave quite a lot of memory allocated but unused (first 1953 // file could allocate a lot, the next files could use fewer 1954 // threads and some of the allocations from the first file would not 1955 // get freed unless memlimit_threading forces us to clear caches). 1956 // 1957 // NOTE: The direct mode decoder isn't freed here if one exists. 1958 // It will be reused or freed as needed in the main loop. 1959 threads_end(coder, allocator); 1960 1961 // All memusage counters start at 0 (including mem_direct_mode). 1962 // The little extra that is needed for the structs in this file 1963 // get accounted well enough by the filter chain memory usage 1964 // which adds LZMA_MEMUSAGE_BASE for each chain. However, 1965 // stream_decoder_mt_memconfig() has to handle this specially so that 1966 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage. 1967 coder->mem_in_use = 0; 1968 coder->mem_cached = 0; 1969 coder->mem_next_block = 0; 1970 1971 coder->progress_in = 0; 1972 coder->progress_out = 0; 1973 1974 coder->sequence = SEQ_STREAM_HEADER; 1975 coder->thread_error = LZMA_OK; 1976 coder->pending_error = LZMA_OK; 1977 coder->thr = NULL; 1978 1979 coder->timeout = options->timeout; 1980 1981 coder->memlimit_threading = my_max(1, options->memlimit_threading); 1982 coder->memlimit_stop = my_max(1, options->memlimit_stop); 1983 if (coder->memlimit_threading > coder->memlimit_stop) 1984 coder->memlimit_threading = coder->memlimit_stop; 1985 1986 coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0; 1987 coder->tell_unsupported_check 1988 = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0; 1989 coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0; 1990 coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0; 1991 coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0; 1992 coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0; 1993 1994 coder->first_stream = true; 1995 coder->out_was_filled = false; 1996 coder->pos = 0; 1997 1998 coder->threads_max = options->threads; 1999 2000 return_if_error(lzma_outq_init(&coder->outq, allocator, 2001 coder->threads_max)); 2002 2003 return stream_decoder_reset(coder, allocator); 2004 } 2005 2006 2007 extern LZMA_API(lzma_ret) 2008 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options) 2009 { 2010 lzma_next_strm_init(stream_decoder_mt_init, strm, options); 2011 2012 strm->internal->supported_actions[LZMA_RUN] = true; 2013 strm->internal->supported_actions[LZMA_FINISH] = true; 2014 2015 return LZMA_OK; 2016 } 2017