xref: /freebsd/contrib/xz/src/liblzma/common/stream_decoder_mt.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       stream_decoder_mt.c
4 /// \brief      Multithreaded .xz Stream decoder
5 //
6 //  Authors:    Sebastian Andrzej Siewior
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "common.h"
15 #include "block_decoder.h"
16 #include "stream_decoder.h"
17 #include "index.h"
18 #include "outqueue.h"
19 
20 
21 typedef enum {
22 	/// Waiting for work.
23 	/// Main thread may change this to THR_RUN or THR_EXIT.
24 	THR_IDLE,
25 
26 	/// Decoding is in progress.
27 	/// Main thread may change this to THR_STOP or THR_EXIT.
28 	/// The worker thread may change this to THR_IDLE.
29 	THR_RUN,
30 
31 	/// The main thread wants the thread to stop whatever it was doing
32 	/// but not exit. Main thread may change this to THR_EXIT.
33 	/// The worker thread may change this to THR_IDLE.
34 	THR_STOP,
35 
36 	/// The main thread wants the thread to exit.
37 	THR_EXIT,
38 
39 } worker_state;
40 
41 
42 typedef enum {
43 	/// Partial updates (storing of worker thread progress
44 	/// to lzma_outbuf) are disabled.
45 	PARTIAL_DISABLED,
46 
47 	/// Main thread requests partial updates to be enabled but
48 	/// no partial update has been done by the worker thread yet.
49 	///
50 	/// Changing from PARTIAL_DISABLED to PARTIAL_START requires
51 	/// use of the worker-thread mutex. Other transitions don't
52 	/// need a mutex.
53 	PARTIAL_START,
54 
55 	/// Partial updates are enabled and the worker thread has done
56 	/// at least one partial update.
57 	PARTIAL_ENABLED,
58 
59 } partial_update_mode;
60 
61 
62 struct worker_thread {
63 	/// Worker state is protected with our mutex.
64 	worker_state state;
65 
66 	/// Input buffer that will contain the whole Block except Block Header.
67 	uint8_t *in;
68 
69 	/// Amount of memory allocated for "in"
70 	size_t in_size;
71 
72 	/// Number of bytes written to "in" by the main thread
73 	size_t in_filled;
74 
75 	/// Number of bytes consumed from "in" by the worker thread.
76 	size_t in_pos;
77 
78 	/// Amount of uncompressed data that has been decoded. This local
79 	/// copy is needed because updating outbuf->pos requires locking
80 	/// the main mutex (coder->mutex).
81 	size_t out_pos;
82 
83 	/// Pointer to the main structure is needed to (1) lock the main
84 	/// mutex (coder->mutex) when updating outbuf->pos and (2) when
85 	/// putting this thread back to the stack of free threads.
86 	struct lzma_stream_coder *coder;
87 
88 	/// The allocator is set by the main thread. Since a copy of the
89 	/// pointer is kept here, the application must not change the
90 	/// allocator before calling lzma_end().
91 	const lzma_allocator *allocator;
92 
93 	/// Output queue buffer to which the uncompressed data is written.
94 	lzma_outbuf *outbuf;
95 
96 	/// Amount of compressed data that has already been decompressed.
97 	/// This is updated from in_pos when our mutex is locked.
98 	/// This is size_t, not uint64_t, because per-thread progress
99 	/// is limited to sizes of allocated buffers.
100 	size_t progress_in;
101 
102 	/// Like progress_in but for uncompressed data.
103 	size_t progress_out;
104 
105 	/// Updating outbuf->pos requires locking the main mutex
106 	/// (coder->mutex). Since the main thread will only read output
107 	/// from the oldest outbuf in the queue, only the worker thread
108 	/// that is associated with the oldest outbuf needs to update its
109 	/// outbuf->pos. This avoids useless mutex contention that would
110 	/// happen if all worker threads were frequently locking the main
111 	/// mutex to update their outbuf->pos.
112 	///
113 	/// Only when partial_update is something else than PARTIAL_DISABLED,
114 	/// this worker thread will update outbuf->pos after each call to
115 	/// the Block decoder.
116 	partial_update_mode partial_update;
117 
118 	/// Block decoder
119 	lzma_next_coder block_decoder;
120 
121 	/// Thread-specific Block options are needed because the Block
122 	/// decoder modifies the struct given to it at initialization.
123 	lzma_block block_options;
124 
125 	/// Filter chain memory usage
126 	uint64_t mem_filters;
127 
128 	/// Next structure in the stack of free worker threads.
129 	struct worker_thread *next;
130 
131 	mythread_mutex mutex;
132 	mythread_cond cond;
133 
134 	/// The ID of this thread is used to join the thread
135 	/// when it's not needed anymore.
136 	mythread thread_id;
137 };
138 
139 
140 struct lzma_stream_coder {
141 	enum {
142 		SEQ_STREAM_HEADER,
143 		SEQ_BLOCK_HEADER,
144 		SEQ_BLOCK_INIT,
145 		SEQ_BLOCK_THR_INIT,
146 		SEQ_BLOCK_THR_RUN,
147 		SEQ_BLOCK_DIRECT_INIT,
148 		SEQ_BLOCK_DIRECT_RUN,
149 		SEQ_INDEX_WAIT_OUTPUT,
150 		SEQ_INDEX_DECODE,
151 		SEQ_STREAM_FOOTER,
152 		SEQ_STREAM_PADDING,
153 		SEQ_ERROR,
154 	} sequence;
155 
156 	/// Block decoder
157 	lzma_next_coder block_decoder;
158 
159 	/// Every Block Header will be decoded into this structure.
160 	/// This is also used to initialize a Block decoder when in
161 	/// direct mode. In threaded mode, a thread-specific copy will
162 	/// be made for decoder initialization because the Block decoder
163 	/// will modify the structure given to it.
164 	lzma_block block_options;
165 
166 	/// Buffer to hold a filter chain for Block Header decoding and
167 	/// initialization. These are freed after successful Block decoder
168 	/// initialization or at stream_decoder_mt_end(). The thread-specific
169 	/// copy of block_options won't hold a pointer to filters[] after
170 	/// initialization.
171 	lzma_filter filters[LZMA_FILTERS_MAX + 1];
172 
173 	/// Stream Flags from Stream Header
174 	lzma_stream_flags stream_flags;
175 
176 	/// Index is hashed so that it can be compared to the sizes of Blocks
177 	/// with O(1) memory usage.
178 	lzma_index_hash *index_hash;
179 
180 
181 	/// Maximum wait time if cannot use all the input and cannot
182 	/// fill the output buffer. This is in milliseconds.
183 	uint32_t timeout;
184 
185 
186 	/// Error code from a worker thread.
187 	///
188 	/// \note       Use mutex.
189 	lzma_ret thread_error;
190 
191 	/// Error code to return after pending output has been copied out. If
192 	/// set in read_output_and_wait(), this is a mirror of thread_error.
193 	/// If set in stream_decode_mt() then it's, for example, error that
194 	/// occurred when decoding Block Header.
195 	lzma_ret pending_error;
196 
197 	/// Number of threads that will be created at maximum.
198 	uint32_t threads_max;
199 
200 	/// Number of thread structures that have been initialized from
201 	/// "threads", and thus the number of worker threads actually
202 	/// created so far.
203 	uint32_t threads_initialized;
204 
205 	/// Array of allocated thread-specific structures. When no threads
206 	/// are in use (direct mode) this is NULL. In threaded mode this
207 	/// points to an array of threads_max number of worker_thread structs.
208 	struct worker_thread *threads;
209 
210 	/// Stack of free threads. When a thread finishes, it puts itself
211 	/// back into this stack. This starts as empty because threads
212 	/// are created only when actually needed.
213 	///
214 	/// \note       Use mutex.
215 	struct worker_thread *threads_free;
216 
217 	/// The most recent worker thread to which the main thread writes
218 	/// the new input from the application.
219 	struct worker_thread *thr;
220 
221 	/// Output buffer queue for decompressed data from the worker threads
222 	///
223 	/// \note       Use mutex with operations that need it.
224 	lzma_outq outq;
225 
226 	mythread_mutex mutex;
227 	mythread_cond cond;
228 
229 
230 	/// Memory usage that will not be exceeded in multi-threaded mode.
231 	/// Single-threaded mode can exceed this even by a large amount.
232 	uint64_t memlimit_threading;
233 
234 	/// Memory usage limit that should never be exceeded.
235 	/// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
236 	/// even in single-threaded mode without exceeding this limit.
237 	uint64_t memlimit_stop;
238 
239 	/// Amount of memory in use by the direct mode decoder
240 	/// (coder->block_decoder). In threaded mode this is 0.
241 	uint64_t mem_direct_mode;
242 
243 	/// Amount of memory needed by the running worker threads.
244 	/// This doesn't include the memory needed by the output buffer.
245 	///
246 	/// \note       Use mutex.
247 	uint64_t mem_in_use;
248 
249 	/// Amount of memory used by the idle (cached) threads.
250 	///
251 	/// \note       Use mutex.
252 	uint64_t mem_cached;
253 
254 
255 	/// Amount of memory needed for the filter chain of the next Block.
256 	uint64_t mem_next_filters;
257 
258 	/// Amount of memory needed for the thread-specific input buffer
259 	/// for the next Block.
260 	uint64_t mem_next_in;
261 
262 	/// Amount of memory actually needed to decode the next Block
263 	/// in threaded mode. This is
264 	/// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
265 	uint64_t mem_next_block;
266 
267 
268 	/// Amount of compressed data in Stream Header + Blocks that have
269 	/// already been finished.
270 	///
271 	/// \note       Use mutex.
272 	uint64_t progress_in;
273 
274 	/// Amount of uncompressed data in Blocks that have already
275 	/// been finished.
276 	///
277 	/// \note       Use mutex.
278 	uint64_t progress_out;
279 
280 
281 	/// If true, LZMA_NO_CHECK is returned if the Stream has
282 	/// no integrity check.
283 	bool tell_no_check;
284 
285 	/// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
286 	/// an integrity check that isn't supported by this liblzma build.
287 	bool tell_unsupported_check;
288 
289 	/// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
290 	bool tell_any_check;
291 
292 	/// If true, we will tell the Block decoder to skip calculating
293 	/// and verifying the integrity check.
294 	bool ignore_check;
295 
296 	/// If true, we will decode concatenated Streams that possibly have
297 	/// Stream Padding between or after them. LZMA_STREAM_END is returned
298 	/// once the application isn't giving us any new input (LZMA_FINISH),
299 	/// and we aren't in the middle of a Stream, and possible
300 	/// Stream Padding is a multiple of four bytes.
301 	bool concatenated;
302 
303 	/// If true, we will return any errors immediately instead of first
304 	/// producing all output before the location of the error.
305 	bool fail_fast;
306 
307 
308 	/// When decoding concatenated Streams, this is true as long as we
309 	/// are decoding the first Stream. This is needed to avoid misleading
310 	/// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
311 	/// bytes.
312 	bool first_stream;
313 
314 	/// This is used to track if the previous call to stream_decode_mt()
315 	/// had output space (*out_pos < out_size) and managed to fill the
316 	/// output buffer (*out_pos == out_size). This may be set to true
317 	/// in read_output_and_wait(). This is read and then reset to false
318 	/// at the beginning of stream_decode_mt().
319 	///
320 	/// This is needed to support applications that call lzma_code() in
321 	/// such a way that more input is provided only when lzma_code()
322 	/// didn't fill the output buffer completely. Basically, this makes
323 	/// it easier to convert such applications from single-threaded
324 	/// decoder to multi-threaded decoder.
325 	bool out_was_filled;
326 
327 	/// Write position in buffer[] and position in Stream Padding
328 	size_t pos;
329 
330 	/// Buffer to hold Stream Header, Block Header, and Stream Footer.
331 	/// Block Header has biggest maximum size.
332 	uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
333 };
334 
335 
336 /// Enables updating of outbuf->pos. This is a callback function that is
337 /// used with lzma_outq_enable_partial_output().
338 static void
339 worker_enable_partial_update(void *thr_ptr)
340 {
341 	struct worker_thread *thr = thr_ptr;
342 
343 	mythread_sync(thr->mutex) {
344 		thr->partial_update = PARTIAL_START;
345 		mythread_cond_signal(&thr->cond);
346 	}
347 }
348 
349 
350 /// Things do to at THR_STOP or when finishing a Block.
351 /// This is called with thr->mutex locked.
352 static void
353 worker_stop(struct worker_thread *thr)
354 {
355 	// Update memory usage counters.
356 	thr->coder->mem_in_use -= thr->in_size;
357 	thr->in_size = 0; // thr->in was freed above.
358 
359 	thr->coder->mem_in_use -= thr->mem_filters;
360 	thr->coder->mem_cached += thr->mem_filters;
361 
362 	// Put this thread to the stack of free threads.
363 	thr->next = thr->coder->threads_free;
364 	thr->coder->threads_free = thr;
365 
366 	mythread_cond_signal(&thr->coder->cond);
367 	return;
368 }
369 
370 
371 static MYTHREAD_RET_TYPE
372 worker_decoder(void *thr_ptr)
373 {
374 	struct worker_thread *thr = thr_ptr;
375 	size_t in_filled;
376 	partial_update_mode partial_update;
377 	lzma_ret ret;
378 
379 next_loop_lock:
380 
381 	mythread_mutex_lock(&thr->mutex);
382 next_loop_unlocked:
383 
384 	if (thr->state == THR_IDLE) {
385 		mythread_cond_wait(&thr->cond, &thr->mutex);
386 		goto next_loop_unlocked;
387 	}
388 
389 	if (thr->state == THR_EXIT) {
390 		mythread_mutex_unlock(&thr->mutex);
391 
392 		lzma_free(thr->in, thr->allocator);
393 		lzma_next_end(&thr->block_decoder, thr->allocator);
394 
395 		mythread_mutex_destroy(&thr->mutex);
396 		mythread_cond_destroy(&thr->cond);
397 
398 		return MYTHREAD_RET_VALUE;
399 	}
400 
401 	if (thr->state == THR_STOP) {
402 		thr->state = THR_IDLE;
403 		mythread_mutex_unlock(&thr->mutex);
404 
405 		mythread_sync(thr->coder->mutex) {
406 			worker_stop(thr);
407 		}
408 
409 		goto next_loop_lock;
410 	}
411 
412 	assert(thr->state == THR_RUN);
413 
414 	// Update progress info for get_progress().
415 	thr->progress_in = thr->in_pos;
416 	thr->progress_out = thr->out_pos;
417 
418 	// If we don't have any new input, wait for a signal from the main
419 	// thread except if partial output has just been enabled. In that
420 	// case we will do one normal run so that the partial output info
421 	// gets passed to the main thread. The call to block_decoder.code()
422 	// is useless but harmless as it can occur only once per Block.
423 	in_filled = thr->in_filled;
424 	partial_update = thr->partial_update;
425 
426 	if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
427 		mythread_cond_wait(&thr->cond, &thr->mutex);
428 		goto next_loop_unlocked;
429 	}
430 
431 	mythread_mutex_unlock(&thr->mutex);
432 
433 	// Pass the input in small chunks to the Block decoder.
434 	// This way we react reasonably fast if we are told to stop/exit,
435 	// and (when partial update is enabled) we tell about our progress
436 	// to the main thread frequently enough.
437 	const size_t chunk_size = 16384;
438 	if ((in_filled - thr->in_pos) > chunk_size)
439 		in_filled = thr->in_pos + chunk_size;
440 
441 	ret = thr->block_decoder.code(
442 			thr->block_decoder.coder, thr->allocator,
443 			thr->in, &thr->in_pos, in_filled,
444 			thr->outbuf->buf, &thr->out_pos,
445 			thr->outbuf->allocated, LZMA_RUN);
446 
447 	if (ret == LZMA_OK) {
448 		if (partial_update != PARTIAL_DISABLED) {
449 			// The main thread uses thr->mutex to change from
450 			// PARTIAL_DISABLED to PARTIAL_START. The main thread
451 			// doesn't care about this variable after that so we
452 			// can safely change it here to PARTIAL_ENABLED
453 			// without a mutex.
454 			thr->partial_update = PARTIAL_ENABLED;
455 
456 			// The main thread is reading decompressed data
457 			// from thr->outbuf. Tell the main thread about
458 			// our progress.
459 			//
460 			// NOTE: It's possible that we consumed input without
461 			// producing any new output so it's possible that
462 			// only in_pos has changed. In case of PARTIAL_START
463 			// it is possible that neither in_pos nor out_pos has
464 			// changed.
465 			mythread_sync(thr->coder->mutex) {
466 				thr->outbuf->pos = thr->out_pos;
467 				thr->outbuf->decoder_in_pos = thr->in_pos;
468 				mythread_cond_signal(&thr->coder->cond);
469 			}
470 		}
471 
472 		goto next_loop_lock;
473 	}
474 
475 	// Either we finished successfully (LZMA_STREAM_END) or an error
476 	// occurred. Both cases are handled almost identically. The error
477 	// case requires updating thr->coder->thread_error.
478 	//
479 	// The sizes are in the Block Header and the Block decoder
480 	// checks that they match, thus we know these:
481 	assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
482 	assert(ret != LZMA_STREAM_END
483 		|| thr->out_pos == thr->block_options.uncompressed_size);
484 
485 	// Free the input buffer. Don't update in_size as we need
486 	// it later to update thr->coder->mem_in_use.
487 	lzma_free(thr->in, thr->allocator);
488 	thr->in = NULL;
489 
490 	mythread_sync(thr->mutex) {
491 		if (thr->state != THR_EXIT)
492 			thr->state = THR_IDLE;
493 	}
494 
495 	mythread_sync(thr->coder->mutex) {
496 		// Move our progress info to the main thread.
497 		thr->coder->progress_in += thr->in_pos;
498 		thr->coder->progress_out += thr->out_pos;
499 		thr->progress_in = 0;
500 		thr->progress_out = 0;
501 
502 		// Mark the outbuf as finished.
503 		thr->outbuf->pos = thr->out_pos;
504 		thr->outbuf->decoder_in_pos = thr->in_pos;
505 		thr->outbuf->finished = true;
506 		thr->outbuf->finish_ret = ret;
507 		thr->outbuf = NULL;
508 
509 		// If an error occurred, tell it to the main thread.
510 		if (ret != LZMA_STREAM_END
511 				&& thr->coder->thread_error == LZMA_OK)
512 			thr->coder->thread_error = ret;
513 
514 		worker_stop(thr);
515 	}
516 
517 	goto next_loop_lock;
518 }
519 
520 
521 /// Tells the worker threads to exit and waits for them to terminate.
522 static void
523 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
524 {
525 	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
526 		mythread_sync(coder->threads[i].mutex) {
527 			coder->threads[i].state = THR_EXIT;
528 			mythread_cond_signal(&coder->threads[i].cond);
529 		}
530 	}
531 
532 	for (uint32_t i = 0; i < coder->threads_initialized; ++i)
533 		mythread_join(coder->threads[i].thread_id);
534 
535 	lzma_free(coder->threads, allocator);
536 	coder->threads_initialized = 0;
537 	coder->threads = NULL;
538 	coder->threads_free = NULL;
539 
540 	// The threads don't update these when they exit. Do it here.
541 	coder->mem_in_use = 0;
542 	coder->mem_cached = 0;
543 
544 	return;
545 }
546 
547 
548 static void
549 threads_stop(struct lzma_stream_coder *coder)
550 {
551 	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
552 		mythread_sync(coder->threads[i].mutex) {
553 			// The state must be changed conditionally because
554 			// THR_IDLE -> THR_STOP is not a valid state change.
555 			if (coder->threads[i].state != THR_IDLE) {
556 				coder->threads[i].state = THR_STOP;
557 				mythread_cond_signal(&coder->threads[i].cond);
558 			}
559 		}
560 	}
561 
562 	return;
563 }
564 
565 
566 /// Initialize a new worker_thread structure and create a new thread.
567 static lzma_ret
568 initialize_new_thread(struct lzma_stream_coder *coder,
569 		const lzma_allocator *allocator)
570 {
571 	// Allocate the coder->threads array if needed. It's done here instead
572 	// of when initializing the decoder because we don't need this if we
573 	// use the direct mode (we may even free coder->threads in the middle
574 	// of the file if we switch from threaded to direct mode).
575 	if (coder->threads == NULL) {
576 		coder->threads = lzma_alloc(
577 			coder->threads_max * sizeof(struct worker_thread),
578 			allocator);
579 
580 		if (coder->threads == NULL)
581 			return LZMA_MEM_ERROR;
582 	}
583 
584 	// Pick a free structure.
585 	assert(coder->threads_initialized < coder->threads_max);
586 	struct worker_thread *thr
587 			= &coder->threads[coder->threads_initialized];
588 
589 	if (mythread_mutex_init(&thr->mutex))
590 		goto error_mutex;
591 
592 	if (mythread_cond_init(&thr->cond))
593 		goto error_cond;
594 
595 	thr->state = THR_IDLE;
596 	thr->in = NULL;
597 	thr->in_size = 0;
598 	thr->allocator = allocator;
599 	thr->coder = coder;
600 	thr->outbuf = NULL;
601 	thr->block_decoder = LZMA_NEXT_CODER_INIT;
602 	thr->mem_filters = 0;
603 
604 	if (mythread_create(&thr->thread_id, worker_decoder, thr))
605 		goto error_thread;
606 
607 	++coder->threads_initialized;
608 	coder->thr = thr;
609 
610 	return LZMA_OK;
611 
612 error_thread:
613 	mythread_cond_destroy(&thr->cond);
614 
615 error_cond:
616 	mythread_mutex_destroy(&thr->mutex);
617 
618 error_mutex:
619 	return LZMA_MEM_ERROR;
620 }
621 
622 
623 static lzma_ret
624 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
625 {
626 	// If there is a free structure on the stack, use it.
627 	mythread_sync(coder->mutex) {
628 		if (coder->threads_free != NULL) {
629 			coder->thr = coder->threads_free;
630 			coder->threads_free = coder->threads_free->next;
631 
632 			// The thread is no longer in the cache so subtract
633 			// it from the cached memory usage. Don't add it
634 			// to mem_in_use though; the caller will handle it
635 			// since it knows how much memory it will actually
636 			// use (the filter chain might change).
637 			coder->mem_cached -= coder->thr->mem_filters;
638 		}
639 	}
640 
641 	if (coder->thr == NULL) {
642 		assert(coder->threads_initialized < coder->threads_max);
643 
644 		// Initialize a new thread.
645 		return_if_error(initialize_new_thread(coder, allocator));
646 	}
647 
648 	coder->thr->in_filled = 0;
649 	coder->thr->in_pos = 0;
650 	coder->thr->out_pos = 0;
651 
652 	coder->thr->progress_in = 0;
653 	coder->thr->progress_out = 0;
654 
655 	coder->thr->partial_update = PARTIAL_DISABLED;
656 
657 	return LZMA_OK;
658 }
659 
660 
661 static lzma_ret
662 read_output_and_wait(struct lzma_stream_coder *coder,
663 		const lzma_allocator *allocator,
664 		uint8_t *restrict out, size_t *restrict out_pos,
665 		size_t out_size,
666 		bool *input_is_possible,
667 		bool waiting_allowed,
668 		mythread_condtime *wait_abs, bool *has_blocked)
669 {
670 	lzma_ret ret = LZMA_OK;
671 
672 	mythread_sync(coder->mutex) {
673 		do {
674 			// Get as much output from the queue as is possible
675 			// without blocking.
676 			const size_t out_start = *out_pos;
677 			do {
678 				ret = lzma_outq_read(&coder->outq, allocator,
679 						out, out_pos, out_size,
680 						NULL, NULL);
681 
682 				// If a Block was finished, tell the worker
683 				// thread of the next Block (if it is still
684 				// running) to start telling the main thread
685 				// when new output is available.
686 				if (ret == LZMA_STREAM_END)
687 					lzma_outq_enable_partial_output(
688 						&coder->outq,
689 						&worker_enable_partial_update);
690 
691 				// Loop until a Block wasn't finished.
692 				// It's important to loop around even if
693 				// *out_pos == out_size because there could
694 				// be an empty Block that will return
695 				// LZMA_STREAM_END without needing any
696 				// output space.
697 			} while (ret == LZMA_STREAM_END);
698 
699 			// Check if lzma_outq_read reported an error from
700 			// the Block decoder.
701 			if (ret != LZMA_OK)
702 				break;
703 
704 			// If the output buffer is now full but it wasn't full
705 			// when this function was called, set out_was_filled.
706 			// This way the next call to stream_decode_mt() knows
707 			// that some output was produced and no output space
708 			// remained in the previous call to stream_decode_mt().
709 			if (*out_pos == out_size && *out_pos != out_start)
710 				coder->out_was_filled = true;
711 
712 			// Check if any thread has indicated an error.
713 			if (coder->thread_error != LZMA_OK) {
714 				// If LZMA_FAIL_FAST was used, report errors
715 				// from worker threads immediately.
716 				if (coder->fail_fast) {
717 					ret = coder->thread_error;
718 					break;
719 				}
720 
721 				// Otherwise set pending_error. The value we
722 				// set here will not actually get used other
723 				// than working as a flag that an error has
724 				// occurred. This is because in SEQ_ERROR
725 				// all output before the error will be read
726 				// first by calling this function, and once we
727 				// reach the location of the (first) error the
728 				// error code from the above lzma_outq_read()
729 				// will be returned to the application.
730 				//
731 				// Use LZMA_PROG_ERROR since the value should
732 				// never leak to the application. It's
733 				// possible that pending_error has already
734 				// been set but that doesn't matter: if we get
735 				// here, pending_error only works as a flag.
736 				coder->pending_error = LZMA_PROG_ERROR;
737 			}
738 
739 			// Check if decoding of the next Block can be started.
740 			// The memusage of the active threads must be low
741 			// enough, there must be a free buffer slot in the
742 			// output queue, and there must be a free thread
743 			// (that can be either created or an existing one
744 			// reused).
745 			//
746 			// NOTE: This is checked after reading the output
747 			// above because reading the output can free a slot in
748 			// the output queue and also reduce active memusage.
749 			//
750 			// NOTE: If output queue is empty, then input will
751 			// always be possible.
752 			if (input_is_possible != NULL
753 					&& coder->memlimit_threading
754 						- coder->mem_in_use
755 						- coder->outq.mem_in_use
756 						>= coder->mem_next_block
757 					&& lzma_outq_has_buf(&coder->outq)
758 					&& (coder->threads_initialized
759 							< coder->threads_max
760 						|| coder->threads_free
761 							!= NULL)) {
762 				*input_is_possible = true;
763 				break;
764 			}
765 
766 			// If the caller doesn't want us to block, return now.
767 			if (!waiting_allowed)
768 				break;
769 
770 			// This check is needed only when input_is_possible
771 			// is NULL. We must return if we aren't waiting for
772 			// input to become possible and there is no more
773 			// output coming from the queue.
774 			if (lzma_outq_is_empty(&coder->outq)) {
775 				assert(input_is_possible == NULL);
776 				break;
777 			}
778 
779 			// If there is more data available from the queue,
780 			// our out buffer must be full and we need to return
781 			// so that the application can provide more output
782 			// space.
783 			//
784 			// NOTE: In general lzma_outq_is_readable() can return
785 			// true also when there are no more bytes available.
786 			// This can happen when a Block has finished without
787 			// providing any new output. We know that this is not
788 			// the case because in the beginning of this loop we
789 			// tried to read as much as possible even when we had
790 			// no output space left and the mutex has been locked
791 			// all the time (so worker threads cannot have changed
792 			// anything). Thus there must be actual pending output
793 			// in the queue.
794 			if (lzma_outq_is_readable(&coder->outq)) {
795 				assert(*out_pos == out_size);
796 				break;
797 			}
798 
799 			// If the application stops providing more input
800 			// in the middle of a Block, there will eventually
801 			// be one worker thread left that is stuck waiting for
802 			// more input (that might never arrive) and a matching
803 			// outbuf which the worker thread cannot finish due
804 			// to lack of input. We must detect this situation,
805 			// otherwise we would end up waiting indefinitely
806 			// (if no timeout is in use) or keep returning
807 			// LZMA_TIMED_OUT while making no progress. Thus, the
808 			// application would never get LZMA_BUF_ERROR from
809 			// lzma_code() which would tell the application that
810 			// no more progress is possible. No LZMA_BUF_ERROR
811 			// means that, for example, truncated .xz files could
812 			// cause an infinite loop.
813 			//
814 			// A worker thread doing partial updates will
815 			// store not only the output position in outbuf->pos
816 			// but also the matching input position in
817 			// outbuf->decoder_in_pos. Here we check if that
818 			// input position matches the amount of input that
819 			// the worker thread has been given (in_filled).
820 			// If so, we must return and not wait as no more
821 			// output will be coming without first getting more
822 			// input to the worker thread. If the application
823 			// keeps calling lzma_code() without providing more
824 			// input, it will eventually get LZMA_BUF_ERROR.
825 			//
826 			// NOTE: We can read partial_update and in_filled
827 			// without thr->mutex as only the main thread
828 			// modifies these variables. decoder_in_pos requires
829 			// coder->mutex which we are already holding.
830 			if (coder->thr != NULL && coder->thr->partial_update
831 					!= PARTIAL_DISABLED) {
832 				// There is exactly one outbuf in the queue.
833 				assert(coder->thr->outbuf == coder->outq.head);
834 				assert(coder->thr->outbuf == coder->outq.tail);
835 
836 				if (coder->thr->outbuf->decoder_in_pos
837 						== coder->thr->in_filled)
838 					break;
839 			}
840 
841 			// Wait for input or output to become possible.
842 			if (coder->timeout != 0) {
843 				// See the comment in stream_encoder_mt.c
844 				// about why mythread_condtime_set() is used
845 				// like this.
846 				//
847 				// FIXME?
848 				// In contrast to the encoder, this calls
849 				// _condtime_set while the mutex is locked.
850 				if (!*has_blocked) {
851 					*has_blocked = true;
852 					mythread_condtime_set(wait_abs,
853 							&coder->cond,
854 							coder->timeout);
855 				}
856 
857 				if (mythread_cond_timedwait(&coder->cond,
858 						&coder->mutex,
859 						wait_abs) != 0) {
860 					ret = LZMA_TIMED_OUT;
861 					break;
862 				}
863 			} else {
864 				mythread_cond_wait(&coder->cond,
865 						&coder->mutex);
866 			}
867 		} while (ret == LZMA_OK);
868 	}
869 
870 	// If we are returning an error, then the application cannot get
871 	// more output from us and thus keeping the threads running is
872 	// useless and waste of CPU time.
873 	if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
874 		threads_stop(coder);
875 
876 	return ret;
877 }
878 
879 
880 static lzma_ret
881 decode_block_header(struct lzma_stream_coder *coder,
882 		const lzma_allocator *allocator, const uint8_t *restrict in,
883 		size_t *restrict in_pos, size_t in_size)
884 {
885 	if (*in_pos >= in_size)
886 		return LZMA_OK;
887 
888 	if (coder->pos == 0) {
889 		// Detect if it's Index.
890 		if (in[*in_pos] == INDEX_INDICATOR)
891 			return LZMA_INDEX_DETECTED;
892 
893 		// Calculate the size of the Block Header. Note that
894 		// Block Header decoder wants to see this byte too
895 		// so don't advance *in_pos.
896 		coder->block_options.header_size
897 				= lzma_block_header_size_decode(
898 					in[*in_pos]);
899 	}
900 
901 	// Copy the Block Header to the internal buffer.
902 	lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
903 			coder->block_options.header_size);
904 
905 	// Return if we didn't get the whole Block Header yet.
906 	if (coder->pos < coder->block_options.header_size)
907 		return LZMA_OK;
908 
909 	coder->pos = 0;
910 
911 	// Version 1 is needed to support the .ignore_check option.
912 	coder->block_options.version = 1;
913 
914 	// Block Header decoder will initialize all members of this array
915 	// so we don't need to do it here.
916 	coder->block_options.filters = coder->filters;
917 
918 	// Decode the Block Header.
919 	return_if_error(lzma_block_header_decode(&coder->block_options,
920 			allocator, coder->buffer));
921 
922 	// If LZMA_IGNORE_CHECK was used, this flag needs to be set.
923 	// It has to be set after lzma_block_header_decode() because
924 	// it always resets this to false.
925 	coder->block_options.ignore_check = coder->ignore_check;
926 
927 	// coder->block_options is ready now.
928 	return LZMA_STREAM_END;
929 }
930 
931 
932 /// Get the size of the Compressed Data + Block Padding + Check.
933 static size_t
934 comp_blk_size(const struct lzma_stream_coder *coder)
935 {
936 	return vli_ceil4(coder->block_options.compressed_size)
937 			+ lzma_check_size(coder->stream_flags.check);
938 }
939 
940 
941 /// Returns true if the size (compressed or uncompressed) is such that
942 /// threaded decompression cannot be used. Sizes that are too big compared
943 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
944 /// when lzma_vli is assigned to a size_t.
945 static bool
946 is_direct_mode_needed(lzma_vli size)
947 {
948 	return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
949 }
950 
951 
952 static lzma_ret
953 stream_decoder_reset(struct lzma_stream_coder *coder,
954 		const lzma_allocator *allocator)
955 {
956 	// Initialize the Index hash used to verify the Index.
957 	coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
958 	if (coder->index_hash == NULL)
959 		return LZMA_MEM_ERROR;
960 
961 	// Reset the rest of the variables.
962 	coder->sequence = SEQ_STREAM_HEADER;
963 	coder->pos = 0;
964 
965 	return LZMA_OK;
966 }
967 
968 
969 static lzma_ret
970 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
971 		 const uint8_t *restrict in, size_t *restrict in_pos,
972 		 size_t in_size,
973 		 uint8_t *restrict out, size_t *restrict out_pos,
974 		 size_t out_size, lzma_action action)
975 {
976 	struct lzma_stream_coder *coder = coder_ptr;
977 
978 	mythread_condtime wait_abs;
979 	bool has_blocked = false;
980 
981 	// Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
982 	// tell read_output_and_wait() to wait until it can fill the output
983 	// buffer (or a timeout occurs). Two conditions must be met:
984 	//
985 	// (1) If the caller provided no new input. The reason for this
986 	//     can be, for example, the end of the file or that there is
987 	//     a pause in the input stream and more input is available
988 	//     a little later. In this situation we should wait for output
989 	//     because otherwise we would end up in a busy-waiting loop where
990 	//     we make no progress and the application just calls us again
991 	//     without providing any new input. This would then result in
992 	//     LZMA_BUF_ERROR even though more output would be available
993 	//     once the worker threads decode more data.
994 	//
995 	// (2) Even if (1) is true, we will not wait if the previous call to
996 	//     this function managed to produce some output and the output
997 	//     buffer became full. This is for compatibility with applications
998 	//     that call lzma_code() in such a way that new input is provided
999 	//     only when the output buffer didn't become full. Without this
1000 	//     trick such applications would have bad performance (bad
1001 	//     parallelization due to decoder not getting input fast enough).
1002 	//
1003 	//     NOTE: Such loops might require that timeout is disabled (0)
1004 	//     if they assume that output-not-full implies that all input has
1005 	//     been consumed. If and only if timeout is enabled, we may return
1006 	//     when output isn't full *and* not all input has been consumed.
1007 	//
1008 	// However, if LZMA_FINISH is used, the above is ignored and we always
1009 	// wait (timeout can still cause us to return) because we know that
1010 	// we won't get any more input. This matters if the input file is
1011 	// truncated and we are doing single-shot decoding, that is,
1012 	// timeout = 0 and LZMA_FINISH is used on the first call to
1013 	// lzma_code() and the output buffer is known to be big enough
1014 	// to hold all uncompressed data:
1015 	//
1016 	//   - If LZMA_FINISH wasn't handled specially, we could return
1017 	//     LZMA_OK before providing all output that is possible with the
1018 	//     truncated input. The rest would be available if lzma_code() was
1019 	//     called again but then it's not single-shot decoding anymore.
1020 	//
1021 	//   - By handling LZMA_FINISH specially here, the first call will
1022 	//     produce all the output, matching the behavior of the
1023 	//     single-threaded decoder.
1024 	//
1025 	// So it's a very specific corner case but also easy to avoid. Note
1026 	// that this special handling of LZMA_FINISH has no effect for
1027 	// single-shot decoding when the input file is valid (not truncated);
1028 	// premature LZMA_OK wouldn't be possible as long as timeout = 0.
1029 	const bool waiting_allowed = action == LZMA_FINISH
1030 			|| (*in_pos == in_size && !coder->out_was_filled);
1031 	coder->out_was_filled = false;
1032 
1033 	while (true)
1034 	switch (coder->sequence) {
1035 	case SEQ_STREAM_HEADER: {
1036 		// Copy the Stream Header to the internal buffer.
1037 		const size_t in_old = *in_pos;
1038 		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1039 				LZMA_STREAM_HEADER_SIZE);
1040 		coder->progress_in += *in_pos - in_old;
1041 
1042 		// Return if we didn't get the whole Stream Header yet.
1043 		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1044 			return LZMA_OK;
1045 
1046 		coder->pos = 0;
1047 
1048 		// Decode the Stream Header.
1049 		const lzma_ret ret = lzma_stream_header_decode(
1050 				&coder->stream_flags, coder->buffer);
1051 		if (ret != LZMA_OK)
1052 			return ret == LZMA_FORMAT_ERROR && !coder->first_stream
1053 					? LZMA_DATA_ERROR : ret;
1054 
1055 		// If we are decoding concatenated Streams, and the later
1056 		// Streams have invalid Header Magic Bytes, we give
1057 		// LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1058 		coder->first_stream = false;
1059 
1060 		// Copy the type of the Check so that Block Header and Block
1061 		// decoders see it.
1062 		coder->block_options.check = coder->stream_flags.check;
1063 
1064 		// Even if we return LZMA_*_CHECK below, we want
1065 		// to continue from Block Header decoding.
1066 		coder->sequence = SEQ_BLOCK_HEADER;
1067 
1068 		// Detect if there's no integrity check or if it is
1069 		// unsupported if those were requested by the application.
1070 		if (coder->tell_no_check && coder->stream_flags.check
1071 				== LZMA_CHECK_NONE)
1072 			return LZMA_NO_CHECK;
1073 
1074 		if (coder->tell_unsupported_check
1075 				&& !lzma_check_is_supported(
1076 					coder->stream_flags.check))
1077 			return LZMA_UNSUPPORTED_CHECK;
1078 
1079 		if (coder->tell_any_check)
1080 			return LZMA_GET_CHECK;
1081 	}
1082 
1083 	// Fall through
1084 
1085 	case SEQ_BLOCK_HEADER: {
1086 		const size_t in_old = *in_pos;
1087 		const lzma_ret ret = decode_block_header(coder, allocator,
1088 				in, in_pos, in_size);
1089 		coder->progress_in += *in_pos - in_old;
1090 
1091 		if (ret == LZMA_OK) {
1092 			// We didn't decode the whole Block Header yet.
1093 			//
1094 			// Read output from the queue before returning. This
1095 			// is important because it is possible that the
1096 			// application doesn't have any new input available
1097 			// immediately. If we didn't try to copy output from
1098 			// the output queue here, lzma_code() could end up
1099 			// returning LZMA_BUF_ERROR even though queued output
1100 			// is available.
1101 			//
1102 			// If the lzma_code() call provided at least one input
1103 			// byte, only copy as much data from the output queue
1104 			// as is available immediately. This way the
1105 			// application will be able to provide more input
1106 			// without a delay.
1107 			//
1108 			// On the other hand, if lzma_code() was called with
1109 			// an empty input buffer(*), treat it specially: try
1110 			// to fill the output buffer even if it requires
1111 			// waiting for the worker threads to provide output
1112 			// (timeout, if specified, can still cause us to
1113 			// return).
1114 			//
1115 			//   - This way the application will be able to get all
1116 			//     data that can be decoded from the input provided
1117 			//     so far.
1118 			//
1119 			//   - We avoid both premature LZMA_BUF_ERROR and
1120 			//     busy-waiting where the application repeatedly
1121 			//     calls lzma_code() which immediately returns
1122 			//     LZMA_OK without providing new data.
1123 			//
1124 			//   - If the queue becomes empty, we won't wait
1125 			//     anything and will return LZMA_OK immediately
1126 			//     (coder->timeout is completely ignored).
1127 			//
1128 			// (*) See the comment at the beginning of this
1129 			//     function how waiting_allowed is determined
1130 			//     and why there is an exception to the rule
1131 			//     of "called with an empty input buffer".
1132 			assert(*in_pos == in_size);
1133 
1134 			// If LZMA_FINISH was used we know that we won't get
1135 			// more input, so the file must be truncated if we
1136 			// get here. If worker threads don't detect any
1137 			// errors, eventually there will be no more output
1138 			// while we keep returning LZMA_OK which gets
1139 			// converted to LZMA_BUF_ERROR in lzma_code().
1140 			//
1141 			// If fail-fast is enabled then we will return
1142 			// immediately using LZMA_DATA_ERROR instead of
1143 			// LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1144 			// error code:
1145 			//
1146 			//   - Worker threads may have a large amount of
1147 			//     not-yet-decoded input data and we don't
1148 			//     know for sure if all data is valid. Bad
1149 			//     data there would result in LZMA_DATA_ERROR
1150 			//     when fail-fast isn't used.
1151 			//
1152 			//   - Immediate LZMA_BUF_ERROR would be a bit weird
1153 			//     considering the older liblzma code. lzma_code()
1154 			//     even has an assertion to prevent coders from
1155 			//     returning LZMA_BUF_ERROR directly.
1156 			//
1157 			// The downside of this is that with fail-fast apps
1158 			// cannot always distinguish between corrupt and
1159 			// truncated files.
1160 			if (action == LZMA_FINISH && coder->fail_fast) {
1161 				// We won't produce any more output. Stop
1162 				// the unfinished worker threads so they
1163 				// won't waste CPU time.
1164 				threads_stop(coder);
1165 				return LZMA_DATA_ERROR;
1166 			}
1167 
1168 			// read_output_and_wait() will call threads_stop()
1169 			// if needed so with that we can use return_if_error.
1170 			return_if_error(read_output_and_wait(coder, allocator,
1171 				out, out_pos, out_size,
1172 				NULL, waiting_allowed,
1173 				&wait_abs, &has_blocked));
1174 
1175 			if (coder->pending_error != LZMA_OK) {
1176 				coder->sequence = SEQ_ERROR;
1177 				break;
1178 			}
1179 
1180 			return LZMA_OK;
1181 		}
1182 
1183 		if (ret == LZMA_INDEX_DETECTED) {
1184 			coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
1185 			break;
1186 		}
1187 
1188 		// See if an error occurred.
1189 		if (ret != LZMA_STREAM_END) {
1190 			// NOTE: Here and in all other places where
1191 			// pending_error is set, it may overwrite the value
1192 			// (LZMA_PROG_ERROR) set by read_output_and_wait().
1193 			// That function might overwrite value set here too.
1194 			// These are fine because when read_output_and_wait()
1195 			// sets pending_error, it actually works as a flag
1196 			// variable only ("some error has occurred") and the
1197 			// actual value of pending_error is not used in
1198 			// SEQ_ERROR. In such cases SEQ_ERROR will eventually
1199 			// get the correct error code from the return value of
1200 			// a later read_output_and_wait() call.
1201 			coder->pending_error = ret;
1202 			coder->sequence = SEQ_ERROR;
1203 			break;
1204 		}
1205 
1206 		// Calculate the memory usage of the filters / Block decoder.
1207 		coder->mem_next_filters = lzma_raw_decoder_memusage(
1208 				coder->filters);
1209 
1210 		if (coder->mem_next_filters == UINT64_MAX) {
1211 			// One or more unknown Filter IDs.
1212 			coder->pending_error = LZMA_OPTIONS_ERROR;
1213 			coder->sequence = SEQ_ERROR;
1214 			break;
1215 		}
1216 
1217 		coder->sequence = SEQ_BLOCK_INIT;
1218 	}
1219 
1220 	// Fall through
1221 
1222 	case SEQ_BLOCK_INIT: {
1223 		// Check if decoding is possible at all with the current
1224 		// memlimit_stop which we must never exceed.
1225 		//
1226 		// This needs to be the first thing in SEQ_BLOCK_INIT
1227 		// to make it possible to restart decoding after increasing
1228 		// memlimit_stop with lzma_memlimit_set().
1229 		if (coder->mem_next_filters > coder->memlimit_stop) {
1230 			// Flush pending output before returning
1231 			// LZMA_MEMLIMIT_ERROR. If the application doesn't
1232 			// want to increase the limit, at least it will get
1233 			// all the output possible so far.
1234 			return_if_error(read_output_and_wait(coder, allocator,
1235 					out, out_pos, out_size,
1236 					NULL, true, &wait_abs, &has_blocked));
1237 
1238 			if (!lzma_outq_is_empty(&coder->outq))
1239 				return LZMA_OK;
1240 
1241 			return LZMA_MEMLIMIT_ERROR;
1242 		}
1243 
1244 		// Check if the size information is available in Block Header.
1245 		// If it is, check if the sizes are small enough that we don't
1246 		// need to worry *too* much about integer overflows later in
1247 		// the code. If these conditions are not met, we must use the
1248 		// single-threaded direct mode.
1249 		if (is_direct_mode_needed(coder->block_options.compressed_size)
1250 				|| is_direct_mode_needed(
1251 				coder->block_options.uncompressed_size)) {
1252 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1253 			break;
1254 		}
1255 
1256 		// Calculate the amount of memory needed for the input and
1257 		// output buffers in threaded mode.
1258 		//
1259 		// These cannot overflow because we already checked that
1260 		// the sizes are small enough using is_direct_mode_needed().
1261 		coder->mem_next_in = comp_blk_size(coder);
1262 		const uint64_t mem_buffers = coder->mem_next_in
1263 				+ lzma_outq_outbuf_memusage(
1264 				coder->block_options.uncompressed_size);
1265 
1266 		// Add the amount needed by the filters.
1267 		// Avoid integer overflows.
1268 		if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
1269 			// Use direct mode if the memusage would overflow.
1270 			// This is a theoretical case that shouldn't happen
1271 			// in practice unless the input file is weird (broken
1272 			// or malicious).
1273 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1274 			break;
1275 		}
1276 
1277 		// Amount of memory needed to decode this Block in
1278 		// threaded mode:
1279 		coder->mem_next_block = coder->mem_next_filters + mem_buffers;
1280 
1281 		// If this alone would exceed memlimit_threading, then we must
1282 		// use the single-threaded direct mode.
1283 		if (coder->mem_next_block > coder->memlimit_threading) {
1284 			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1285 			break;
1286 		}
1287 
1288 		// Use the threaded mode. Free the direct mode decoder in
1289 		// case it has been initialized.
1290 		lzma_next_end(&coder->block_decoder, allocator);
1291 		coder->mem_direct_mode = 0;
1292 
1293 		// Since we already know what the sizes are supposed to be,
1294 		// we can already add them to the Index hash. The Block
1295 		// decoder will verify the values while decoding.
1296 		const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
1297 				lzma_block_unpadded_size(
1298 					&coder->block_options),
1299 				coder->block_options.uncompressed_size);
1300 		if (ret != LZMA_OK) {
1301 			coder->pending_error = ret;
1302 			coder->sequence = SEQ_ERROR;
1303 			break;
1304 		}
1305 
1306 		coder->sequence = SEQ_BLOCK_THR_INIT;
1307 	}
1308 
1309 	// Fall through
1310 
1311 	case SEQ_BLOCK_THR_INIT: {
1312 		// We need to wait for a multiple conditions to become true
1313 		// until we can initialize the Block decoder and let a worker
1314 		// thread decode it:
1315 		//
1316 		//   - Wait for the memory usage of the active threads to drop
1317 		//     so that starting the decoding of this Block won't make
1318 		//     us go over memlimit_threading.
1319 		//
1320 		//   - Wait for at least one free output queue slot.
1321 		//
1322 		//   - Wait for a free worker thread.
1323 		//
1324 		// While we wait, we must copy decompressed data to the out
1325 		// buffer and catch possible decoder errors.
1326 		//
1327 		// read_output_and_wait() does all the above.
1328 		bool block_can_start = false;
1329 
1330 		return_if_error(read_output_and_wait(coder, allocator,
1331 				out, out_pos, out_size,
1332 				&block_can_start, true,
1333 				&wait_abs, &has_blocked));
1334 
1335 		if (coder->pending_error != LZMA_OK) {
1336 			coder->sequence = SEQ_ERROR;
1337 			break;
1338 		}
1339 
1340 		if (!block_can_start) {
1341 			// It's not a timeout because return_if_error handles
1342 			// it already. Output queue cannot be empty either
1343 			// because in that case block_can_start would have
1344 			// been true. Thus the output buffer must be full and
1345 			// the queue isn't empty.
1346 			assert(*out_pos == out_size);
1347 			assert(!lzma_outq_is_empty(&coder->outq));
1348 			return LZMA_OK;
1349 		}
1350 
1351 		// We know that we can start decoding this Block without
1352 		// exceeding memlimit_threading. However, to stay below
1353 		// memlimit_threading may require freeing some of the
1354 		// cached memory.
1355 		//
1356 		// Get a local copy of variables that require locking the
1357 		// mutex. It is fine if the worker threads modify the real
1358 		// values after we read these as those changes can only be
1359 		// towards more favorable conditions (less memory in use,
1360 		// more in cache).
1361 		//
1362 		// These are initialized to silence warnings.
1363 		uint64_t mem_in_use = 0;
1364 		uint64_t mem_cached = 0;
1365 		struct worker_thread *thr = NULL;
1366 
1367 		mythread_sync(coder->mutex) {
1368 			mem_in_use = coder->mem_in_use;
1369 			mem_cached = coder->mem_cached;
1370 			thr = coder->threads_free;
1371 		}
1372 
1373 		// The maximum amount of memory that can be held by other
1374 		// threads and cached buffers while allowing us to start
1375 		// decoding the next Block.
1376 		const uint64_t mem_max = coder->memlimit_threading
1377 				- coder->mem_next_block;
1378 
1379 		// If the existing allocations are so large that starting
1380 		// to decode this Block might exceed memlimit_threads,
1381 		// try to free memory from the output queue cache first.
1382 		//
1383 		// NOTE: This math assumes the worst case. It's possible
1384 		// that the limit wouldn't be exceeded if the existing cached
1385 		// allocations are reused.
1386 		if (mem_in_use + mem_cached + coder->outq.mem_allocated
1387 				> mem_max) {
1388 			// Clear the outq cache except leave one buffer in
1389 			// the cache if its size is correct. That way we
1390 			// don't free and almost immediately reallocate
1391 			// an identical buffer.
1392 			lzma_outq_clear_cache2(&coder->outq, allocator,
1393 				coder->block_options.uncompressed_size);
1394 		}
1395 
1396 		// If there is at least one worker_thread in the cache and
1397 		// the existing allocations are so large that starting to
1398 		// decode this Block might exceed memlimit_threads, free
1399 		// memory by freeing cached Block decoders.
1400 		//
1401 		// NOTE: The comparison is different here than above.
1402 		// Here we don't care about cached buffers in outq anymore
1403 		// and only look at memory actually in use. This is because
1404 		// if there is something in outq cache, it's a single buffer
1405 		// that can be used as is. We ensured this in the above
1406 		// if-block.
1407 		uint64_t mem_freed = 0;
1408 		if (thr != NULL && mem_in_use + mem_cached
1409 				+ coder->outq.mem_in_use > mem_max) {
1410 			// Don't free the first Block decoder if its memory
1411 			// usage isn't greater than what this Block will need.
1412 			// Typically the same filter chain is used for all
1413 			// Blocks so this way the allocations can be reused
1414 			// when get_thread() picks the first worker_thread
1415 			// from the cache.
1416 			if (thr->mem_filters <= coder->mem_next_filters)
1417 				thr = thr->next;
1418 
1419 			while (thr != NULL) {
1420 				lzma_next_end(&thr->block_decoder, allocator);
1421 				mem_freed += thr->mem_filters;
1422 				thr->mem_filters = 0;
1423 				thr = thr->next;
1424 			}
1425 		}
1426 
1427 		// Update the memory usage counters. Note that coder->mem_*
1428 		// may have changed since we read them so we must subtract
1429 		// or add the changes.
1430 		mythread_sync(coder->mutex) {
1431 			coder->mem_cached -= mem_freed;
1432 
1433 			// Memory needed for the filters and the input buffer.
1434 			// The output queue takes care of its own counter so
1435 			// we don't touch it here.
1436 			//
1437 			// NOTE: After this, coder->mem_in_use +
1438 			// coder->mem_cached might count the same thing twice.
1439 			// If so, this will get corrected in get_thread() when
1440 			// a worker_thread is picked from coder->free_threads
1441 			// and its memory usage is subtracted from mem_cached.
1442 			coder->mem_in_use += coder->mem_next_in
1443 					+ coder->mem_next_filters;
1444 		}
1445 
1446 		// Allocate memory for the output buffer in the output queue.
1447 		lzma_ret ret = lzma_outq_prealloc_buf(
1448 				&coder->outq, allocator,
1449 				coder->block_options.uncompressed_size);
1450 		if (ret != LZMA_OK) {
1451 			threads_stop(coder);
1452 			return ret;
1453 		}
1454 
1455 		// Set up coder->thr.
1456 		ret = get_thread(coder, allocator);
1457 		if (ret != LZMA_OK) {
1458 			threads_stop(coder);
1459 			return ret;
1460 		}
1461 
1462 		// The new Block decoder memory usage is already counted in
1463 		// coder->mem_in_use. Store it in the thread too.
1464 		coder->thr->mem_filters = coder->mem_next_filters;
1465 
1466 		// Initialize the Block decoder.
1467 		coder->thr->block_options = coder->block_options;
1468 		ret = lzma_block_decoder_init(
1469 					&coder->thr->block_decoder, allocator,
1470 					&coder->thr->block_options);
1471 
1472 		// Free the allocated filter options since they are needed
1473 		// only to initialize the Block decoder.
1474 		lzma_filters_free(coder->filters, allocator);
1475 		coder->thr->block_options.filters = NULL;
1476 
1477 		// Check if memory usage calculation and Block encoder
1478 		// initialization succeeded.
1479 		if (ret != LZMA_OK) {
1480 			coder->pending_error = ret;
1481 			coder->sequence = SEQ_ERROR;
1482 			break;
1483 		}
1484 
1485 		// Allocate the input buffer.
1486 		coder->thr->in_size = coder->mem_next_in;
1487 		coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
1488 		if (coder->thr->in == NULL) {
1489 			threads_stop(coder);
1490 			return LZMA_MEM_ERROR;
1491 		}
1492 
1493 		// Get the preallocated output buffer.
1494 		coder->thr->outbuf = lzma_outq_get_buf(
1495 				&coder->outq, coder->thr);
1496 
1497 		// Start the decoder.
1498 		mythread_sync(coder->thr->mutex) {
1499 			assert(coder->thr->state == THR_IDLE);
1500 			coder->thr->state = THR_RUN;
1501 			mythread_cond_signal(&coder->thr->cond);
1502 		}
1503 
1504 		// Enable output from the thread that holds the oldest output
1505 		// buffer in the output queue (if such a thread exists).
1506 		mythread_sync(coder->mutex) {
1507 			lzma_outq_enable_partial_output(&coder->outq,
1508 					&worker_enable_partial_update);
1509 		}
1510 
1511 		coder->sequence = SEQ_BLOCK_THR_RUN;
1512 	}
1513 
1514 	// Fall through
1515 
1516 	case SEQ_BLOCK_THR_RUN: {
1517 		if (action == LZMA_FINISH && coder->fail_fast) {
1518 			// We know that we won't get more input and that
1519 			// the caller wants fail-fast behavior. If we see
1520 			// that we don't have enough input to finish this
1521 			// Block, return LZMA_DATA_ERROR immediately.
1522 			// See SEQ_BLOCK_HEADER for the error code rationale.
1523 			const size_t in_avail = in_size - *in_pos;
1524 			const size_t in_needed = coder->thr->in_size
1525 					- coder->thr->in_filled;
1526 			if (in_avail < in_needed) {
1527 				threads_stop(coder);
1528 				return LZMA_DATA_ERROR;
1529 			}
1530 		}
1531 
1532 		// Copy input to the worker thread.
1533 		size_t cur_in_filled = coder->thr->in_filled;
1534 		lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
1535 				&cur_in_filled, coder->thr->in_size);
1536 
1537 		// Tell the thread how much we copied.
1538 		mythread_sync(coder->thr->mutex) {
1539 			coder->thr->in_filled = cur_in_filled;
1540 
1541 			// NOTE: Most of the time we are copying input faster
1542 			// than the thread can decode so most of the time
1543 			// calling mythread_cond_signal() is useless but
1544 			// we cannot make it conditional because thr->in_pos
1545 			// is updated without a mutex. And the overhead should
1546 			// be very much negligible anyway.
1547 			mythread_cond_signal(&coder->thr->cond);
1548 		}
1549 
1550 		// Read output from the output queue. Just like in
1551 		// SEQ_BLOCK_HEADER, we wait to fill the output buffer
1552 		// only if waiting_allowed was set to true in the beginning
1553 		// of this function (see the comment there).
1554 		return_if_error(read_output_and_wait(coder, allocator,
1555 				out, out_pos, out_size,
1556 				NULL, waiting_allowed,
1557 				&wait_abs, &has_blocked));
1558 
1559 		if (coder->pending_error != LZMA_OK) {
1560 			coder->sequence = SEQ_ERROR;
1561 			break;
1562 		}
1563 
1564 		// Return if the input didn't contain the whole Block.
1565 		if (coder->thr->in_filled < coder->thr->in_size) {
1566 			assert(*in_pos == in_size);
1567 			return LZMA_OK;
1568 		}
1569 
1570 		// The whole Block has been copied to the thread-specific
1571 		// buffer. Continue from the next Block Header or Index.
1572 		coder->thr = NULL;
1573 		coder->sequence = SEQ_BLOCK_HEADER;
1574 		break;
1575 	}
1576 
1577 	case SEQ_BLOCK_DIRECT_INIT: {
1578 		// Wait for the threads to finish and that all decoded data
1579 		// has been copied to the output. That is, wait until the
1580 		// output queue becomes empty.
1581 		//
1582 		// NOTE: No need to check for coder->pending_error as
1583 		// we aren't consuming any input until the queue is empty
1584 		// and if there is a pending error, read_output_and_wait()
1585 		// will eventually return it before the queue is empty.
1586 		return_if_error(read_output_and_wait(coder, allocator,
1587 				out, out_pos, out_size,
1588 				NULL, true, &wait_abs, &has_blocked));
1589 		if (!lzma_outq_is_empty(&coder->outq))
1590 			return LZMA_OK;
1591 
1592 		// Free the cached output buffers.
1593 		lzma_outq_clear_cache(&coder->outq, allocator);
1594 
1595 		// Get rid of the worker threads, including the coder->threads
1596 		// array.
1597 		threads_end(coder, allocator);
1598 
1599 		// Initialize the Block decoder.
1600 		const lzma_ret ret = lzma_block_decoder_init(
1601 				&coder->block_decoder, allocator,
1602 				&coder->block_options);
1603 
1604 		// Free the allocated filter options since they are needed
1605 		// only to initialize the Block decoder.
1606 		lzma_filters_free(coder->filters, allocator);
1607 		coder->block_options.filters = NULL;
1608 
1609 		// Check if Block decoder initialization succeeded.
1610 		if (ret != LZMA_OK)
1611 			return ret;
1612 
1613 		// Make the memory usage visible to _memconfig().
1614 		coder->mem_direct_mode = coder->mem_next_filters;
1615 
1616 		coder->sequence = SEQ_BLOCK_DIRECT_RUN;
1617 	}
1618 
1619 	// Fall through
1620 
1621 	case SEQ_BLOCK_DIRECT_RUN: {
1622 		const size_t in_old = *in_pos;
1623 		const size_t out_old = *out_pos;
1624 		const lzma_ret ret = coder->block_decoder.code(
1625 				coder->block_decoder.coder, allocator,
1626 				in, in_pos, in_size, out, out_pos, out_size,
1627 				action);
1628 		coder->progress_in += *in_pos - in_old;
1629 		coder->progress_out += *out_pos - out_old;
1630 
1631 		if (ret != LZMA_STREAM_END)
1632 			return ret;
1633 
1634 		// Block decoded successfully. Add the new size pair to
1635 		// the Index hash.
1636 		return_if_error(lzma_index_hash_append(coder->index_hash,
1637 				lzma_block_unpadded_size(
1638 					&coder->block_options),
1639 				coder->block_options.uncompressed_size));
1640 
1641 		coder->sequence = SEQ_BLOCK_HEADER;
1642 		break;
1643 	}
1644 
1645 	case SEQ_INDEX_WAIT_OUTPUT:
1646 		// Flush the output from all worker threads so that we can
1647 		// decode the Index without thinking about threading.
1648 		return_if_error(read_output_and_wait(coder, allocator,
1649 				out, out_pos, out_size,
1650 				NULL, true, &wait_abs, &has_blocked));
1651 
1652 		if (!lzma_outq_is_empty(&coder->outq))
1653 			return LZMA_OK;
1654 
1655 		coder->sequence = SEQ_INDEX_DECODE;
1656 
1657 	// Fall through
1658 
1659 	case SEQ_INDEX_DECODE: {
1660 		// If we don't have any input, don't call
1661 		// lzma_index_hash_decode() since it would return
1662 		// LZMA_BUF_ERROR, which we must not do here.
1663 		if (*in_pos >= in_size)
1664 			return LZMA_OK;
1665 
1666 		// Decode the Index and compare it to the hash calculated
1667 		// from the sizes of the Blocks (if any).
1668 		const size_t in_old = *in_pos;
1669 		const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
1670 				in, in_pos, in_size);
1671 		coder->progress_in += *in_pos - in_old;
1672 		if (ret != LZMA_STREAM_END)
1673 			return ret;
1674 
1675 		coder->sequence = SEQ_STREAM_FOOTER;
1676 	}
1677 
1678 	// Fall through
1679 
1680 	case SEQ_STREAM_FOOTER: {
1681 		// Copy the Stream Footer to the internal buffer.
1682 		const size_t in_old = *in_pos;
1683 		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1684 				LZMA_STREAM_HEADER_SIZE);
1685 		coder->progress_in += *in_pos - in_old;
1686 
1687 		// Return if we didn't get the whole Stream Footer yet.
1688 		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1689 			return LZMA_OK;
1690 
1691 		coder->pos = 0;
1692 
1693 		// Decode the Stream Footer. The decoder gives
1694 		// LZMA_FORMAT_ERROR if the magic bytes don't match,
1695 		// so convert that return code to LZMA_DATA_ERROR.
1696 		lzma_stream_flags footer_flags;
1697 		const lzma_ret ret = lzma_stream_footer_decode(
1698 				&footer_flags, coder->buffer);
1699 		if (ret != LZMA_OK)
1700 			return ret == LZMA_FORMAT_ERROR
1701 					? LZMA_DATA_ERROR : ret;
1702 
1703 		// Check that Index Size stored in the Stream Footer matches
1704 		// the real size of the Index field.
1705 		if (lzma_index_hash_size(coder->index_hash)
1706 				!= footer_flags.backward_size)
1707 			return LZMA_DATA_ERROR;
1708 
1709 		// Compare that the Stream Flags fields are identical in
1710 		// both Stream Header and Stream Footer.
1711 		return_if_error(lzma_stream_flags_compare(
1712 				&coder->stream_flags, &footer_flags));
1713 
1714 		if (!coder->concatenated)
1715 			return LZMA_STREAM_END;
1716 
1717 		coder->sequence = SEQ_STREAM_PADDING;
1718 	}
1719 
1720 	// Fall through
1721 
1722 	case SEQ_STREAM_PADDING:
1723 		assert(coder->concatenated);
1724 
1725 		// Skip over possible Stream Padding.
1726 		while (true) {
1727 			if (*in_pos >= in_size) {
1728 				// Unless LZMA_FINISH was used, we cannot
1729 				// know if there's more input coming later.
1730 				if (action != LZMA_FINISH)
1731 					return LZMA_OK;
1732 
1733 				// Stream Padding must be a multiple of
1734 				// four bytes.
1735 				return coder->pos == 0
1736 						? LZMA_STREAM_END
1737 						: LZMA_DATA_ERROR;
1738 			}
1739 
1740 			// If the byte is not zero, it probably indicates
1741 			// beginning of a new Stream (or the file is corrupt).
1742 			if (in[*in_pos] != 0x00)
1743 				break;
1744 
1745 			++*in_pos;
1746 			++coder->progress_in;
1747 			coder->pos = (coder->pos + 1) & 3;
1748 		}
1749 
1750 		// Stream Padding must be a multiple of four bytes (empty
1751 		// Stream Padding is OK).
1752 		if (coder->pos != 0) {
1753 			++*in_pos;
1754 			++coder->progress_in;
1755 			return LZMA_DATA_ERROR;
1756 		}
1757 
1758 		// Prepare to decode the next Stream.
1759 		return_if_error(stream_decoder_reset(coder, allocator));
1760 		break;
1761 
1762 	case SEQ_ERROR:
1763 		if (!coder->fail_fast) {
1764 			// Let the application get all data before the point
1765 			// where the error was detected. This matches the
1766 			// behavior of single-threaded use.
1767 			//
1768 			// FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1769 			// they are returned immediately. Thus in rare cases
1770 			// the output will be less than in the single-threaded
1771 			// mode. Maybe this doesn't matter much in practice.
1772 			return_if_error(read_output_and_wait(coder, allocator,
1773 					out, out_pos, out_size,
1774 					NULL, true, &wait_abs, &has_blocked));
1775 
1776 			// We get here only if the error happened in the main
1777 			// thread, for example, unsupported Block Header.
1778 			if (!lzma_outq_is_empty(&coder->outq))
1779 				return LZMA_OK;
1780 		}
1781 
1782 		// We only get here if no errors were detected by the worker
1783 		// threads. Errors from worker threads would have already been
1784 		// returned by the call to read_output_and_wait() above.
1785 		return coder->pending_error;
1786 
1787 	default:
1788 		assert(0);
1789 		return LZMA_PROG_ERROR;
1790 	}
1791 
1792 	// Never reached
1793 }
1794 
1795 
1796 static void
1797 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
1798 {
1799 	struct lzma_stream_coder *coder = coder_ptr;
1800 
1801 	threads_end(coder, allocator);
1802 	lzma_outq_end(&coder->outq, allocator);
1803 
1804 	lzma_next_end(&coder->block_decoder, allocator);
1805 	lzma_filters_free(coder->filters, allocator);
1806 	lzma_index_hash_end(coder->index_hash, allocator);
1807 
1808 	lzma_free(coder, allocator);
1809 	return;
1810 }
1811 
1812 
1813 static lzma_check
1814 stream_decoder_mt_get_check(const void *coder_ptr)
1815 {
1816 	const struct lzma_stream_coder *coder = coder_ptr;
1817 	return coder->stream_flags.check;
1818 }
1819 
1820 
1821 static lzma_ret
1822 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
1823 		uint64_t *old_memlimit, uint64_t new_memlimit)
1824 {
1825 	// NOTE: This function gets/sets memlimit_stop. For now,
1826 	// memlimit_threading cannot be modified after initialization.
1827 	//
1828 	// *memusage will include cached memory too. Excluding cached memory
1829 	// would be misleading and it wouldn't help the applications to
1830 	// know how much memory is actually needed to decompress the file
1831 	// because the higher the number of threads and the memlimits are
1832 	// the more memory the decoder may use.
1833 	//
1834 	// Setting a new limit includes the cached memory too and too low
1835 	// limits will be rejected. Alternative could be to free the cached
1836 	// memory immediately if that helps to bring the limit down but
1837 	// the current way is the simplest. It's unlikely that limit needs
1838 	// to be lowered in the middle of a file anyway; the typical reason
1839 	// to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1840 	// and even such use isn't common.
1841 	struct lzma_stream_coder *coder = coder_ptr;
1842 
1843 	mythread_sync(coder->mutex) {
1844 		*memusage = coder->mem_direct_mode
1845 				+ coder->mem_in_use
1846 				+ coder->mem_cached
1847 				+ coder->outq.mem_allocated;
1848 	}
1849 
1850 	// If no filter chains are allocated, *memusage may be zero.
1851 	// Always return at least LZMA_MEMUSAGE_BASE.
1852 	if (*memusage < LZMA_MEMUSAGE_BASE)
1853 		*memusage = LZMA_MEMUSAGE_BASE;
1854 
1855 	*old_memlimit = coder->memlimit_stop;
1856 
1857 	if (new_memlimit != 0) {
1858 		if (new_memlimit < *memusage)
1859 			return LZMA_MEMLIMIT_ERROR;
1860 
1861 		coder->memlimit_stop = new_memlimit;
1862 	}
1863 
1864 	return LZMA_OK;
1865 }
1866 
1867 
1868 static void
1869 stream_decoder_mt_get_progress(void *coder_ptr,
1870 		uint64_t *progress_in, uint64_t *progress_out)
1871 {
1872 	struct lzma_stream_coder *coder = coder_ptr;
1873 
1874 	// Lock coder->mutex to prevent finishing threads from moving their
1875 	// progress info from the worker_thread structure to lzma_stream_coder.
1876 	mythread_sync(coder->mutex) {
1877 		*progress_in = coder->progress_in;
1878 		*progress_out = coder->progress_out;
1879 
1880 		for (size_t i = 0; i < coder->threads_initialized; ++i) {
1881 			mythread_sync(coder->threads[i].mutex) {
1882 				*progress_in += coder->threads[i].progress_in;
1883 				*progress_out += coder->threads[i]
1884 						.progress_out;
1885 			}
1886 		}
1887 	}
1888 
1889 	return;
1890 }
1891 
1892 
1893 static lzma_ret
1894 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
1895 		       const lzma_mt *options)
1896 {
1897 	struct lzma_stream_coder *coder;
1898 
1899 	if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
1900 		return LZMA_OPTIONS_ERROR;
1901 
1902 	if (options->flags & ~LZMA_SUPPORTED_FLAGS)
1903 		return LZMA_OPTIONS_ERROR;
1904 
1905 	lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
1906 
1907 	coder = next->coder;
1908 	if (!coder) {
1909 		coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
1910 		if (coder == NULL)
1911 			return LZMA_MEM_ERROR;
1912 
1913 		next->coder = coder;
1914 
1915 		if (mythread_mutex_init(&coder->mutex)) {
1916 			lzma_free(coder, allocator);
1917 			return LZMA_MEM_ERROR;
1918 		}
1919 
1920 		if (mythread_cond_init(&coder->cond)) {
1921 			mythread_mutex_destroy(&coder->mutex);
1922 			lzma_free(coder, allocator);
1923 			return LZMA_MEM_ERROR;
1924 		}
1925 
1926 		next->code = &stream_decode_mt;
1927 		next->end = &stream_decoder_mt_end;
1928 		next->get_check = &stream_decoder_mt_get_check;
1929 		next->memconfig = &stream_decoder_mt_memconfig;
1930 		next->get_progress = &stream_decoder_mt_get_progress;
1931 
1932 		coder->filters[0].id = LZMA_VLI_UNKNOWN;
1933 		memzero(&coder->outq, sizeof(coder->outq));
1934 
1935 		coder->block_decoder = LZMA_NEXT_CODER_INIT;
1936 		coder->mem_direct_mode = 0;
1937 
1938 		coder->index_hash = NULL;
1939 		coder->threads = NULL;
1940 		coder->threads_free = NULL;
1941 		coder->threads_initialized = 0;
1942 	}
1943 
1944 	// Cleanup old filter chain if one remains after unfinished decoding
1945 	// of a previous Stream.
1946 	lzma_filters_free(coder->filters, allocator);
1947 
1948 	// By allocating threads from scratch we can start memory-usage
1949 	// accounting from scratch, too. Changes in filter and block sizes may
1950 	// affect number of threads.
1951 	//
1952 	// FIXME? Reusing should be easy but unlike the single-threaded
1953 	// decoder, with some types of input file combinations reusing
1954 	// could leave quite a lot of memory allocated but unused (first
1955 	// file could allocate a lot, the next files could use fewer
1956 	// threads and some of the allocations from the first file would not
1957 	// get freed unless memlimit_threading forces us to clear caches).
1958 	//
1959 	// NOTE: The direct mode decoder isn't freed here if one exists.
1960 	// It will be reused or freed as needed in the main loop.
1961 	threads_end(coder, allocator);
1962 
1963 	// All memusage counters start at 0 (including mem_direct_mode).
1964 	// The little extra that is needed for the structs in this file
1965 	// get accounted well enough by the filter chain memory usage
1966 	// which adds LZMA_MEMUSAGE_BASE for each chain. However,
1967 	// stream_decoder_mt_memconfig() has to handle this specially so that
1968 	// it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1969 	coder->mem_in_use = 0;
1970 	coder->mem_cached = 0;
1971 	coder->mem_next_block = 0;
1972 
1973 	coder->progress_in = 0;
1974 	coder->progress_out = 0;
1975 
1976 	coder->sequence = SEQ_STREAM_HEADER;
1977 	coder->thread_error = LZMA_OK;
1978 	coder->pending_error = LZMA_OK;
1979 	coder->thr = NULL;
1980 
1981 	coder->timeout = options->timeout;
1982 
1983 	coder->memlimit_threading = my_max(1, options->memlimit_threading);
1984 	coder->memlimit_stop = my_max(1, options->memlimit_stop);
1985 	if (coder->memlimit_threading > coder->memlimit_stop)
1986 		coder->memlimit_threading = coder->memlimit_stop;
1987 
1988 	coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
1989 	coder->tell_unsupported_check
1990 			= (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
1991 	coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
1992 	coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
1993 	coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
1994 	coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
1995 
1996 	coder->first_stream = true;
1997 	coder->out_was_filled = false;
1998 	coder->pos = 0;
1999 
2000 	coder->threads_max = options->threads;
2001 
2002 	return_if_error(lzma_outq_init(&coder->outq, allocator,
2003 				       coder->threads_max));
2004 
2005 	return stream_decoder_reset(coder, allocator);
2006 }
2007 
2008 
2009 extern LZMA_API(lzma_ret)
2010 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
2011 {
2012 	lzma_next_strm_init(stream_decoder_mt_init, strm, options);
2013 
2014 	strm->internal->supported_actions[LZMA_RUN] = true;
2015 	strm->internal->supported_actions[LZMA_FINISH] = true;
2016 
2017 	return LZMA_OK;
2018 }
2019