xref: /freebsd/contrib/xz/src/liblzma/common/stream_decoder_mt.c (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 // SPDX-License-Identifier: 0BSD
2 
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file       stream_decoder_mt.c
6 /// \brief      Multithreaded .xz Stream decoder
7 //
8 //  Authors:    Sebastian Andrzej Siewior
9 //              Lasse Collin
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "common.h"
14 #include "block_decoder.h"
15 #include "stream_decoder.h"
16 #include "index.h"
17 #include "outqueue.h"
18 
19 
20 typedef enum {
21 	/// Waiting for work.
22 	/// Main thread may change this to THR_RUN or THR_EXIT.
23 	THR_IDLE,
24 
25 	/// Decoding is in progress.
26 	/// Main thread may change this to THR_STOP or THR_EXIT.
27 	/// The worker thread may change this to THR_IDLE.
28 	THR_RUN,
29 
30 	/// The main thread wants the thread to stop whatever it was doing
31 	/// but not exit. Main thread may change this to THR_EXIT.
32 	/// The worker thread may change this to THR_IDLE.
33 	THR_STOP,
34 
35 	/// The main thread wants the thread to exit.
36 	THR_EXIT,
37 
38 } worker_state;
39 
40 
41 typedef enum {
42 	/// Partial updates (storing of worker thread progress
43 	/// to lzma_outbuf) are disabled.
44 	PARTIAL_DISABLED,
45 
46 	/// Main thread requests partial updates to be enabled but
47 	/// no partial update has been done by the worker thread yet.
48 	///
49 	/// Changing from PARTIAL_DISABLED to PARTIAL_START requires
50 	/// use of the worker-thread mutex. Other transitions don't
51 	/// need a mutex.
52 	PARTIAL_START,
53 
54 	/// Partial updates are enabled and the worker thread has done
55 	/// at least one partial update.
56 	PARTIAL_ENABLED,
57 
58 } partial_update_mode;
59 
60 
61 struct worker_thread {
62 	/// Worker state is protected with our mutex.
63 	worker_state state;
64 
65 	/// Input buffer that will contain the whole Block except Block Header.
66 	uint8_t *in;
67 
68 	/// Amount of memory allocated for "in"
69 	size_t in_size;
70 
71 	/// Number of bytes written to "in" by the main thread
72 	size_t in_filled;
73 
74 	/// Number of bytes consumed from "in" by the worker thread.
75 	size_t in_pos;
76 
77 	/// Amount of uncompressed data that has been decoded. This local
78 	/// copy is needed because updating outbuf->pos requires locking
79 	/// the main mutex (coder->mutex).
80 	size_t out_pos;
81 
82 	/// Pointer to the main structure is needed to (1) lock the main
83 	/// mutex (coder->mutex) when updating outbuf->pos and (2) when
84 	/// putting this thread back to the stack of free threads.
85 	struct lzma_stream_coder *coder;
86 
87 	/// The allocator is set by the main thread. Since a copy of the
88 	/// pointer is kept here, the application must not change the
89 	/// allocator before calling lzma_end().
90 	const lzma_allocator *allocator;
91 
92 	/// Output queue buffer to which the uncompressed data is written.
93 	lzma_outbuf *outbuf;
94 
95 	/// Amount of compressed data that has already been decompressed.
96 	/// This is updated from in_pos when our mutex is locked.
97 	/// This is size_t, not uint64_t, because per-thread progress
98 	/// is limited to sizes of allocated buffers.
99 	size_t progress_in;
100 
101 	/// Like progress_in but for uncompressed data.
102 	size_t progress_out;
103 
104 	/// Updating outbuf->pos requires locking the main mutex
105 	/// (coder->mutex). Since the main thread will only read output
106 	/// from the oldest outbuf in the queue, only the worker thread
107 	/// that is associated with the oldest outbuf needs to update its
108 	/// outbuf->pos. This avoids useless mutex contention that would
109 	/// happen if all worker threads were frequently locking the main
110 	/// mutex to update their outbuf->pos.
111 	///
112 	/// Only when partial_update is something else than PARTIAL_DISABLED,
113 	/// this worker thread will update outbuf->pos after each call to
114 	/// the Block decoder.
115 	partial_update_mode partial_update;
116 
117 	/// Block decoder
118 	lzma_next_coder block_decoder;
119 
120 	/// Thread-specific Block options are needed because the Block
121 	/// decoder modifies the struct given to it at initialization.
122 	lzma_block block_options;
123 
124 	/// Filter chain memory usage
125 	uint64_t mem_filters;
126 
127 	/// Next structure in the stack of free worker threads.
128 	struct worker_thread *next;
129 
130 	mythread_mutex mutex;
131 	mythread_cond cond;
132 
133 	/// The ID of this thread is used to join the thread
134 	/// when it's not needed anymore.
135 	mythread thread_id;
136 };
137 
138 
139 struct lzma_stream_coder {
140 	enum {
141 		SEQ_STREAM_HEADER,
142 		SEQ_BLOCK_HEADER,
143 		SEQ_BLOCK_INIT,
144 		SEQ_BLOCK_THR_INIT,
145 		SEQ_BLOCK_THR_RUN,
146 		SEQ_BLOCK_DIRECT_INIT,
147 		SEQ_BLOCK_DIRECT_RUN,
148 		SEQ_INDEX_WAIT_OUTPUT,
149 		SEQ_INDEX_DECODE,
150 		SEQ_STREAM_FOOTER,
151 		SEQ_STREAM_PADDING,
152 		SEQ_ERROR,
153 	} sequence;
154 
155 	/// Block decoder
156 	lzma_next_coder block_decoder;
157 
158 	/// Every Block Header will be decoded into this structure.
159 	/// This is also used to initialize a Block decoder when in
160 	/// direct mode. In threaded mode, a thread-specific copy will
161 	/// be made for decoder initialization because the Block decoder
162 	/// will modify the structure given to it.
163 	lzma_block block_options;
164 
165 	/// Buffer to hold a filter chain for Block Header decoding and
166 	/// initialization. These are freed after successful Block decoder
167 	/// initialization or at stream_decoder_mt_end(). The thread-specific
168 	/// copy of block_options won't hold a pointer to filters[] after
169 	/// initialization.
170 	lzma_filter filters[LZMA_FILTERS_MAX + 1];
171 
172 	/// Stream Flags from Stream Header
173 	lzma_stream_flags stream_flags;
174 
175 	/// Index is hashed so that it can be compared to the sizes of Blocks
176 	/// with O(1) memory usage.
177 	lzma_index_hash *index_hash;
178 
179 
180 	/// Maximum wait time if cannot use all the input and cannot
181 	/// fill the output buffer. This is in milliseconds.
182 	uint32_t timeout;
183 
184 
185 	/// Error code from a worker thread.
186 	///
187 	/// \note       Use mutex.
188 	lzma_ret thread_error;
189 
190 	/// Error code to return after pending output has been copied out. If
191 	/// set in read_output_and_wait(), this is a mirror of thread_error.
192 	/// If set in stream_decode_mt() then it's, for example, error that
193 	/// occurred when decoding Block Header.
194 	lzma_ret pending_error;
195 
196 	/// Number of threads that will be created at maximum.
197 	uint32_t threads_max;
198 
199 	/// Number of thread structures that have been initialized from
200 	/// "threads", and thus the number of worker threads actually
201 	/// created so far.
202 	uint32_t threads_initialized;
203 
204 	/// Array of allocated thread-specific structures. When no threads
205 	/// are in use (direct mode) this is NULL. In threaded mode this
206 	/// points to an array of threads_max number of worker_thread structs.
207 	struct worker_thread *threads;
208 
209 	/// Stack of free threads. When a thread finishes, it puts itself
210 	/// back into this stack. This starts as empty because threads
211 	/// are created only when actually needed.
212 	///
213 	/// \note       Use mutex.
214 	struct worker_thread *threads_free;
215 
216 	/// The most recent worker thread to which the main thread writes
217 	/// the new input from the application.
218 	struct worker_thread *thr;
219 
220 	/// Output buffer queue for decompressed data from the worker threads
221 	///
222 	/// \note       Use mutex with operations that need it.
223 	lzma_outq outq;
224 
225 	mythread_mutex mutex;
226 	mythread_cond cond;
227 
228 
229 	/// Memory usage that will not be exceeded in multi-threaded mode.
230 	/// Single-threaded mode can exceed this even by a large amount.
231 	uint64_t memlimit_threading;
232 
233 	/// Memory usage limit that should never be exceeded.
234 	/// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
235 	/// even in single-threaded mode without exceeding this limit.
236 	uint64_t memlimit_stop;
237 
238 	/// Amount of memory in use by the direct mode decoder
239 	/// (coder->block_decoder). In threaded mode this is 0.
240 	uint64_t mem_direct_mode;
241 
242 	/// Amount of memory needed by the running worker threads.
243 	/// This doesn't include the memory needed by the output buffer.
244 	///
245 	/// \note       Use mutex.
246 	uint64_t mem_in_use;
247 
248 	/// Amount of memory used by the idle (cached) threads.
249 	///
250 	/// \note       Use mutex.
251 	uint64_t mem_cached;
252 
253 
254 	/// Amount of memory needed for the filter chain of the next Block.
255 	uint64_t mem_next_filters;
256 
257 	/// Amount of memory needed for the thread-specific input buffer
258 	/// for the next Block.
259 	uint64_t mem_next_in;
260 
261 	/// Amount of memory actually needed to decode the next Block
262 	/// in threaded mode. This is
263 	/// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
264 	uint64_t mem_next_block;
265 
266 
267 	/// Amount of compressed data in Stream Header + Blocks that have
268 	/// already been finished.
269 	///
270 	/// \note       Use mutex.
271 	uint64_t progress_in;
272 
273 	/// Amount of uncompressed data in Blocks that have already
274 	/// been finished.
275 	///
276 	/// \note       Use mutex.
277 	uint64_t progress_out;
278 
279 
280 	/// If true, LZMA_NO_CHECK is returned if the Stream has
281 	/// no integrity check.
282 	bool tell_no_check;
283 
284 	/// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
285 	/// an integrity check that isn't supported by this liblzma build.
286 	bool tell_unsupported_check;
287 
288 	/// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
289 	bool tell_any_check;
290 
291 	/// If true, we will tell the Block decoder to skip calculating
292 	/// and verifying the integrity check.
293 	bool ignore_check;
294 
295 	/// If true, we will decode concatenated Streams that possibly have
296 	/// Stream Padding between or after them. LZMA_STREAM_END is returned
297 	/// once the application isn't giving us any new input (LZMA_FINISH),
298 	/// and we aren't in the middle of a Stream, and possible
299 	/// Stream Padding is a multiple of four bytes.
300 	bool concatenated;
301 
302 	/// If true, we will return any errors immediately instead of first
303 	/// producing all output before the location of the error.
304 	bool fail_fast;
305 
306 
307 	/// When decoding concatenated Streams, this is true as long as we
308 	/// are decoding the first Stream. This is needed to avoid misleading
309 	/// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
310 	/// bytes.
311 	bool first_stream;
312 
313 	/// This is used to track if the previous call to stream_decode_mt()
314 	/// had output space (*out_pos < out_size) and managed to fill the
315 	/// output buffer (*out_pos == out_size). This may be set to true
316 	/// in read_output_and_wait(). This is read and then reset to false
317 	/// at the beginning of stream_decode_mt().
318 	///
319 	/// This is needed to support applications that call lzma_code() in
320 	/// such a way that more input is provided only when lzma_code()
321 	/// didn't fill the output buffer completely. Basically, this makes
322 	/// it easier to convert such applications from single-threaded
323 	/// decoder to multi-threaded decoder.
324 	bool out_was_filled;
325 
326 	/// Write position in buffer[] and position in Stream Padding
327 	size_t pos;
328 
329 	/// Buffer to hold Stream Header, Block Header, and Stream Footer.
330 	/// Block Header has biggest maximum size.
331 	uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
332 };
333 
334 
335 /// Enables updating of outbuf->pos. This is a callback function that is
336 /// used with lzma_outq_enable_partial_output().
337 static void
338 worker_enable_partial_update(void *thr_ptr)
339 {
340 	struct worker_thread *thr = thr_ptr;
341 
342 	mythread_sync(thr->mutex) {
343 		thr->partial_update = PARTIAL_START;
344 		mythread_cond_signal(&thr->cond);
345 	}
346 }
347 
348 
349 /// Things do to at THR_STOP or when finishing a Block.
350 /// This is called with thr->mutex locked.
351 static void
352 worker_stop(struct worker_thread *thr)
353 {
354 	// Update memory usage counters.
355 	thr->coder->mem_in_use -= thr->in_size;
356 	thr->in_size = 0; // thr->in was freed above.
357 
358 	thr->coder->mem_in_use -= thr->mem_filters;
359 	thr->coder->mem_cached += thr->mem_filters;
360 
361 	// Put this thread to the stack of free threads.
362 	thr->next = thr->coder->threads_free;
363 	thr->coder->threads_free = thr;
364 
365 	mythread_cond_signal(&thr->coder->cond);
366 	return;
367 }
368 
369 
370 static MYTHREAD_RET_TYPE
371 worker_decoder(void *thr_ptr)
372 {
373 	struct worker_thread *thr = thr_ptr;
374 	size_t in_filled;
375 	partial_update_mode partial_update;
376 	lzma_ret ret;
377 
378 next_loop_lock:
379 
380 	mythread_mutex_lock(&thr->mutex);
381 next_loop_unlocked:
382 
383 	if (thr->state == THR_IDLE) {
384 		mythread_cond_wait(&thr->cond, &thr->mutex);
385 		goto next_loop_unlocked;
386 	}
387 
388 	if (thr->state == THR_EXIT) {
389 		mythread_mutex_unlock(&thr->mutex);
390 
391 		lzma_free(thr->in, thr->allocator);
392 		lzma_next_end(&thr->block_decoder, thr->allocator);
393 
394 		mythread_mutex_destroy(&thr->mutex);
395 		mythread_cond_destroy(&thr->cond);
396 
397 		return MYTHREAD_RET_VALUE;
398 	}
399 
400 	if (thr->state == THR_STOP) {
401 		thr->state = THR_IDLE;
402 		mythread_mutex_unlock(&thr->mutex);
403 
404 		mythread_sync(thr->coder->mutex) {
405 			worker_stop(thr);
406 		}
407 
408 		goto next_loop_lock;
409 	}
410 
411 	assert(thr->state == THR_RUN);
412 
413 	// Update progress info for get_progress().
414 	thr->progress_in = thr->in_pos;
415 	thr->progress_out = thr->out_pos;
416 
417 	// If we don't have any new input, wait for a signal from the main
418 	// thread except if partial output has just been enabled. In that
419 	// case we will do one normal run so that the partial output info
420 	// gets passed to the main thread. The call to block_decoder.code()
421 	// is useless but harmless as it can occur only once per Block.
422 	in_filled = thr->in_filled;
423 	partial_update = thr->partial_update;
424 
425 	if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
426 		mythread_cond_wait(&thr->cond, &thr->mutex);
427 		goto next_loop_unlocked;
428 	}
429 
430 	mythread_mutex_unlock(&thr->mutex);
431 
432 	// Pass the input in small chunks to the Block decoder.
433 	// This way we react reasonably fast if we are told to stop/exit,
434 	// and (when partial update is enabled) we tell about our progress
435 	// to the main thread frequently enough.
436 	const size_t chunk_size = 16384;
437 	if ((in_filled - thr->in_pos) > chunk_size)
438 		in_filled = thr->in_pos + chunk_size;
439 
440 	ret = thr->block_decoder.code(
441 			thr->block_decoder.coder, thr->allocator,
442 			thr->in, &thr->in_pos, in_filled,
443 			thr->outbuf->buf, &thr->out_pos,
444 			thr->outbuf->allocated, LZMA_RUN);
445 
446 	if (ret == LZMA_OK) {
447 		if (partial_update != PARTIAL_DISABLED) {
448 			// The main thread uses thr->mutex to change from
449 			// PARTIAL_DISABLED to PARTIAL_START. The main thread
450 			// doesn't care about this variable after that so we
451 			// can safely change it here to PARTIAL_ENABLED
452 			// without a mutex.
453 			thr->partial_update = PARTIAL_ENABLED;
454 
455 			// The main thread is reading decompressed data
456 			// from thr->outbuf. Tell the main thread about
457 			// our progress.
458 			//
459 			// NOTE: It's possible that we consumed input without
460 			// producing any new output so it's possible that
461 			// only in_pos has changed. In case of PARTIAL_START
462 			// it is possible that neither in_pos nor out_pos has
463 			// changed.
464 			mythread_sync(thr->coder->mutex) {
465 				thr->outbuf->pos = thr->out_pos;
466 				thr->outbuf->decoder_in_pos = thr->in_pos;
467 				mythread_cond_signal(&thr->coder->cond);
468 			}
469 		}
470 
471 		goto next_loop_lock;
472 	}
473 
474 	// Either we finished successfully (LZMA_STREAM_END) or an error
475 	// occurred. Both cases are handled almost identically. The error
476 	// case requires updating thr->coder->thread_error.
477 	//
478 	// The sizes are in the Block Header and the Block decoder
479 	// checks that they match, thus we know these:
480 	assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
481 	assert(ret != LZMA_STREAM_END
482 		|| thr->out_pos == thr->block_options.uncompressed_size);
483 
484 	// Free the input buffer. Don't update in_size as we need
485 	// it later to update thr->coder->mem_in_use.
486 	lzma_free(thr->in, thr->allocator);
487 	thr->in = NULL;
488 
489 	mythread_sync(thr->mutex) {
490 		if (thr->state != THR_EXIT)
491 			thr->state = THR_IDLE;
492 	}
493 
494 	mythread_sync(thr->coder->mutex) {
495 		// Move our progress info to the main thread.
496 		thr->coder->progress_in += thr->in_pos;
497 		thr->coder->progress_out += thr->out_pos;
498 		thr->progress_in = 0;
499 		thr->progress_out = 0;
500 
501 		// Mark the outbuf as finished.
502 		thr->outbuf->pos = thr->out_pos;
503 		thr->outbuf->decoder_in_pos = thr->in_pos;
504 		thr->outbuf->finished = true;
505 		thr->outbuf->finish_ret = ret;
506 		thr->outbuf = NULL;
507 
508 		// If an error occurred, tell it to the main thread.
509 		if (ret != LZMA_STREAM_END
510 				&& thr->coder->thread_error == LZMA_OK)
511 			thr->coder->thread_error = ret;
512 
513 		worker_stop(thr);
514 	}
515 
516 	goto next_loop_lock;
517 }
518 
519 
520 /// Tells the worker threads to exit and waits for them to terminate.
521 static void
522 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
523 {
524 	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
525 		mythread_sync(coder->threads[i].mutex) {
526 			coder->threads[i].state = THR_EXIT;
527 			mythread_cond_signal(&coder->threads[i].cond);
528 		}
529 	}
530 
531 	for (uint32_t i = 0; i < coder->threads_initialized; ++i)
532 		mythread_join(coder->threads[i].thread_id);
533 
534 	lzma_free(coder->threads, allocator);
535 	coder->threads_initialized = 0;
536 	coder->threads = NULL;
537 	coder->threads_free = NULL;
538 
539 	// The threads don't update these when they exit. Do it here.
540 	coder->mem_in_use = 0;
541 	coder->mem_cached = 0;
542 
543 	return;
544 }
545 
546 
547 static void
548 threads_stop(struct lzma_stream_coder *coder)
549 {
550 	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
551 		mythread_sync(coder->threads[i].mutex) {
552 			// The state must be changed conditionally because
553 			// THR_IDLE -> THR_STOP is not a valid state change.
554 			if (coder->threads[i].state != THR_IDLE) {
555 				coder->threads[i].state = THR_STOP;
556 				mythread_cond_signal(&coder->threads[i].cond);
557 			}
558 		}
559 	}
560 
561 	return;
562 }
563 
564 
565 /// Initialize a new worker_thread structure and create a new thread.
566 static lzma_ret
567 initialize_new_thread(struct lzma_stream_coder *coder,
568 		const lzma_allocator *allocator)
569 {
570 	// Allocate the coder->threads array if needed. It's done here instead
571 	// of when initializing the decoder because we don't need this if we
572 	// use the direct mode (we may even free coder->threads in the middle
573 	// of the file if we switch from threaded to direct mode).
574 	if (coder->threads == NULL) {
575 		coder->threads = lzma_alloc(
576 			coder->threads_max * sizeof(struct worker_thread),
577 			allocator);
578 
579 		if (coder->threads == NULL)
580 			return LZMA_MEM_ERROR;
581 	}
582 
583 	// Pick a free structure.
584 	assert(coder->threads_initialized < coder->threads_max);
585 	struct worker_thread *thr
586 			= &coder->threads[coder->threads_initialized];
587 
588 	if (mythread_mutex_init(&thr->mutex))
589 		goto error_mutex;
590 
591 	if (mythread_cond_init(&thr->cond))
592 		goto error_cond;
593 
594 	thr->state = THR_IDLE;
595 	thr->in = NULL;
596 	thr->in_size = 0;
597 	thr->allocator = allocator;
598 	thr->coder = coder;
599 	thr->outbuf = NULL;
600 	thr->block_decoder = LZMA_NEXT_CODER_INIT;
601 	thr->mem_filters = 0;
602 
603 	if (mythread_create(&thr->thread_id, worker_decoder, thr))
604 		goto error_thread;
605 
606 	++coder->threads_initialized;
607 	coder->thr = thr;
608 
609 	return LZMA_OK;
610 
611 error_thread:
612 	mythread_cond_destroy(&thr->cond);
613 
614 error_cond:
615 	mythread_mutex_destroy(&thr->mutex);
616 
617 error_mutex:
618 	return LZMA_MEM_ERROR;
619 }
620 
621 
622 static lzma_ret
623 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
624 {
625 	// If there is a free structure on the stack, use it.
626 	mythread_sync(coder->mutex) {
627 		if (coder->threads_free != NULL) {
628 			coder->thr = coder->threads_free;
629 			coder->threads_free = coder->threads_free->next;
630 
631 			// The thread is no longer in the cache so subtract
632 			// it from the cached memory usage. Don't add it
633 			// to mem_in_use though; the caller will handle it
634 			// since it knows how much memory it will actually
635 			// use (the filter chain might change).
636 			coder->mem_cached -= coder->thr->mem_filters;
637 		}
638 	}
639 
640 	if (coder->thr == NULL) {
641 		assert(coder->threads_initialized < coder->threads_max);
642 
643 		// Initialize a new thread.
644 		return_if_error(initialize_new_thread(coder, allocator));
645 	}
646 
647 	coder->thr->in_filled = 0;
648 	coder->thr->in_pos = 0;
649 	coder->thr->out_pos = 0;
650 
651 	coder->thr->progress_in = 0;
652 	coder->thr->progress_out = 0;
653 
654 	coder->thr->partial_update = PARTIAL_DISABLED;
655 
656 	return LZMA_OK;
657 }
658 
659 
660 static lzma_ret
661 read_output_and_wait(struct lzma_stream_coder *coder,
662 		const lzma_allocator *allocator,
663 		uint8_t *restrict out, size_t *restrict out_pos,
664 		size_t out_size,
665 		bool *input_is_possible,
666 		bool waiting_allowed,
667 		mythread_condtime *wait_abs, bool *has_blocked)
668 {
669 	lzma_ret ret = LZMA_OK;
670 
671 	mythread_sync(coder->mutex) {
672 		do {
673 			// Get as much output from the queue as is possible
674 			// without blocking.
675 			const size_t out_start = *out_pos;
676 			do {
677 				ret = lzma_outq_read(&coder->outq, allocator,
678 						out, out_pos, out_size,
679 						NULL, NULL);
680 
681 				// If a Block was finished, tell the worker
682 				// thread of the next Block (if it is still
683 				// running) to start telling the main thread
684 				// when new output is available.
685 				if (ret == LZMA_STREAM_END)
686 					lzma_outq_enable_partial_output(
687 						&coder->outq,
688 						&worker_enable_partial_update);
689 
690 				// Loop until a Block wasn't finished.
691 				// It's important to loop around even if
692 				// *out_pos == out_size because there could
693 				// be an empty Block that will return
694 				// LZMA_STREAM_END without needing any
695 				// output space.
696 			} while (ret == LZMA_STREAM_END);
697 
698 			// Check if lzma_outq_read reported an error from
699 			// the Block decoder.
700 			if (ret != LZMA_OK)
701 				break;
702 
703 			// If the output buffer is now full but it wasn't full
704 			// when this function was called, set out_was_filled.
705 			// This way the next call to stream_decode_mt() knows
706 			// that some output was produced and no output space
707 			// remained in the previous call to stream_decode_mt().
708 			if (*out_pos == out_size && *out_pos != out_start)
709 				coder->out_was_filled = true;
710 
711 			// Check if any thread has indicated an error.
712 			if (coder->thread_error != LZMA_OK) {
713 				// If LZMA_FAIL_FAST was used, report errors
714 				// from worker threads immediately.
715 				if (coder->fail_fast) {
716 					ret = coder->thread_error;
717 					break;
718 				}
719 
720 				// Otherwise set pending_error. The value we
721 				// set here will not actually get used other
722 				// than working as a flag that an error has
723 				// occurred. This is because in SEQ_ERROR
724 				// all output before the error will be read
725 				// first by calling this function, and once we
726 				// reach the location of the (first) error the
727 				// error code from the above lzma_outq_read()
728 				// will be returned to the application.
729 				//
730 				// Use LZMA_PROG_ERROR since the value should
731 				// never leak to the application. It's
732 				// possible that pending_error has already
733 				// been set but that doesn't matter: if we get
734 				// here, pending_error only works as a flag.
735 				coder->pending_error = LZMA_PROG_ERROR;
736 			}
737 
738 			// Check if decoding of the next Block can be started.
739 			// The memusage of the active threads must be low
740 			// enough, there must be a free buffer slot in the
741 			// output queue, and there must be a free thread
742 			// (that can be either created or an existing one
743 			// reused).
744 			//
745 			// NOTE: This is checked after reading the output
746 			// above because reading the output can free a slot in
747 			// the output queue and also reduce active memusage.
748 			//
749 			// NOTE: If output queue is empty, then input will
750 			// always be possible.
751 			if (input_is_possible != NULL
752 					&& coder->memlimit_threading
753 						- coder->mem_in_use
754 						- coder->outq.mem_in_use
755 						>= coder->mem_next_block
756 					&& lzma_outq_has_buf(&coder->outq)
757 					&& (coder->threads_initialized
758 							< coder->threads_max
759 						|| coder->threads_free
760 							!= NULL)) {
761 				*input_is_possible = true;
762 				break;
763 			}
764 
765 			// If the caller doesn't want us to block, return now.
766 			if (!waiting_allowed)
767 				break;
768 
769 			// This check is needed only when input_is_possible
770 			// is NULL. We must return if we aren't waiting for
771 			// input to become possible and there is no more
772 			// output coming from the queue.
773 			if (lzma_outq_is_empty(&coder->outq)) {
774 				assert(input_is_possible == NULL);
775 				break;
776 			}
777 
778 			// If there is more data available from the queue,
779 			// our out buffer must be full and we need to return
780 			// so that the application can provide more output
781 			// space.
782 			//
783 			// NOTE: In general lzma_outq_is_readable() can return
784 			// true also when there are no more bytes available.
785 			// This can happen when a Block has finished without
786 			// providing any new output. We know that this is not
787 			// the case because in the beginning of this loop we
788 			// tried to read as much as possible even when we had
789 			// no output space left and the mutex has been locked
790 			// all the time (so worker threads cannot have changed
791 			// anything). Thus there must be actual pending output
792 			// in the queue.
793 			if (lzma_outq_is_readable(&coder->outq)) {
794 				assert(*out_pos == out_size);
795 				break;
796 			}
797 
798 			// If the application stops providing more input
799 			// in the middle of a Block, there will eventually
800 			// be one worker thread left that is stuck waiting for
801 			// more input (that might never arrive) and a matching
802 			// outbuf which the worker thread cannot finish due
803 			// to lack of input. We must detect this situation,
804 			// otherwise we would end up waiting indefinitely
805 			// (if no timeout is in use) or keep returning
806 			// LZMA_TIMED_OUT while making no progress. Thus, the
807 			// application would never get LZMA_BUF_ERROR from
808 			// lzma_code() which would tell the application that
809 			// no more progress is possible. No LZMA_BUF_ERROR
810 			// means that, for example, truncated .xz files could
811 			// cause an infinite loop.
812 			//
813 			// A worker thread doing partial updates will
814 			// store not only the output position in outbuf->pos
815 			// but also the matching input position in
816 			// outbuf->decoder_in_pos. Here we check if that
817 			// input position matches the amount of input that
818 			// the worker thread has been given (in_filled).
819 			// If so, we must return and not wait as no more
820 			// output will be coming without first getting more
821 			// input to the worker thread. If the application
822 			// keeps calling lzma_code() without providing more
823 			// input, it will eventually get LZMA_BUF_ERROR.
824 			//
825 			// NOTE: We can read partial_update and in_filled
826 			// without thr->mutex as only the main thread
827 			// modifies these variables. decoder_in_pos requires
828 			// coder->mutex which we are already holding.
829 			if (coder->thr != NULL && coder->thr->partial_update
830 					!= PARTIAL_DISABLED) {
831 				// There is exactly one outbuf in the queue.
832 				assert(coder->thr->outbuf == coder->outq.head);
833 				assert(coder->thr->outbuf == coder->outq.tail);
834 
835 				if (coder->thr->outbuf->decoder_in_pos
836 						== coder->thr->in_filled)
837 					break;
838 			}
839 
840 			// Wait for input or output to become possible.
841 			if (coder->timeout != 0) {
842 				// See the comment in stream_encoder_mt.c
843 				// about why mythread_condtime_set() is used
844 				// like this.
845 				//
846 				// FIXME?
847 				// In contrast to the encoder, this calls
848 				// _condtime_set while the mutex is locked.
849 				if (!*has_blocked) {
850 					*has_blocked = true;
851 					mythread_condtime_set(wait_abs,
852 							&coder->cond,
853 							coder->timeout);
854 				}
855 
856 				if (mythread_cond_timedwait(&coder->cond,
857 						&coder->mutex,
858 						wait_abs) != 0) {
859 					ret = LZMA_TIMED_OUT;
860 					break;
861 				}
862 			} else {
863 				mythread_cond_wait(&coder->cond,
864 						&coder->mutex);
865 			}
866 		} while (ret == LZMA_OK);
867 	}
868 
869 	// If we are returning an error, then the application cannot get
870 	// more output from us and thus keeping the threads running is
871 	// useless and waste of CPU time.
872 	if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
873 		threads_stop(coder);
874 
875 	return ret;
876 }
877 
878 
879 static lzma_ret
880 decode_block_header(struct lzma_stream_coder *coder,
881 		const lzma_allocator *allocator, const uint8_t *restrict in,
882 		size_t *restrict in_pos, size_t in_size)
883 {
884 	if (*in_pos >= in_size)
885 		return LZMA_OK;
886 
887 	if (coder->pos == 0) {
888 		// Detect if it's Index.
889 		if (in[*in_pos] == INDEX_INDICATOR)
890 			return LZMA_INDEX_DETECTED;
891 
892 		// Calculate the size of the Block Header. Note that
893 		// Block Header decoder wants to see this byte too
894 		// so don't advance *in_pos.
895 		coder->block_options.header_size
896 				= lzma_block_header_size_decode(
897 					in[*in_pos]);
898 	}
899 
900 	// Copy the Block Header to the internal buffer.
901 	lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
902 			coder->block_options.header_size);
903 
904 	// Return if we didn't get the whole Block Header yet.
905 	if (coder->pos < coder->block_options.header_size)
906 		return LZMA_OK;
907 
908 	coder->pos = 0;
909 
910 	// Version 1 is needed to support the .ignore_check option.
911 	coder->block_options.version = 1;
912 
913 	// Block Header decoder will initialize all members of this array
914 	// so we don't need to do it here.
915 	coder->block_options.filters = coder->filters;
916 
917 	// Decode the Block Header.
918 	return_if_error(lzma_block_header_decode(&coder->block_options,
919 			allocator, coder->buffer));
920 
921 	// If LZMA_IGNORE_CHECK was used, this flag needs to be set.
922 	// It has to be set after lzma_block_header_decode() because
923 	// it always resets this to false.
924 	coder->block_options.ignore_check = coder->ignore_check;
925 
926 	// coder->block_options is ready now.
927 	return LZMA_STREAM_END;
928 }
929 
930 
931 /// Get the size of the Compressed Data + Block Padding + Check.
932 static size_t
933 comp_blk_size(const struct lzma_stream_coder *coder)
934 {
935 	return vli_ceil4(coder->block_options.compressed_size)
936 			+ lzma_check_size(coder->stream_flags.check);
937 }
938 
939 
940 /// Returns true if the size (compressed or uncompressed) is such that
941 /// threaded decompression cannot be used. Sizes that are too big compared
942 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
943 /// when lzma_vli is assigned to a size_t.
944 static bool
945 is_direct_mode_needed(lzma_vli size)
946 {
947 	return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
948 }
949 
950 
951 static lzma_ret
952 stream_decoder_reset(struct lzma_stream_coder *coder,
953 		const lzma_allocator *allocator)
954 {
955 	// Initialize the Index hash used to verify the Index.
956 	coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
957 	if (coder->index_hash == NULL)
958 		return LZMA_MEM_ERROR;
959 
960 	// Reset the rest of the variables.
961 	coder->sequence = SEQ_STREAM_HEADER;
962 	coder->pos = 0;
963 
964 	return LZMA_OK;
965 }
966 
967 
968 static lzma_ret
969 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
970 		 const uint8_t *restrict in, size_t *restrict in_pos,
971 		 size_t in_size,
972 		 uint8_t *restrict out, size_t *restrict out_pos,
973 		 size_t out_size, lzma_action action)
974 {
975 	struct lzma_stream_coder *coder = coder_ptr;
976 
977 	mythread_condtime wait_abs;
978 	bool has_blocked = false;
979 
980 	// Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
981 	// tell read_output_and_wait() to wait until it can fill the output
982 	// buffer (or a timeout occurs). Two conditions must be met:
983 	//
984 	// (1) If the caller provided no new input. The reason for this
985 	//     can be, for example, the end of the file or that there is
986 	//     a pause in the input stream and more input is available
987 	//     a little later. In this situation we should wait for output
988 	//     because otherwise we would end up in a busy-waiting loop where
989 	//     we make no progress and the application just calls us again
990 	//     without providing any new input. This would then result in
991 	//     LZMA_BUF_ERROR even though more output would be available
992 	//     once the worker threads decode more data.
993 	//
994 	// (2) Even if (1) is true, we will not wait if the previous call to
995 	//     this function managed to produce some output and the output
996 	//     buffer became full. This is for compatibility with applications
997 	//     that call lzma_code() in such a way that new input is provided
998 	//     only when the output buffer didn't become full. Without this
999 	//     trick such applications would have bad performance (bad
1000 	//     parallelization due to decoder not getting input fast enough).
1001 	//
1002 	//     NOTE: Such loops might require that timeout is disabled (0)
1003 	//     if they assume that output-not-full implies that all input has
1004 	//     been consumed. If and only if timeout is enabled, we may return
1005 	//     when output isn't full *and* not all input has been consumed.
1006 	//
1007 	// However, if LZMA_FINISH is used, the above is ignored and we always
1008 	// wait (timeout can still cause us to return) because we know that
1009 	// we won't get any more input. This matters if the input file is
1010 	// truncated and we are doing single-shot decoding, that is,
1011 	// timeout = 0 and LZMA_FINISH is used on the first call to
1012 	// lzma_code() and the output buffer is known to be big enough
1013 	// to hold all uncompressed data:
1014 	//
1015 	//   - If LZMA_FINISH wasn't handled specially, we could return
1016 	//     LZMA_OK before providing all output that is possible with the
1017 	//     truncated input. The rest would be available if lzma_code() was
1018 	//     called again but then it's not single-shot decoding anymore.
1019 	//
1020 	//   - By handling LZMA_FINISH specially here, the first call will
1021 	//     produce all the output, matching the behavior of the
1022 	//     single-threaded decoder.
1023 	//
1024 	// So it's a very specific corner case but also easy to avoid. Note
1025 	// that this special handling of LZMA_FINISH has no effect for
1026 	// single-shot decoding when the input file is valid (not truncated);
1027 	// premature LZMA_OK wouldn't be possible as long as timeout = 0.
1028 	const bool waiting_allowed = action == LZMA_FINISH
1029 			|| (*in_pos == in_size && !coder->out_was_filled);
1030 	coder->out_was_filled = false;
1031 
1032 	while (true)
1033 	switch (coder->sequence) {
1034 	case SEQ_STREAM_HEADER: {
1035 		// Copy the Stream Header to the internal buffer.
1036 		const size_t in_old = *in_pos;
1037 		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1038 				LZMA_STREAM_HEADER_SIZE);
1039 		coder->progress_in += *in_pos - in_old;
1040 
1041 		// Return if we didn't get the whole Stream Header yet.
1042 		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1043 			return LZMA_OK;
1044 
1045 		coder->pos = 0;
1046 
1047 		// Decode the Stream Header.
1048 		const lzma_ret ret = lzma_stream_header_decode(
1049 				&coder->stream_flags, coder->buffer);
1050 		if (ret != LZMA_OK)
1051 			return ret == LZMA_FORMAT_ERROR && !coder->first_stream
1052 					? LZMA_DATA_ERROR : ret;
1053 
1054 		// If we are decoding concatenated Streams, and the later
1055 		// Streams have invalid Header Magic Bytes, we give
1056 		// LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1057 		coder->first_stream = false;
1058 
1059 		// Copy the type of the Check so that Block Header and Block
1060 		// decoders see it.
1061 		coder->block_options.check = coder->stream_flags.check;
1062 
1063 		// Even if we return LZMA_*_CHECK below, we want
1064 		// to continue from Block Header decoding.
1065 		coder->sequence = SEQ_BLOCK_HEADER;
1066 
1067 		// Detect if there's no integrity check or if it is
1068 		// unsupported if those were requested by the application.
1069 		if (coder->tell_no_check && coder->stream_flags.check
1070 				== LZMA_CHECK_NONE)
1071 			return LZMA_NO_CHECK;
1072 
1073 		if (coder->tell_unsupported_check
1074 				&& !lzma_check_is_supported(
1075 					coder->stream_flags.check))
1076 			return LZMA_UNSUPPORTED_CHECK;
1077 
1078 		if (coder->tell_any_check)
1079 			return LZMA_GET_CHECK;
1080 	}
1081 
1082 	// Fall through
1083 
1084 	case SEQ_BLOCK_HEADER: {
1085 		const size_t in_old = *in_pos;
1086 		const lzma_ret ret = decode_block_header(coder, allocator,
1087 				in, in_pos, in_size);
1088 		coder->progress_in += *in_pos - in_old;
1089 
1090 		if (ret == LZMA_OK) {
1091 			// We didn't decode the whole Block Header yet.
1092 			//
1093 			// Read output from the queue before returning. This
1094 			// is important because it is possible that the
1095 			// application doesn't have any new input available
1096 			// immediately. If we didn't try to copy output from
1097 			// the output queue here, lzma_code() could end up
1098 			// returning LZMA_BUF_ERROR even though queued output
1099 			// is available.
1100 			//
1101 			// If the lzma_code() call provided at least one input
1102 			// byte, only copy as much data from the output queue
1103 			// as is available immediately. This way the
1104 			// application will be able to provide more input
1105 			// without a delay.
1106 			//
1107 			// On the other hand, if lzma_code() was called with
1108 			// an empty input buffer(*), treat it specially: try
1109 			// to fill the output buffer even if it requires
1110 			// waiting for the worker threads to provide output
1111 			// (timeout, if specified, can still cause us to
1112 			// return).
1113 			//
1114 			//   - This way the application will be able to get all
1115 			//     data that can be decoded from the input provided
1116 			//     so far.
1117 			//
1118 			//   - We avoid both premature LZMA_BUF_ERROR and
1119 			//     busy-waiting where the application repeatedly
1120 			//     calls lzma_code() which immediately returns
1121 			//     LZMA_OK without providing new data.
1122 			//
1123 			//   - If the queue becomes empty, we won't wait
1124 			//     anything and will return LZMA_OK immediately
1125 			//     (coder->timeout is completely ignored).
1126 			//
1127 			// (*) See the comment at the beginning of this
1128 			//     function how waiting_allowed is determined
1129 			//     and why there is an exception to the rule
1130 			//     of "called with an empty input buffer".
1131 			assert(*in_pos == in_size);
1132 
1133 			// If LZMA_FINISH was used we know that we won't get
1134 			// more input, so the file must be truncated if we
1135 			// get here. If worker threads don't detect any
1136 			// errors, eventually there will be no more output
1137 			// while we keep returning LZMA_OK which gets
1138 			// converted to LZMA_BUF_ERROR in lzma_code().
1139 			//
1140 			// If fail-fast is enabled then we will return
1141 			// immediately using LZMA_DATA_ERROR instead of
1142 			// LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1143 			// error code:
1144 			//
1145 			//   - Worker threads may have a large amount of
1146 			//     not-yet-decoded input data and we don't
1147 			//     know for sure if all data is valid. Bad
1148 			//     data there would result in LZMA_DATA_ERROR
1149 			//     when fail-fast isn't used.
1150 			//
1151 			//   - Immediate LZMA_BUF_ERROR would be a bit weird
1152 			//     considering the older liblzma code. lzma_code()
1153 			//     even has an assertion to prevent coders from
1154 			//     returning LZMA_BUF_ERROR directly.
1155 			//
1156 			// The downside of this is that with fail-fast apps
1157 			// cannot always distinguish between corrupt and
1158 			// truncated files.
1159 			if (action == LZMA_FINISH && coder->fail_fast) {
1160 				// We won't produce any more output. Stop
1161 				// the unfinished worker threads so they
1162 				// won't waste CPU time.
1163 				threads_stop(coder);
1164 				return LZMA_DATA_ERROR;
1165 			}
1166 
1167 			// read_output_and_wait() will call threads_stop()
1168 			// if needed so with that we can use return_if_error.
1169 			return_if_error(read_output_and_wait(coder, allocator,
1170 				out, out_pos, out_size,
1171 				NULL, waiting_allowed,
1172 				&wait_abs, &has_blocked));
1173 
1174 			if (coder->pending_error != LZMA_OK) {
1175 				coder->sequence = SEQ_ERROR;
1176 				break;
1177 			}
1178 
1179 			return LZMA_OK;
1180 		}
1181 
1182 		if (ret == LZMA_INDEX_DETECTED) {
1183 			coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
1184 			break;
1185 		}
1186 
1187 		// See if an error occurred.
1188 		if (ret != LZMA_STREAM_END) {
1189 			// NOTE: Here and in all other places where
1190 			// pending_error is set, it may overwrite the value
1191 			// (LZMA_PROG_ERROR) set by read_output_and_wait().
1192 			// That function might overwrite value set here too.
1193 			// These are fine because when read_output_and_wait()
1194 			// sets pending_error, it actually works as a flag
1195 			// variable only ("some error has occurred") and the
1196 			// actual value of pending_error is not used in
1197 			// SEQ_ERROR. In such cases SEQ_ERROR will eventually
1198 			// get the correct error code from the return value of
1199 			// a later read_output_and_wait() call.
1200 			coder->pending_error = ret;
1201 			coder->sequence = SEQ_ERROR;
1202 			break;
1203 		}
1204 
1205 		// Calculate the memory usage of the filters / Block decoder.
1206 		coder->mem_next_filters = lzma_raw_decoder_memusage(
1207 				coder->filters);
1208 
1209 		if (coder->mem_next_filters == UINT64_MAX) {
1210 			// One or more unknown Filter IDs.
1211 			coder->pending_error = LZMA_OPTIONS_ERROR;
1212 			coder->sequence = SEQ_ERROR;
1213 			break;
1214 		}
1215 
1216 		coder->sequence = SEQ_BLOCK_INIT;
1217 	}
1218 
1219 	// Fall through
1220 
1221 	case SEQ_BLOCK_INIT: {
1222 		// Check if decoding is possible at all with the current
1223 		// memlimit_stop which we must never exceed.
1224 		//
1225 		// This needs to be the first thing in SEQ_BLOCK_INIT
1226 		// to make it possible to restart decoding after increasing
1227 		// memlimit_stop with lzma_memlimit_set().
1228 		if (coder->mem_next_filters > coder->memlimit_stop) {
1229 			// Flush pending output before returning
1230 			// LZMA_MEMLIMIT_ERROR. If the application doesn't
1231 			// want to increase the limit, at least it will get
1232 			// all the output possible so far.
1233 			return_if_error(read_output_and_wait(coder, allocator,
1234 					out, out_pos, out_size,
1235 					NULL, true, &wait_abs, &has_blocked));
1236 
1237 			if (!lzma_outq_is_empty(&coder->outq))
1238 				return LZMA_OK;
1239 
1240 			return LZMA_MEMLIMIT_ERROR;
1241 		}
1242 
1243 		// Check if the size information is available in Block Header.
1244 		// If it is, check if the sizes are small enough that we don't
1245 		// need to worry *too* much about integer overflows later in
1246 		// the code. If these conditions are not met, we must use the
1247 		// single-threaded direct mode.
1248 		if (is_direct_mode_needed(coder->block_options.compressed_size)
1249 				|| is_direct_mode_needed(
1250 				coder->block_options.uncompressed_size)) {
1251 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1252 			break;
1253 		}
1254 
1255 		// Calculate the amount of memory needed for the input and
1256 		// output buffers in threaded mode.
1257 		//
1258 		// These cannot overflow because we already checked that
1259 		// the sizes are small enough using is_direct_mode_needed().
1260 		coder->mem_next_in = comp_blk_size(coder);
1261 		const uint64_t mem_buffers = coder->mem_next_in
1262 				+ lzma_outq_outbuf_memusage(
1263 				coder->block_options.uncompressed_size);
1264 
1265 		// Add the amount needed by the filters.
1266 		// Avoid integer overflows.
1267 		if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
1268 			// Use direct mode if the memusage would overflow.
1269 			// This is a theoretical case that shouldn't happen
1270 			// in practice unless the input file is weird (broken
1271 			// or malicious).
1272 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1273 			break;
1274 		}
1275 
1276 		// Amount of memory needed to decode this Block in
1277 		// threaded mode:
1278 		coder->mem_next_block = coder->mem_next_filters + mem_buffers;
1279 
1280 		// If this alone would exceed memlimit_threading, then we must
1281 		// use the single-threaded direct mode.
1282 		if (coder->mem_next_block > coder->memlimit_threading) {
1283 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1284 			break;
1285 		}
1286 
1287 		// Use the threaded mode. Free the direct mode decoder in
1288 		// case it has been initialized.
1289 		lzma_next_end(&coder->block_decoder, allocator);
1290 		coder->mem_direct_mode = 0;
1291 
1292 		// Since we already know what the sizes are supposed to be,
1293 		// we can already add them to the Index hash. The Block
1294 		// decoder will verify the values while decoding.
1295 		const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
1296 				lzma_block_unpadded_size(
1297 					&coder->block_options),
1298 				coder->block_options.uncompressed_size);
1299 		if (ret != LZMA_OK) {
1300 			coder->pending_error = ret;
1301 			coder->sequence = SEQ_ERROR;
1302 			break;
1303 		}
1304 
1305 		coder->sequence = SEQ_BLOCK_THR_INIT;
1306 	}
1307 
1308 	// Fall through
1309 
1310 	case SEQ_BLOCK_THR_INIT: {
1311 		// We need to wait for a multiple conditions to become true
1312 		// until we can initialize the Block decoder and let a worker
1313 		// thread decode it:
1314 		//
1315 		//   - Wait for the memory usage of the active threads to drop
1316 		//     so that starting the decoding of this Block won't make
1317 		//     us go over memlimit_threading.
1318 		//
1319 		//   - Wait for at least one free output queue slot.
1320 		//
1321 		//   - Wait for a free worker thread.
1322 		//
1323 		// While we wait, we must copy decompressed data to the out
1324 		// buffer and catch possible decoder errors.
1325 		//
1326 		// read_output_and_wait() does all the above.
1327 		bool block_can_start = false;
1328 
1329 		return_if_error(read_output_and_wait(coder, allocator,
1330 				out, out_pos, out_size,
1331 				&block_can_start, true,
1332 				&wait_abs, &has_blocked));
1333 
1334 		if (coder->pending_error != LZMA_OK) {
1335 			coder->sequence = SEQ_ERROR;
1336 			break;
1337 		}
1338 
1339 		if (!block_can_start) {
1340 			// It's not a timeout because return_if_error handles
1341 			// it already. Output queue cannot be empty either
1342 			// because in that case block_can_start would have
1343 			// been true. Thus the output buffer must be full and
1344 			// the queue isn't empty.
1345 			assert(*out_pos == out_size);
1346 			assert(!lzma_outq_is_empty(&coder->outq));
1347 			return LZMA_OK;
1348 		}
1349 
1350 		// We know that we can start decoding this Block without
1351 		// exceeding memlimit_threading. However, to stay below
1352 		// memlimit_threading may require freeing some of the
1353 		// cached memory.
1354 		//
1355 		// Get a local copy of variables that require locking the
1356 		// mutex. It is fine if the worker threads modify the real
1357 		// values after we read these as those changes can only be
1358 		// towards more favorable conditions (less memory in use,
1359 		// more in cache).
1360 		//
1361 		// These are initialized to silence warnings.
1362 		uint64_t mem_in_use = 0;
1363 		uint64_t mem_cached = 0;
1364 		struct worker_thread *thr = NULL;
1365 
1366 		mythread_sync(coder->mutex) {
1367 			mem_in_use = coder->mem_in_use;
1368 			mem_cached = coder->mem_cached;
1369 			thr = coder->threads_free;
1370 		}
1371 
1372 		// The maximum amount of memory that can be held by other
1373 		// threads and cached buffers while allowing us to start
1374 		// decoding the next Block.
1375 		const uint64_t mem_max = coder->memlimit_threading
1376 				- coder->mem_next_block;
1377 
1378 		// If the existing allocations are so large that starting
1379 		// to decode this Block might exceed memlimit_threads,
1380 		// try to free memory from the output queue cache first.
1381 		//
1382 		// NOTE: This math assumes the worst case. It's possible
1383 		// that the limit wouldn't be exceeded if the existing cached
1384 		// allocations are reused.
1385 		if (mem_in_use + mem_cached + coder->outq.mem_allocated
1386 				> mem_max) {
1387 			// Clear the outq cache except leave one buffer in
1388 			// the cache if its size is correct. That way we
1389 			// don't free and almost immediately reallocate
1390 			// an identical buffer.
1391 			lzma_outq_clear_cache2(&coder->outq, allocator,
1392 				coder->block_options.uncompressed_size);
1393 		}
1394 
1395 		// If there is at least one worker_thread in the cache and
1396 		// the existing allocations are so large that starting to
1397 		// decode this Block might exceed memlimit_threads, free
1398 		// memory by freeing cached Block decoders.
1399 		//
1400 		// NOTE: The comparison is different here than above.
1401 		// Here we don't care about cached buffers in outq anymore
1402 		// and only look at memory actually in use. This is because
1403 		// if there is something in outq cache, it's a single buffer
1404 		// that can be used as is. We ensured this in the above
1405 		// if-block.
1406 		uint64_t mem_freed = 0;
1407 		if (thr != NULL && mem_in_use + mem_cached
1408 				+ coder->outq.mem_in_use > mem_max) {
1409 			// Don't free the first Block decoder if its memory
1410 			// usage isn't greater than what this Block will need.
1411 			// Typically the same filter chain is used for all
1412 			// Blocks so this way the allocations can be reused
1413 			// when get_thread() picks the first worker_thread
1414 			// from the cache.
1415 			if (thr->mem_filters <= coder->mem_next_filters)
1416 				thr = thr->next;
1417 
1418 			while (thr != NULL) {
1419 				lzma_next_end(&thr->block_decoder, allocator);
1420 				mem_freed += thr->mem_filters;
1421 				thr->mem_filters = 0;
1422 				thr = thr->next;
1423 			}
1424 		}
1425 
1426 		// Update the memory usage counters. Note that coder->mem_*
1427 		// may have changed since we read them so we must subtract
1428 		// or add the changes.
1429 		mythread_sync(coder->mutex) {
1430 			coder->mem_cached -= mem_freed;
1431 
1432 			// Memory needed for the filters and the input buffer.
1433 			// The output queue takes care of its own counter so
1434 			// we don't touch it here.
1435 			//
1436 			// NOTE: After this, coder->mem_in_use +
1437 			// coder->mem_cached might count the same thing twice.
1438 			// If so, this will get corrected in get_thread() when
1439 			// a worker_thread is picked from coder->free_threads
1440 			// and its memory usage is subtracted from mem_cached.
1441 			coder->mem_in_use += coder->mem_next_in
1442 					+ coder->mem_next_filters;
1443 		}
1444 
1445 		// Allocate memory for the output buffer in the output queue.
1446 		lzma_ret ret = lzma_outq_prealloc_buf(
1447 				&coder->outq, allocator,
1448 				coder->block_options.uncompressed_size);
1449 		if (ret != LZMA_OK) {
1450 			threads_stop(coder);
1451 			return ret;
1452 		}
1453 
1454 		// Set up coder->thr.
1455 		ret = get_thread(coder, allocator);
1456 		if (ret != LZMA_OK) {
1457 			threads_stop(coder);
1458 			return ret;
1459 		}
1460 
1461 		// The new Block decoder memory usage is already counted in
1462 		// coder->mem_in_use. Store it in the thread too.
1463 		coder->thr->mem_filters = coder->mem_next_filters;
1464 
1465 		// Initialize the Block decoder.
1466 		coder->thr->block_options = coder->block_options;
1467 		ret = lzma_block_decoder_init(
1468 					&coder->thr->block_decoder, allocator,
1469 					&coder->thr->block_options);
1470 
1471 		// Free the allocated filter options since they are needed
1472 		// only to initialize the Block decoder.
1473 		lzma_filters_free(coder->filters, allocator);
1474 		coder->thr->block_options.filters = NULL;
1475 
1476 		// Check if memory usage calculation and Block encoder
1477 		// initialization succeeded.
1478 		if (ret != LZMA_OK) {
1479 			coder->pending_error = ret;
1480 			coder->sequence = SEQ_ERROR;
1481 			break;
1482 		}
1483 
1484 		// Allocate the input buffer.
1485 		coder->thr->in_size = coder->mem_next_in;
1486 		coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
1487 		if (coder->thr->in == NULL) {
1488 			threads_stop(coder);
1489 			return LZMA_MEM_ERROR;
1490 		}
1491 
1492 		// Get the preallocated output buffer.
1493 		coder->thr->outbuf = lzma_outq_get_buf(
1494 				&coder->outq, coder->thr);
1495 
1496 		// Start the decoder.
1497 		mythread_sync(coder->thr->mutex) {
1498 			assert(coder->thr->state == THR_IDLE);
1499 			coder->thr->state = THR_RUN;
1500 			mythread_cond_signal(&coder->thr->cond);
1501 		}
1502 
1503 		// Enable output from the thread that holds the oldest output
1504 		// buffer in the output queue (if such a thread exists).
1505 		mythread_sync(coder->mutex) {
1506 			lzma_outq_enable_partial_output(&coder->outq,
1507 					&worker_enable_partial_update);
1508 		}
1509 
1510 		coder->sequence = SEQ_BLOCK_THR_RUN;
1511 	}
1512 
1513 	// Fall through
1514 
1515 	case SEQ_BLOCK_THR_RUN: {
1516 		if (action == LZMA_FINISH && coder->fail_fast) {
1517 			// We know that we won't get more input and that
1518 			// the caller wants fail-fast behavior. If we see
1519 			// that we don't have enough input to finish this
1520 			// Block, return LZMA_DATA_ERROR immediately.
1521 			// See SEQ_BLOCK_HEADER for the error code rationale.
1522 			const size_t in_avail = in_size - *in_pos;
1523 			const size_t in_needed = coder->thr->in_size
1524 					- coder->thr->in_filled;
1525 			if (in_avail < in_needed) {
1526 				threads_stop(coder);
1527 				return LZMA_DATA_ERROR;
1528 			}
1529 		}
1530 
1531 		// Copy input to the worker thread.
1532 		size_t cur_in_filled = coder->thr->in_filled;
1533 		lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
1534 				&cur_in_filled, coder->thr->in_size);
1535 
1536 		// Tell the thread how much we copied.
1537 		mythread_sync(coder->thr->mutex) {
1538 			coder->thr->in_filled = cur_in_filled;
1539 
1540 			// NOTE: Most of the time we are copying input faster
1541 			// than the thread can decode so most of the time
1542 			// calling mythread_cond_signal() is useless but
1543 			// we cannot make it conditional because thr->in_pos
1544 			// is updated without a mutex. And the overhead should
1545 			// be very much negligible anyway.
1546 			mythread_cond_signal(&coder->thr->cond);
1547 		}
1548 
1549 		// Read output from the output queue. Just like in
1550 		// SEQ_BLOCK_HEADER, we wait to fill the output buffer
1551 		// only if waiting_allowed was set to true in the beginning
1552 		// of this function (see the comment there).
1553 		return_if_error(read_output_and_wait(coder, allocator,
1554 				out, out_pos, out_size,
1555 				NULL, waiting_allowed,
1556 				&wait_abs, &has_blocked));
1557 
1558 		if (coder->pending_error != LZMA_OK) {
1559 			coder->sequence = SEQ_ERROR;
1560 			break;
1561 		}
1562 
1563 		// Return if the input didn't contain the whole Block.
1564 		if (coder->thr->in_filled < coder->thr->in_size) {
1565 			assert(*in_pos == in_size);
1566 			return LZMA_OK;
1567 		}
1568 
1569 		// The whole Block has been copied to the thread-specific
1570 		// buffer. Continue from the next Block Header or Index.
1571 		coder->thr = NULL;
1572 		coder->sequence = SEQ_BLOCK_HEADER;
1573 		break;
1574 	}
1575 
1576 	case SEQ_BLOCK_DIRECT_INIT: {
1577 		// Wait for the threads to finish and that all decoded data
1578 		// has been copied to the output. That is, wait until the
1579 		// output queue becomes empty.
1580 		//
1581 		// NOTE: No need to check for coder->pending_error as
1582 		// we aren't consuming any input until the queue is empty
1583 		// and if there is a pending error, read_output_and_wait()
1584 		// will eventually return it before the queue is empty.
1585 		return_if_error(read_output_and_wait(coder, allocator,
1586 				out, out_pos, out_size,
1587 				NULL, true, &wait_abs, &has_blocked));
1588 		if (!lzma_outq_is_empty(&coder->outq))
1589 			return LZMA_OK;
1590 
1591 		// Free the cached output buffers.
1592 		lzma_outq_clear_cache(&coder->outq, allocator);
1593 
1594 		// Get rid of the worker threads, including the coder->threads
1595 		// array.
1596 		threads_end(coder, allocator);
1597 
1598 		// Initialize the Block decoder.
1599 		const lzma_ret ret = lzma_block_decoder_init(
1600 				&coder->block_decoder, allocator,
1601 				&coder->block_options);
1602 
1603 		// Free the allocated filter options since they are needed
1604 		// only to initialize the Block decoder.
1605 		lzma_filters_free(coder->filters, allocator);
1606 		coder->block_options.filters = NULL;
1607 
1608 		// Check if Block decoder initialization succeeded.
1609 		if (ret != LZMA_OK)
1610 			return ret;
1611 
1612 		// Make the memory usage visible to _memconfig().
1613 		coder->mem_direct_mode = coder->mem_next_filters;
1614 
1615 		coder->sequence = SEQ_BLOCK_DIRECT_RUN;
1616 	}
1617 
1618 	// Fall through
1619 
1620 	case SEQ_BLOCK_DIRECT_RUN: {
1621 		const size_t in_old = *in_pos;
1622 		const size_t out_old = *out_pos;
1623 		const lzma_ret ret = coder->block_decoder.code(
1624 				coder->block_decoder.coder, allocator,
1625 				in, in_pos, in_size, out, out_pos, out_size,
1626 				action);
1627 		coder->progress_in += *in_pos - in_old;
1628 		coder->progress_out += *out_pos - out_old;
1629 
1630 		if (ret != LZMA_STREAM_END)
1631 			return ret;
1632 
1633 		// Block decoded successfully. Add the new size pair to
1634 		// the Index hash.
1635 		return_if_error(lzma_index_hash_append(coder->index_hash,
1636 				lzma_block_unpadded_size(
1637 					&coder->block_options),
1638 				coder->block_options.uncompressed_size));
1639 
1640 		coder->sequence = SEQ_BLOCK_HEADER;
1641 		break;
1642 	}
1643 
1644 	case SEQ_INDEX_WAIT_OUTPUT:
1645 		// Flush the output from all worker threads so that we can
1646 		// decode the Index without thinking about threading.
1647 		return_if_error(read_output_and_wait(coder, allocator,
1648 				out, out_pos, out_size,
1649 				NULL, true, &wait_abs, &has_blocked));
1650 
1651 		if (!lzma_outq_is_empty(&coder->outq))
1652 			return LZMA_OK;
1653 
1654 		coder->sequence = SEQ_INDEX_DECODE;
1655 
1656 	// Fall through
1657 
1658 	case SEQ_INDEX_DECODE: {
1659 		// If we don't have any input, don't call
1660 		// lzma_index_hash_decode() since it would return
1661 		// LZMA_BUF_ERROR, which we must not do here.
1662 		if (*in_pos >= in_size)
1663 			return LZMA_OK;
1664 
1665 		// Decode the Index and compare it to the hash calculated
1666 		// from the sizes of the Blocks (if any).
1667 		const size_t in_old = *in_pos;
1668 		const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
1669 				in, in_pos, in_size);
1670 		coder->progress_in += *in_pos - in_old;
1671 		if (ret != LZMA_STREAM_END)
1672 			return ret;
1673 
1674 		coder->sequence = SEQ_STREAM_FOOTER;
1675 	}
1676 
1677 	// Fall through
1678 
1679 	case SEQ_STREAM_FOOTER: {
1680 		// Copy the Stream Footer to the internal buffer.
1681 		const size_t in_old = *in_pos;
1682 		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1683 				LZMA_STREAM_HEADER_SIZE);
1684 		coder->progress_in += *in_pos - in_old;
1685 
1686 		// Return if we didn't get the whole Stream Footer yet.
1687 		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1688 			return LZMA_OK;
1689 
1690 		coder->pos = 0;
1691 
1692 		// Decode the Stream Footer. The decoder gives
1693 		// LZMA_FORMAT_ERROR if the magic bytes don't match,
1694 		// so convert that return code to LZMA_DATA_ERROR.
1695 		lzma_stream_flags footer_flags;
1696 		const lzma_ret ret = lzma_stream_footer_decode(
1697 				&footer_flags, coder->buffer);
1698 		if (ret != LZMA_OK)
1699 			return ret == LZMA_FORMAT_ERROR
1700 					? LZMA_DATA_ERROR : ret;
1701 
1702 		// Check that Index Size stored in the Stream Footer matches
1703 		// the real size of the Index field.
1704 		if (lzma_index_hash_size(coder->index_hash)
1705 				!= footer_flags.backward_size)
1706 			return LZMA_DATA_ERROR;
1707 
1708 		// Compare that the Stream Flags fields are identical in
1709 		// both Stream Header and Stream Footer.
1710 		return_if_error(lzma_stream_flags_compare(
1711 				&coder->stream_flags, &footer_flags));
1712 
1713 		if (!coder->concatenated)
1714 			return LZMA_STREAM_END;
1715 
1716 		coder->sequence = SEQ_STREAM_PADDING;
1717 	}
1718 
1719 	// Fall through
1720 
1721 	case SEQ_STREAM_PADDING:
1722 		assert(coder->concatenated);
1723 
1724 		// Skip over possible Stream Padding.
1725 		while (true) {
1726 			if (*in_pos >= in_size) {
1727 				// Unless LZMA_FINISH was used, we cannot
1728 				// know if there's more input coming later.
1729 				if (action != LZMA_FINISH)
1730 					return LZMA_OK;
1731 
1732 				// Stream Padding must be a multiple of
1733 				// four bytes.
1734 				return coder->pos == 0
1735 						? LZMA_STREAM_END
1736 						: LZMA_DATA_ERROR;
1737 			}
1738 
1739 			// If the byte is not zero, it probably indicates
1740 			// beginning of a new Stream (or the file is corrupt).
1741 			if (in[*in_pos] != 0x00)
1742 				break;
1743 
1744 			++*in_pos;
1745 			++coder->progress_in;
1746 			coder->pos = (coder->pos + 1) & 3;
1747 		}
1748 
1749 		// Stream Padding must be a multiple of four bytes (empty
1750 		// Stream Padding is OK).
1751 		if (coder->pos != 0) {
1752 			++*in_pos;
1753 			++coder->progress_in;
1754 			return LZMA_DATA_ERROR;
1755 		}
1756 
1757 		// Prepare to decode the next Stream.
1758 		return_if_error(stream_decoder_reset(coder, allocator));
1759 		break;
1760 
1761 	case SEQ_ERROR:
1762 		if (!coder->fail_fast) {
1763 			// Let the application get all data before the point
1764 			// where the error was detected. This matches the
1765 			// behavior of single-threaded use.
1766 			//
1767 			// FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1768 			// they are returned immediately. Thus in rare cases
1769 			// the output will be less than in the single-threaded
1770 			// mode. Maybe this doesn't matter much in practice.
1771 			return_if_error(read_output_and_wait(coder, allocator,
1772 					out, out_pos, out_size,
1773 					NULL, true, &wait_abs, &has_blocked));
1774 
1775 			// We get here only if the error happened in the main
1776 			// thread, for example, unsupported Block Header.
1777 			if (!lzma_outq_is_empty(&coder->outq))
1778 				return LZMA_OK;
1779 		}
1780 
1781 		// We only get here if no errors were detected by the worker
1782 		// threads. Errors from worker threads would have already been
1783 		// returned by the call to read_output_and_wait() above.
1784 		return coder->pending_error;
1785 
1786 	default:
1787 		assert(0);
1788 		return LZMA_PROG_ERROR;
1789 	}
1790 
1791 	// Never reached
1792 }
1793 
1794 
1795 static void
1796 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
1797 {
1798 	struct lzma_stream_coder *coder = coder_ptr;
1799 
1800 	threads_end(coder, allocator);
1801 	lzma_outq_end(&coder->outq, allocator);
1802 
1803 	lzma_next_end(&coder->block_decoder, allocator);
1804 	lzma_filters_free(coder->filters, allocator);
1805 	lzma_index_hash_end(coder->index_hash, allocator);
1806 
1807 	lzma_free(coder, allocator);
1808 	return;
1809 }
1810 
1811 
1812 static lzma_check
1813 stream_decoder_mt_get_check(const void *coder_ptr)
1814 {
1815 	const struct lzma_stream_coder *coder = coder_ptr;
1816 	return coder->stream_flags.check;
1817 }
1818 
1819 
1820 static lzma_ret
1821 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
1822 		uint64_t *old_memlimit, uint64_t new_memlimit)
1823 {
1824 	// NOTE: This function gets/sets memlimit_stop. For now,
1825 	// memlimit_threading cannot be modified after initialization.
1826 	//
1827 	// *memusage will include cached memory too. Excluding cached memory
1828 	// would be misleading and it wouldn't help the applications to
1829 	// know how much memory is actually needed to decompress the file
1830 	// because the higher the number of threads and the memlimits are
1831 	// the more memory the decoder may use.
1832 	//
1833 	// Setting a new limit includes the cached memory too and too low
1834 	// limits will be rejected. Alternative could be to free the cached
1835 	// memory immediately if that helps to bring the limit down but
1836 	// the current way is the simplest. It's unlikely that limit needs
1837 	// to be lowered in the middle of a file anyway; the typical reason
1838 	// to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1839 	// and even such use isn't common.
1840 	struct lzma_stream_coder *coder = coder_ptr;
1841 
1842 	mythread_sync(coder->mutex) {
1843 		*memusage = coder->mem_direct_mode
1844 				+ coder->mem_in_use
1845 				+ coder->mem_cached
1846 				+ coder->outq.mem_allocated;
1847 	}
1848 
1849 	// If no filter chains are allocated, *memusage may be zero.
1850 	// Always return at least LZMA_MEMUSAGE_BASE.
1851 	if (*memusage < LZMA_MEMUSAGE_BASE)
1852 		*memusage = LZMA_MEMUSAGE_BASE;
1853 
1854 	*old_memlimit = coder->memlimit_stop;
1855 
1856 	if (new_memlimit != 0) {
1857 		if (new_memlimit < *memusage)
1858 			return LZMA_MEMLIMIT_ERROR;
1859 
1860 		coder->memlimit_stop = new_memlimit;
1861 	}
1862 
1863 	return LZMA_OK;
1864 }
1865 
1866 
1867 static void
1868 stream_decoder_mt_get_progress(void *coder_ptr,
1869 		uint64_t *progress_in, uint64_t *progress_out)
1870 {
1871 	struct lzma_stream_coder *coder = coder_ptr;
1872 
1873 	// Lock coder->mutex to prevent finishing threads from moving their
1874 	// progress info from the worker_thread structure to lzma_stream_coder.
1875 	mythread_sync(coder->mutex) {
1876 		*progress_in = coder->progress_in;
1877 		*progress_out = coder->progress_out;
1878 
1879 		for (size_t i = 0; i < coder->threads_initialized; ++i) {
1880 			mythread_sync(coder->threads[i].mutex) {
1881 				*progress_in += coder->threads[i].progress_in;
1882 				*progress_out += coder->threads[i]
1883 						.progress_out;
1884 			}
1885 		}
1886 	}
1887 
1888 	return;
1889 }
1890 
1891 
1892 static lzma_ret
1893 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
1894 		       const lzma_mt *options)
1895 {
1896 	struct lzma_stream_coder *coder;
1897 
1898 	if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
1899 		return LZMA_OPTIONS_ERROR;
1900 
1901 	if (options->flags & ~LZMA_SUPPORTED_FLAGS)
1902 		return LZMA_OPTIONS_ERROR;
1903 
1904 	lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
1905 
1906 	coder = next->coder;
1907 	if (!coder) {
1908 		coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
1909 		if (coder == NULL)
1910 			return LZMA_MEM_ERROR;
1911 
1912 		next->coder = coder;
1913 
1914 		if (mythread_mutex_init(&coder->mutex)) {
1915 			lzma_free(coder, allocator);
1916 			return LZMA_MEM_ERROR;
1917 		}
1918 
1919 		if (mythread_cond_init(&coder->cond)) {
1920 			mythread_mutex_destroy(&coder->mutex);
1921 			lzma_free(coder, allocator);
1922 			return LZMA_MEM_ERROR;
1923 		}
1924 
1925 		next->code = &stream_decode_mt;
1926 		next->end = &stream_decoder_mt_end;
1927 		next->get_check = &stream_decoder_mt_get_check;
1928 		next->memconfig = &stream_decoder_mt_memconfig;
1929 		next->get_progress = &stream_decoder_mt_get_progress;
1930 
1931 		coder->filters[0].id = LZMA_VLI_UNKNOWN;
1932 		memzero(&coder->outq, sizeof(coder->outq));
1933 
1934 		coder->block_decoder = LZMA_NEXT_CODER_INIT;
1935 		coder->mem_direct_mode = 0;
1936 
1937 		coder->index_hash = NULL;
1938 		coder->threads = NULL;
1939 		coder->threads_free = NULL;
1940 		coder->threads_initialized = 0;
1941 	}
1942 
1943 	// Cleanup old filter chain if one remains after unfinished decoding
1944 	// of a previous Stream.
1945 	lzma_filters_free(coder->filters, allocator);
1946 
1947 	// By allocating threads from scratch we can start memory-usage
1948 	// accounting from scratch, too. Changes in filter and block sizes may
1949 	// affect number of threads.
1950 	//
1951 	// FIXME? Reusing should be easy but unlike the single-threaded
1952 	// decoder, with some types of input file combinations reusing
1953 	// could leave quite a lot of memory allocated but unused (first
1954 	// file could allocate a lot, the next files could use fewer
1955 	// threads and some of the allocations from the first file would not
1956 	// get freed unless memlimit_threading forces us to clear caches).
1957 	//
1958 	// NOTE: The direct mode decoder isn't freed here if one exists.
1959 	// It will be reused or freed as needed in the main loop.
1960 	threads_end(coder, allocator);
1961 
1962 	// All memusage counters start at 0 (including mem_direct_mode).
1963 	// The little extra that is needed for the structs in this file
1964 	// get accounted well enough by the filter chain memory usage
1965 	// which adds LZMA_MEMUSAGE_BASE for each chain. However,
1966 	// stream_decoder_mt_memconfig() has to handle this specially so that
1967 	// it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1968 	coder->mem_in_use = 0;
1969 	coder->mem_cached = 0;
1970 	coder->mem_next_block = 0;
1971 
1972 	coder->progress_in = 0;
1973 	coder->progress_out = 0;
1974 
1975 	coder->sequence = SEQ_STREAM_HEADER;
1976 	coder->thread_error = LZMA_OK;
1977 	coder->pending_error = LZMA_OK;
1978 	coder->thr = NULL;
1979 
1980 	coder->timeout = options->timeout;
1981 
1982 	coder->memlimit_threading = my_max(1, options->memlimit_threading);
1983 	coder->memlimit_stop = my_max(1, options->memlimit_stop);
1984 	if (coder->memlimit_threading > coder->memlimit_stop)
1985 		coder->memlimit_threading = coder->memlimit_stop;
1986 
1987 	coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
1988 	coder->tell_unsupported_check
1989 			= (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
1990 	coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
1991 	coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
1992 	coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
1993 	coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
1994 
1995 	coder->first_stream = true;
1996 	coder->out_was_filled = false;
1997 	coder->pos = 0;
1998 
1999 	coder->threads_max = options->threads;
2000 
2001 	return_if_error(lzma_outq_init(&coder->outq, allocator,
2002 				       coder->threads_max));
2003 
2004 	return stream_decoder_reset(coder, allocator);
2005 }
2006 
2007 
2008 extern LZMA_API(lzma_ret)
2009 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
2010 {
2011 	lzma_next_strm_init(stream_decoder_mt_init, strm, options);
2012 
2013 	strm->internal->supported_actions[LZMA_RUN] = true;
2014 	strm->internal->supported_actions[LZMA_FINISH] = true;
2015 
2016 	return LZMA_OK;
2017 }
2018