1*3b35e7eeSXin LI // SPDX-License-Identifier: 0BSD 2*3b35e7eeSXin LI 373ed8e77SXin LI /////////////////////////////////////////////////////////////////////////////// 473ed8e77SXin LI // 573ed8e77SXin LI /// \file stream_decoder_mt.c 673ed8e77SXin LI /// \brief Multithreaded .xz Stream decoder 773ed8e77SXin LI // 873ed8e77SXin LI // Authors: Sebastian Andrzej Siewior 973ed8e77SXin LI // Lasse Collin 1073ed8e77SXin LI // 1173ed8e77SXin LI /////////////////////////////////////////////////////////////////////////////// 1273ed8e77SXin LI 1373ed8e77SXin LI #include "common.h" 1473ed8e77SXin LI #include "block_decoder.h" 1573ed8e77SXin LI #include "stream_decoder.h" 1673ed8e77SXin LI #include "index.h" 1773ed8e77SXin LI #include "outqueue.h" 1873ed8e77SXin LI 1973ed8e77SXin LI 2073ed8e77SXin LI typedef enum { 2173ed8e77SXin LI /// Waiting for work. 2273ed8e77SXin LI /// Main thread may change this to THR_RUN or THR_EXIT. 2373ed8e77SXin LI THR_IDLE, 2473ed8e77SXin LI 2573ed8e77SXin LI /// Decoding is in progress. 2673ed8e77SXin LI /// Main thread may change this to THR_STOP or THR_EXIT. 2773ed8e77SXin LI /// The worker thread may change this to THR_IDLE. 2873ed8e77SXin LI THR_RUN, 2973ed8e77SXin LI 3073ed8e77SXin LI /// The main thread wants the thread to stop whatever it was doing 3173ed8e77SXin LI /// but not exit. Main thread may change this to THR_EXIT. 3273ed8e77SXin LI /// The worker thread may change this to THR_IDLE. 3373ed8e77SXin LI THR_STOP, 3473ed8e77SXin LI 3573ed8e77SXin LI /// The main thread wants the thread to exit. 3673ed8e77SXin LI THR_EXIT, 3773ed8e77SXin LI 3873ed8e77SXin LI } worker_state; 3973ed8e77SXin LI 4073ed8e77SXin LI 4173ed8e77SXin LI typedef enum { 4273ed8e77SXin LI /// Partial updates (storing of worker thread progress 4373ed8e77SXin LI /// to lzma_outbuf) are disabled. 4473ed8e77SXin LI PARTIAL_DISABLED, 4573ed8e77SXin LI 4673ed8e77SXin LI /// Main thread requests partial updates to be enabled but 4773ed8e77SXin LI /// no partial update has been done by the worker thread yet. 4873ed8e77SXin LI /// 4973ed8e77SXin LI /// Changing from PARTIAL_DISABLED to PARTIAL_START requires 5073ed8e77SXin LI /// use of the worker-thread mutex. Other transitions don't 5173ed8e77SXin LI /// need a mutex. 5273ed8e77SXin LI PARTIAL_START, 5373ed8e77SXin LI 5473ed8e77SXin LI /// Partial updates are enabled and the worker thread has done 5573ed8e77SXin LI /// at least one partial update. 5673ed8e77SXin LI PARTIAL_ENABLED, 5773ed8e77SXin LI 5873ed8e77SXin LI } partial_update_mode; 5973ed8e77SXin LI 6073ed8e77SXin LI 6173ed8e77SXin LI struct worker_thread { 6273ed8e77SXin LI /// Worker state is protected with our mutex. 6373ed8e77SXin LI worker_state state; 6473ed8e77SXin LI 6573ed8e77SXin LI /// Input buffer that will contain the whole Block except Block Header. 6673ed8e77SXin LI uint8_t *in; 6773ed8e77SXin LI 6873ed8e77SXin LI /// Amount of memory allocated for "in" 6973ed8e77SXin LI size_t in_size; 7073ed8e77SXin LI 7173ed8e77SXin LI /// Number of bytes written to "in" by the main thread 7273ed8e77SXin LI size_t in_filled; 7373ed8e77SXin LI 7473ed8e77SXin LI /// Number of bytes consumed from "in" by the worker thread. 7573ed8e77SXin LI size_t in_pos; 7673ed8e77SXin LI 7773ed8e77SXin LI /// Amount of uncompressed data that has been decoded. This local 7873ed8e77SXin LI /// copy is needed because updating outbuf->pos requires locking 7973ed8e77SXin LI /// the main mutex (coder->mutex). 8073ed8e77SXin LI size_t out_pos; 8173ed8e77SXin LI 8273ed8e77SXin LI /// Pointer to the main structure is needed to (1) lock the main 8373ed8e77SXin LI /// mutex (coder->mutex) when updating outbuf->pos and (2) when 8473ed8e77SXin LI /// putting this thread back to the stack of free threads. 8573ed8e77SXin LI struct lzma_stream_coder *coder; 8673ed8e77SXin LI 8773ed8e77SXin LI /// The allocator is set by the main thread. Since a copy of the 8873ed8e77SXin LI /// pointer is kept here, the application must not change the 8973ed8e77SXin LI /// allocator before calling lzma_end(). 9073ed8e77SXin LI const lzma_allocator *allocator; 9173ed8e77SXin LI 9273ed8e77SXin LI /// Output queue buffer to which the uncompressed data is written. 9373ed8e77SXin LI lzma_outbuf *outbuf; 9473ed8e77SXin LI 9573ed8e77SXin LI /// Amount of compressed data that has already been decompressed. 9673ed8e77SXin LI /// This is updated from in_pos when our mutex is locked. 9773ed8e77SXin LI /// This is size_t, not uint64_t, because per-thread progress 9873ed8e77SXin LI /// is limited to sizes of allocated buffers. 9973ed8e77SXin LI size_t progress_in; 10073ed8e77SXin LI 10173ed8e77SXin LI /// Like progress_in but for uncompressed data. 10273ed8e77SXin LI size_t progress_out; 10373ed8e77SXin LI 10473ed8e77SXin LI /// Updating outbuf->pos requires locking the main mutex 10573ed8e77SXin LI /// (coder->mutex). Since the main thread will only read output 10673ed8e77SXin LI /// from the oldest outbuf in the queue, only the worker thread 10773ed8e77SXin LI /// that is associated with the oldest outbuf needs to update its 10873ed8e77SXin LI /// outbuf->pos. This avoids useless mutex contention that would 10973ed8e77SXin LI /// happen if all worker threads were frequently locking the main 11073ed8e77SXin LI /// mutex to update their outbuf->pos. 11173ed8e77SXin LI /// 11273ed8e77SXin LI /// Only when partial_update is something else than PARTIAL_DISABLED, 11373ed8e77SXin LI /// this worker thread will update outbuf->pos after each call to 11473ed8e77SXin LI /// the Block decoder. 11573ed8e77SXin LI partial_update_mode partial_update; 11673ed8e77SXin LI 11773ed8e77SXin LI /// Block decoder 11873ed8e77SXin LI lzma_next_coder block_decoder; 11973ed8e77SXin LI 12073ed8e77SXin LI /// Thread-specific Block options are needed because the Block 12173ed8e77SXin LI /// decoder modifies the struct given to it at initialization. 12273ed8e77SXin LI lzma_block block_options; 12373ed8e77SXin LI 12473ed8e77SXin LI /// Filter chain memory usage 12573ed8e77SXin LI uint64_t mem_filters; 12673ed8e77SXin LI 12773ed8e77SXin LI /// Next structure in the stack of free worker threads. 12873ed8e77SXin LI struct worker_thread *next; 12973ed8e77SXin LI 13073ed8e77SXin LI mythread_mutex mutex; 13173ed8e77SXin LI mythread_cond cond; 13273ed8e77SXin LI 13373ed8e77SXin LI /// The ID of this thread is used to join the thread 13473ed8e77SXin LI /// when it's not needed anymore. 13573ed8e77SXin LI mythread thread_id; 13673ed8e77SXin LI }; 13773ed8e77SXin LI 13873ed8e77SXin LI 13973ed8e77SXin LI struct lzma_stream_coder { 14073ed8e77SXin LI enum { 14173ed8e77SXin LI SEQ_STREAM_HEADER, 14273ed8e77SXin LI SEQ_BLOCK_HEADER, 14373ed8e77SXin LI SEQ_BLOCK_INIT, 14473ed8e77SXin LI SEQ_BLOCK_THR_INIT, 14573ed8e77SXin LI SEQ_BLOCK_THR_RUN, 14673ed8e77SXin LI SEQ_BLOCK_DIRECT_INIT, 14773ed8e77SXin LI SEQ_BLOCK_DIRECT_RUN, 14873ed8e77SXin LI SEQ_INDEX_WAIT_OUTPUT, 14973ed8e77SXin LI SEQ_INDEX_DECODE, 15073ed8e77SXin LI SEQ_STREAM_FOOTER, 15173ed8e77SXin LI SEQ_STREAM_PADDING, 15273ed8e77SXin LI SEQ_ERROR, 15373ed8e77SXin LI } sequence; 15473ed8e77SXin LI 15573ed8e77SXin LI /// Block decoder 15673ed8e77SXin LI lzma_next_coder block_decoder; 15773ed8e77SXin LI 15873ed8e77SXin LI /// Every Block Header will be decoded into this structure. 15973ed8e77SXin LI /// This is also used to initialize a Block decoder when in 16073ed8e77SXin LI /// direct mode. In threaded mode, a thread-specific copy will 16173ed8e77SXin LI /// be made for decoder initialization because the Block decoder 16273ed8e77SXin LI /// will modify the structure given to it. 16373ed8e77SXin LI lzma_block block_options; 16473ed8e77SXin LI 16573ed8e77SXin LI /// Buffer to hold a filter chain for Block Header decoding and 16673ed8e77SXin LI /// initialization. These are freed after successful Block decoder 16773ed8e77SXin LI /// initialization or at stream_decoder_mt_end(). The thread-specific 16873ed8e77SXin LI /// copy of block_options won't hold a pointer to filters[] after 16973ed8e77SXin LI /// initialization. 17073ed8e77SXin LI lzma_filter filters[LZMA_FILTERS_MAX + 1]; 17173ed8e77SXin LI 17273ed8e77SXin LI /// Stream Flags from Stream Header 17373ed8e77SXin LI lzma_stream_flags stream_flags; 17473ed8e77SXin LI 17573ed8e77SXin LI /// Index is hashed so that it can be compared to the sizes of Blocks 17673ed8e77SXin LI /// with O(1) memory usage. 17773ed8e77SXin LI lzma_index_hash *index_hash; 17873ed8e77SXin LI 17973ed8e77SXin LI 18073ed8e77SXin LI /// Maximum wait time if cannot use all the input and cannot 18173ed8e77SXin LI /// fill the output buffer. This is in milliseconds. 18273ed8e77SXin LI uint32_t timeout; 18373ed8e77SXin LI 18473ed8e77SXin LI 18573ed8e77SXin LI /// Error code from a worker thread. 18673ed8e77SXin LI /// 18773ed8e77SXin LI /// \note Use mutex. 18873ed8e77SXin LI lzma_ret thread_error; 18973ed8e77SXin LI 19073ed8e77SXin LI /// Error code to return after pending output has been copied out. If 19173ed8e77SXin LI /// set in read_output_and_wait(), this is a mirror of thread_error. 19273ed8e77SXin LI /// If set in stream_decode_mt() then it's, for example, error that 19373ed8e77SXin LI /// occurred when decoding Block Header. 19473ed8e77SXin LI lzma_ret pending_error; 19573ed8e77SXin LI 19673ed8e77SXin LI /// Number of threads that will be created at maximum. 19773ed8e77SXin LI uint32_t threads_max; 19873ed8e77SXin LI 19973ed8e77SXin LI /// Number of thread structures that have been initialized from 20073ed8e77SXin LI /// "threads", and thus the number of worker threads actually 20173ed8e77SXin LI /// created so far. 20273ed8e77SXin LI uint32_t threads_initialized; 20373ed8e77SXin LI 20473ed8e77SXin LI /// Array of allocated thread-specific structures. When no threads 20573ed8e77SXin LI /// are in use (direct mode) this is NULL. In threaded mode this 20673ed8e77SXin LI /// points to an array of threads_max number of worker_thread structs. 20773ed8e77SXin LI struct worker_thread *threads; 20873ed8e77SXin LI 20973ed8e77SXin LI /// Stack of free threads. When a thread finishes, it puts itself 21073ed8e77SXin LI /// back into this stack. This starts as empty because threads 21173ed8e77SXin LI /// are created only when actually needed. 21273ed8e77SXin LI /// 21373ed8e77SXin LI /// \note Use mutex. 21473ed8e77SXin LI struct worker_thread *threads_free; 21573ed8e77SXin LI 21673ed8e77SXin LI /// The most recent worker thread to which the main thread writes 21773ed8e77SXin LI /// the new input from the application. 21873ed8e77SXin LI struct worker_thread *thr; 21973ed8e77SXin LI 22073ed8e77SXin LI /// Output buffer queue for decompressed data from the worker threads 22173ed8e77SXin LI /// 22273ed8e77SXin LI /// \note Use mutex with operations that need it. 22373ed8e77SXin LI lzma_outq outq; 22473ed8e77SXin LI 22573ed8e77SXin LI mythread_mutex mutex; 22673ed8e77SXin LI mythread_cond cond; 22773ed8e77SXin LI 22873ed8e77SXin LI 22973ed8e77SXin LI /// Memory usage that will not be exceeded in multi-threaded mode. 23073ed8e77SXin LI /// Single-threaded mode can exceed this even by a large amount. 23173ed8e77SXin LI uint64_t memlimit_threading; 23273ed8e77SXin LI 23373ed8e77SXin LI /// Memory usage limit that should never be exceeded. 23473ed8e77SXin LI /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible 23573ed8e77SXin LI /// even in single-threaded mode without exceeding this limit. 23673ed8e77SXin LI uint64_t memlimit_stop; 23773ed8e77SXin LI 23873ed8e77SXin LI /// Amount of memory in use by the direct mode decoder 23973ed8e77SXin LI /// (coder->block_decoder). In threaded mode this is 0. 24073ed8e77SXin LI uint64_t mem_direct_mode; 24173ed8e77SXin LI 24273ed8e77SXin LI /// Amount of memory needed by the running worker threads. 24373ed8e77SXin LI /// This doesn't include the memory needed by the output buffer. 24473ed8e77SXin LI /// 24573ed8e77SXin LI /// \note Use mutex. 24673ed8e77SXin LI uint64_t mem_in_use; 24773ed8e77SXin LI 24873ed8e77SXin LI /// Amount of memory used by the idle (cached) threads. 24973ed8e77SXin LI /// 25073ed8e77SXin LI /// \note Use mutex. 25173ed8e77SXin LI uint64_t mem_cached; 25273ed8e77SXin LI 25373ed8e77SXin LI 25473ed8e77SXin LI /// Amount of memory needed for the filter chain of the next Block. 25573ed8e77SXin LI uint64_t mem_next_filters; 25673ed8e77SXin LI 25773ed8e77SXin LI /// Amount of memory needed for the thread-specific input buffer 25873ed8e77SXin LI /// for the next Block. 25973ed8e77SXin LI uint64_t mem_next_in; 26073ed8e77SXin LI 26173ed8e77SXin LI /// Amount of memory actually needed to decode the next Block 26273ed8e77SXin LI /// in threaded mode. This is 26373ed8e77SXin LI /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf. 26473ed8e77SXin LI uint64_t mem_next_block; 26573ed8e77SXin LI 26673ed8e77SXin LI 26773ed8e77SXin LI /// Amount of compressed data in Stream Header + Blocks that have 26873ed8e77SXin LI /// already been finished. 26973ed8e77SXin LI /// 27073ed8e77SXin LI /// \note Use mutex. 27173ed8e77SXin LI uint64_t progress_in; 27273ed8e77SXin LI 27373ed8e77SXin LI /// Amount of uncompressed data in Blocks that have already 27473ed8e77SXin LI /// been finished. 27573ed8e77SXin LI /// 27673ed8e77SXin LI /// \note Use mutex. 27773ed8e77SXin LI uint64_t progress_out; 27873ed8e77SXin LI 27973ed8e77SXin LI 28073ed8e77SXin LI /// If true, LZMA_NO_CHECK is returned if the Stream has 28173ed8e77SXin LI /// no integrity check. 28273ed8e77SXin LI bool tell_no_check; 28373ed8e77SXin LI 28473ed8e77SXin LI /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has 28573ed8e77SXin LI /// an integrity check that isn't supported by this liblzma build. 28673ed8e77SXin LI bool tell_unsupported_check; 28773ed8e77SXin LI 28873ed8e77SXin LI /// If true, LZMA_GET_CHECK is returned after decoding Stream Header. 28973ed8e77SXin LI bool tell_any_check; 29073ed8e77SXin LI 29173ed8e77SXin LI /// If true, we will tell the Block decoder to skip calculating 29273ed8e77SXin LI /// and verifying the integrity check. 29373ed8e77SXin LI bool ignore_check; 29473ed8e77SXin LI 29573ed8e77SXin LI /// If true, we will decode concatenated Streams that possibly have 29673ed8e77SXin LI /// Stream Padding between or after them. LZMA_STREAM_END is returned 29773ed8e77SXin LI /// once the application isn't giving us any new input (LZMA_FINISH), 29873ed8e77SXin LI /// and we aren't in the middle of a Stream, and possible 29973ed8e77SXin LI /// Stream Padding is a multiple of four bytes. 30073ed8e77SXin LI bool concatenated; 30173ed8e77SXin LI 30273ed8e77SXin LI /// If true, we will return any errors immediately instead of first 30373ed8e77SXin LI /// producing all output before the location of the error. 30473ed8e77SXin LI bool fail_fast; 30573ed8e77SXin LI 30673ed8e77SXin LI 30773ed8e77SXin LI /// When decoding concatenated Streams, this is true as long as we 30873ed8e77SXin LI /// are decoding the first Stream. This is needed to avoid misleading 30973ed8e77SXin LI /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic 31073ed8e77SXin LI /// bytes. 31173ed8e77SXin LI bool first_stream; 31273ed8e77SXin LI 31373ed8e77SXin LI /// This is used to track if the previous call to stream_decode_mt() 31473ed8e77SXin LI /// had output space (*out_pos < out_size) and managed to fill the 31573ed8e77SXin LI /// output buffer (*out_pos == out_size). This may be set to true 31673ed8e77SXin LI /// in read_output_and_wait(). This is read and then reset to false 31773ed8e77SXin LI /// at the beginning of stream_decode_mt(). 31873ed8e77SXin LI /// 31973ed8e77SXin LI /// This is needed to support applications that call lzma_code() in 32073ed8e77SXin LI /// such a way that more input is provided only when lzma_code() 32173ed8e77SXin LI /// didn't fill the output buffer completely. Basically, this makes 32273ed8e77SXin LI /// it easier to convert such applications from single-threaded 32373ed8e77SXin LI /// decoder to multi-threaded decoder. 32473ed8e77SXin LI bool out_was_filled; 32573ed8e77SXin LI 32673ed8e77SXin LI /// Write position in buffer[] and position in Stream Padding 32773ed8e77SXin LI size_t pos; 32873ed8e77SXin LI 32973ed8e77SXin LI /// Buffer to hold Stream Header, Block Header, and Stream Footer. 33073ed8e77SXin LI /// Block Header has biggest maximum size. 33173ed8e77SXin LI uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX]; 33273ed8e77SXin LI }; 33373ed8e77SXin LI 33473ed8e77SXin LI 33573ed8e77SXin LI /// Enables updating of outbuf->pos. This is a callback function that is 33673ed8e77SXin LI /// used with lzma_outq_enable_partial_output(). 33773ed8e77SXin LI static void 33873ed8e77SXin LI worker_enable_partial_update(void *thr_ptr) 33973ed8e77SXin LI { 34073ed8e77SXin LI struct worker_thread *thr = thr_ptr; 34173ed8e77SXin LI 34273ed8e77SXin LI mythread_sync(thr->mutex) { 34373ed8e77SXin LI thr->partial_update = PARTIAL_START; 34473ed8e77SXin LI mythread_cond_signal(&thr->cond); 34573ed8e77SXin LI } 34673ed8e77SXin LI } 34773ed8e77SXin LI 34873ed8e77SXin LI 34973ed8e77SXin LI /// Things do to at THR_STOP or when finishing a Block. 35073ed8e77SXin LI /// This is called with thr->mutex locked. 35173ed8e77SXin LI static void 35273ed8e77SXin LI worker_stop(struct worker_thread *thr) 35373ed8e77SXin LI { 35473ed8e77SXin LI // Update memory usage counters. 35573ed8e77SXin LI thr->coder->mem_in_use -= thr->in_size; 35673ed8e77SXin LI thr->in_size = 0; // thr->in was freed above. 35773ed8e77SXin LI 35873ed8e77SXin LI thr->coder->mem_in_use -= thr->mem_filters; 35973ed8e77SXin LI thr->coder->mem_cached += thr->mem_filters; 36073ed8e77SXin LI 36173ed8e77SXin LI // Put this thread to the stack of free threads. 36273ed8e77SXin LI thr->next = thr->coder->threads_free; 36373ed8e77SXin LI thr->coder->threads_free = thr; 36473ed8e77SXin LI 36573ed8e77SXin LI mythread_cond_signal(&thr->coder->cond); 36673ed8e77SXin LI return; 36773ed8e77SXin LI } 36873ed8e77SXin LI 36973ed8e77SXin LI 37073ed8e77SXin LI static MYTHREAD_RET_TYPE 37173ed8e77SXin LI worker_decoder(void *thr_ptr) 37273ed8e77SXin LI { 37373ed8e77SXin LI struct worker_thread *thr = thr_ptr; 37473ed8e77SXin LI size_t in_filled; 37573ed8e77SXin LI partial_update_mode partial_update; 37673ed8e77SXin LI lzma_ret ret; 37773ed8e77SXin LI 37873ed8e77SXin LI next_loop_lock: 37973ed8e77SXin LI 38073ed8e77SXin LI mythread_mutex_lock(&thr->mutex); 38173ed8e77SXin LI next_loop_unlocked: 38273ed8e77SXin LI 38373ed8e77SXin LI if (thr->state == THR_IDLE) { 38473ed8e77SXin LI mythread_cond_wait(&thr->cond, &thr->mutex); 38573ed8e77SXin LI goto next_loop_unlocked; 38673ed8e77SXin LI } 38773ed8e77SXin LI 38873ed8e77SXin LI if (thr->state == THR_EXIT) { 38973ed8e77SXin LI mythread_mutex_unlock(&thr->mutex); 39073ed8e77SXin LI 39173ed8e77SXin LI lzma_free(thr->in, thr->allocator); 39273ed8e77SXin LI lzma_next_end(&thr->block_decoder, thr->allocator); 39373ed8e77SXin LI 39473ed8e77SXin LI mythread_mutex_destroy(&thr->mutex); 39573ed8e77SXin LI mythread_cond_destroy(&thr->cond); 39673ed8e77SXin LI 39773ed8e77SXin LI return MYTHREAD_RET_VALUE; 39873ed8e77SXin LI } 39973ed8e77SXin LI 40073ed8e77SXin LI if (thr->state == THR_STOP) { 40173ed8e77SXin LI thr->state = THR_IDLE; 40273ed8e77SXin LI mythread_mutex_unlock(&thr->mutex); 40373ed8e77SXin LI 40473ed8e77SXin LI mythread_sync(thr->coder->mutex) { 40573ed8e77SXin LI worker_stop(thr); 40673ed8e77SXin LI } 40773ed8e77SXin LI 40873ed8e77SXin LI goto next_loop_lock; 40973ed8e77SXin LI } 41073ed8e77SXin LI 41173ed8e77SXin LI assert(thr->state == THR_RUN); 41273ed8e77SXin LI 41373ed8e77SXin LI // Update progress info for get_progress(). 41473ed8e77SXin LI thr->progress_in = thr->in_pos; 41573ed8e77SXin LI thr->progress_out = thr->out_pos; 41673ed8e77SXin LI 41773ed8e77SXin LI // If we don't have any new input, wait for a signal from the main 41873ed8e77SXin LI // thread except if partial output has just been enabled. In that 41973ed8e77SXin LI // case we will do one normal run so that the partial output info 42073ed8e77SXin LI // gets passed to the main thread. The call to block_decoder.code() 42173ed8e77SXin LI // is useless but harmless as it can occur only once per Block. 42273ed8e77SXin LI in_filled = thr->in_filled; 42373ed8e77SXin LI partial_update = thr->partial_update; 42473ed8e77SXin LI 42573ed8e77SXin LI if (in_filled == thr->in_pos && partial_update != PARTIAL_START) { 42673ed8e77SXin LI mythread_cond_wait(&thr->cond, &thr->mutex); 42773ed8e77SXin LI goto next_loop_unlocked; 42873ed8e77SXin LI } 42973ed8e77SXin LI 43073ed8e77SXin LI mythread_mutex_unlock(&thr->mutex); 43173ed8e77SXin LI 43273ed8e77SXin LI // Pass the input in small chunks to the Block decoder. 43373ed8e77SXin LI // This way we react reasonably fast if we are told to stop/exit, 43473ed8e77SXin LI // and (when partial update is enabled) we tell about our progress 43573ed8e77SXin LI // to the main thread frequently enough. 43673ed8e77SXin LI const size_t chunk_size = 16384; 43773ed8e77SXin LI if ((in_filled - thr->in_pos) > chunk_size) 43873ed8e77SXin LI in_filled = thr->in_pos + chunk_size; 43973ed8e77SXin LI 44073ed8e77SXin LI ret = thr->block_decoder.code( 44173ed8e77SXin LI thr->block_decoder.coder, thr->allocator, 44273ed8e77SXin LI thr->in, &thr->in_pos, in_filled, 44373ed8e77SXin LI thr->outbuf->buf, &thr->out_pos, 44473ed8e77SXin LI thr->outbuf->allocated, LZMA_RUN); 44573ed8e77SXin LI 44673ed8e77SXin LI if (ret == LZMA_OK) { 44773ed8e77SXin LI if (partial_update != PARTIAL_DISABLED) { 44873ed8e77SXin LI // The main thread uses thr->mutex to change from 44973ed8e77SXin LI // PARTIAL_DISABLED to PARTIAL_START. The main thread 45073ed8e77SXin LI // doesn't care about this variable after that so we 45173ed8e77SXin LI // can safely change it here to PARTIAL_ENABLED 45273ed8e77SXin LI // without a mutex. 45373ed8e77SXin LI thr->partial_update = PARTIAL_ENABLED; 45473ed8e77SXin LI 45573ed8e77SXin LI // The main thread is reading decompressed data 45673ed8e77SXin LI // from thr->outbuf. Tell the main thread about 45773ed8e77SXin LI // our progress. 45873ed8e77SXin LI // 45973ed8e77SXin LI // NOTE: It's possible that we consumed input without 46073ed8e77SXin LI // producing any new output so it's possible that 46173ed8e77SXin LI // only in_pos has changed. In case of PARTIAL_START 46273ed8e77SXin LI // it is possible that neither in_pos nor out_pos has 46373ed8e77SXin LI // changed. 46473ed8e77SXin LI mythread_sync(thr->coder->mutex) { 46573ed8e77SXin LI thr->outbuf->pos = thr->out_pos; 46673ed8e77SXin LI thr->outbuf->decoder_in_pos = thr->in_pos; 46773ed8e77SXin LI mythread_cond_signal(&thr->coder->cond); 46873ed8e77SXin LI } 46973ed8e77SXin LI } 47073ed8e77SXin LI 47173ed8e77SXin LI goto next_loop_lock; 47273ed8e77SXin LI } 47373ed8e77SXin LI 47473ed8e77SXin LI // Either we finished successfully (LZMA_STREAM_END) or an error 47573ed8e77SXin LI // occurred. Both cases are handled almost identically. The error 47673ed8e77SXin LI // case requires updating thr->coder->thread_error. 47773ed8e77SXin LI // 47873ed8e77SXin LI // The sizes are in the Block Header and the Block decoder 47973ed8e77SXin LI // checks that they match, thus we know these: 48073ed8e77SXin LI assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size); 48173ed8e77SXin LI assert(ret != LZMA_STREAM_END 48273ed8e77SXin LI || thr->out_pos == thr->block_options.uncompressed_size); 48373ed8e77SXin LI 48473ed8e77SXin LI // Free the input buffer. Don't update in_size as we need 48573ed8e77SXin LI // it later to update thr->coder->mem_in_use. 48673ed8e77SXin LI lzma_free(thr->in, thr->allocator); 48773ed8e77SXin LI thr->in = NULL; 48873ed8e77SXin LI 48973ed8e77SXin LI mythread_sync(thr->mutex) { 49073ed8e77SXin LI if (thr->state != THR_EXIT) 49173ed8e77SXin LI thr->state = THR_IDLE; 49273ed8e77SXin LI } 49373ed8e77SXin LI 49473ed8e77SXin LI mythread_sync(thr->coder->mutex) { 49573ed8e77SXin LI // Move our progress info to the main thread. 49673ed8e77SXin LI thr->coder->progress_in += thr->in_pos; 49773ed8e77SXin LI thr->coder->progress_out += thr->out_pos; 49873ed8e77SXin LI thr->progress_in = 0; 49973ed8e77SXin LI thr->progress_out = 0; 50073ed8e77SXin LI 50173ed8e77SXin LI // Mark the outbuf as finished. 50273ed8e77SXin LI thr->outbuf->pos = thr->out_pos; 50373ed8e77SXin LI thr->outbuf->decoder_in_pos = thr->in_pos; 50473ed8e77SXin LI thr->outbuf->finished = true; 50573ed8e77SXin LI thr->outbuf->finish_ret = ret; 50673ed8e77SXin LI thr->outbuf = NULL; 50773ed8e77SXin LI 50873ed8e77SXin LI // If an error occurred, tell it to the main thread. 50973ed8e77SXin LI if (ret != LZMA_STREAM_END 51073ed8e77SXin LI && thr->coder->thread_error == LZMA_OK) 51173ed8e77SXin LI thr->coder->thread_error = ret; 51273ed8e77SXin LI 51373ed8e77SXin LI worker_stop(thr); 51473ed8e77SXin LI } 51573ed8e77SXin LI 51673ed8e77SXin LI goto next_loop_lock; 51773ed8e77SXin LI } 51873ed8e77SXin LI 51973ed8e77SXin LI 52073ed8e77SXin LI /// Tells the worker threads to exit and waits for them to terminate. 52173ed8e77SXin LI static void 52273ed8e77SXin LI threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator) 52373ed8e77SXin LI { 52473ed8e77SXin LI for (uint32_t i = 0; i < coder->threads_initialized; ++i) { 52573ed8e77SXin LI mythread_sync(coder->threads[i].mutex) { 52673ed8e77SXin LI coder->threads[i].state = THR_EXIT; 52773ed8e77SXin LI mythread_cond_signal(&coder->threads[i].cond); 52873ed8e77SXin LI } 52973ed8e77SXin LI } 53073ed8e77SXin LI 53173ed8e77SXin LI for (uint32_t i = 0; i < coder->threads_initialized; ++i) 53273ed8e77SXin LI mythread_join(coder->threads[i].thread_id); 53373ed8e77SXin LI 53473ed8e77SXin LI lzma_free(coder->threads, allocator); 53573ed8e77SXin LI coder->threads_initialized = 0; 53673ed8e77SXin LI coder->threads = NULL; 53773ed8e77SXin LI coder->threads_free = NULL; 53873ed8e77SXin LI 53973ed8e77SXin LI // The threads don't update these when they exit. Do it here. 54073ed8e77SXin LI coder->mem_in_use = 0; 54173ed8e77SXin LI coder->mem_cached = 0; 54273ed8e77SXin LI 54373ed8e77SXin LI return; 54473ed8e77SXin LI } 54573ed8e77SXin LI 54673ed8e77SXin LI 54773ed8e77SXin LI static void 54873ed8e77SXin LI threads_stop(struct lzma_stream_coder *coder) 54973ed8e77SXin LI { 55073ed8e77SXin LI for (uint32_t i = 0; i < coder->threads_initialized; ++i) { 55173ed8e77SXin LI mythread_sync(coder->threads[i].mutex) { 55273ed8e77SXin LI // The state must be changed conditionally because 55373ed8e77SXin LI // THR_IDLE -> THR_STOP is not a valid state change. 55473ed8e77SXin LI if (coder->threads[i].state != THR_IDLE) { 55573ed8e77SXin LI coder->threads[i].state = THR_STOP; 55673ed8e77SXin LI mythread_cond_signal(&coder->threads[i].cond); 55773ed8e77SXin LI } 55873ed8e77SXin LI } 55973ed8e77SXin LI } 56073ed8e77SXin LI 56173ed8e77SXin LI return; 56273ed8e77SXin LI } 56373ed8e77SXin LI 56473ed8e77SXin LI 56573ed8e77SXin LI /// Initialize a new worker_thread structure and create a new thread. 56673ed8e77SXin LI static lzma_ret 56773ed8e77SXin LI initialize_new_thread(struct lzma_stream_coder *coder, 56873ed8e77SXin LI const lzma_allocator *allocator) 56973ed8e77SXin LI { 57073ed8e77SXin LI // Allocate the coder->threads array if needed. It's done here instead 57173ed8e77SXin LI // of when initializing the decoder because we don't need this if we 57273ed8e77SXin LI // use the direct mode (we may even free coder->threads in the middle 57373ed8e77SXin LI // of the file if we switch from threaded to direct mode). 57473ed8e77SXin LI if (coder->threads == NULL) { 57573ed8e77SXin LI coder->threads = lzma_alloc( 57673ed8e77SXin LI coder->threads_max * sizeof(struct worker_thread), 57773ed8e77SXin LI allocator); 57873ed8e77SXin LI 57973ed8e77SXin LI if (coder->threads == NULL) 58073ed8e77SXin LI return LZMA_MEM_ERROR; 58173ed8e77SXin LI } 58273ed8e77SXin LI 58373ed8e77SXin LI // Pick a free structure. 58473ed8e77SXin LI assert(coder->threads_initialized < coder->threads_max); 58573ed8e77SXin LI struct worker_thread *thr 58673ed8e77SXin LI = &coder->threads[coder->threads_initialized]; 58773ed8e77SXin LI 58873ed8e77SXin LI if (mythread_mutex_init(&thr->mutex)) 58973ed8e77SXin LI goto error_mutex; 59073ed8e77SXin LI 59173ed8e77SXin LI if (mythread_cond_init(&thr->cond)) 59273ed8e77SXin LI goto error_cond; 59373ed8e77SXin LI 59473ed8e77SXin LI thr->state = THR_IDLE; 59573ed8e77SXin LI thr->in = NULL; 59673ed8e77SXin LI thr->in_size = 0; 59773ed8e77SXin LI thr->allocator = allocator; 59873ed8e77SXin LI thr->coder = coder; 59973ed8e77SXin LI thr->outbuf = NULL; 60073ed8e77SXin LI thr->block_decoder = LZMA_NEXT_CODER_INIT; 60173ed8e77SXin LI thr->mem_filters = 0; 60273ed8e77SXin LI 60373ed8e77SXin LI if (mythread_create(&thr->thread_id, worker_decoder, thr)) 60473ed8e77SXin LI goto error_thread; 60573ed8e77SXin LI 60673ed8e77SXin LI ++coder->threads_initialized; 60773ed8e77SXin LI coder->thr = thr; 60873ed8e77SXin LI 60973ed8e77SXin LI return LZMA_OK; 61073ed8e77SXin LI 61173ed8e77SXin LI error_thread: 61273ed8e77SXin LI mythread_cond_destroy(&thr->cond); 61373ed8e77SXin LI 61473ed8e77SXin LI error_cond: 61573ed8e77SXin LI mythread_mutex_destroy(&thr->mutex); 61673ed8e77SXin LI 61773ed8e77SXin LI error_mutex: 61873ed8e77SXin LI return LZMA_MEM_ERROR; 61973ed8e77SXin LI } 62073ed8e77SXin LI 62173ed8e77SXin LI 62273ed8e77SXin LI static lzma_ret 62373ed8e77SXin LI get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator) 62473ed8e77SXin LI { 62573ed8e77SXin LI // If there is a free structure on the stack, use it. 62673ed8e77SXin LI mythread_sync(coder->mutex) { 62773ed8e77SXin LI if (coder->threads_free != NULL) { 62873ed8e77SXin LI coder->thr = coder->threads_free; 62973ed8e77SXin LI coder->threads_free = coder->threads_free->next; 63073ed8e77SXin LI 6311f3ced26SXin LI // The thread is no longer in the cache so subtract 63273ed8e77SXin LI // it from the cached memory usage. Don't add it 63373ed8e77SXin LI // to mem_in_use though; the caller will handle it 63473ed8e77SXin LI // since it knows how much memory it will actually 63573ed8e77SXin LI // use (the filter chain might change). 63673ed8e77SXin LI coder->mem_cached -= coder->thr->mem_filters; 63773ed8e77SXin LI } 63873ed8e77SXin LI } 63973ed8e77SXin LI 64073ed8e77SXin LI if (coder->thr == NULL) { 64173ed8e77SXin LI assert(coder->threads_initialized < coder->threads_max); 64273ed8e77SXin LI 64373ed8e77SXin LI // Initialize a new thread. 64473ed8e77SXin LI return_if_error(initialize_new_thread(coder, allocator)); 64573ed8e77SXin LI } 64673ed8e77SXin LI 64773ed8e77SXin LI coder->thr->in_filled = 0; 64873ed8e77SXin LI coder->thr->in_pos = 0; 64973ed8e77SXin LI coder->thr->out_pos = 0; 65073ed8e77SXin LI 65173ed8e77SXin LI coder->thr->progress_in = 0; 65273ed8e77SXin LI coder->thr->progress_out = 0; 65373ed8e77SXin LI 65473ed8e77SXin LI coder->thr->partial_update = PARTIAL_DISABLED; 65573ed8e77SXin LI 65673ed8e77SXin LI return LZMA_OK; 65773ed8e77SXin LI } 65873ed8e77SXin LI 65973ed8e77SXin LI 66073ed8e77SXin LI static lzma_ret 66173ed8e77SXin LI read_output_and_wait(struct lzma_stream_coder *coder, 66273ed8e77SXin LI const lzma_allocator *allocator, 66373ed8e77SXin LI uint8_t *restrict out, size_t *restrict out_pos, 66473ed8e77SXin LI size_t out_size, 66573ed8e77SXin LI bool *input_is_possible, 66673ed8e77SXin LI bool waiting_allowed, 66773ed8e77SXin LI mythread_condtime *wait_abs, bool *has_blocked) 66873ed8e77SXin LI { 66973ed8e77SXin LI lzma_ret ret = LZMA_OK; 67073ed8e77SXin LI 67173ed8e77SXin LI mythread_sync(coder->mutex) { 67273ed8e77SXin LI do { 67373ed8e77SXin LI // Get as much output from the queue as is possible 67473ed8e77SXin LI // without blocking. 67573ed8e77SXin LI const size_t out_start = *out_pos; 67673ed8e77SXin LI do { 67773ed8e77SXin LI ret = lzma_outq_read(&coder->outq, allocator, 67873ed8e77SXin LI out, out_pos, out_size, 67973ed8e77SXin LI NULL, NULL); 68073ed8e77SXin LI 68173ed8e77SXin LI // If a Block was finished, tell the worker 68273ed8e77SXin LI // thread of the next Block (if it is still 68373ed8e77SXin LI // running) to start telling the main thread 68473ed8e77SXin LI // when new output is available. 68573ed8e77SXin LI if (ret == LZMA_STREAM_END) 68673ed8e77SXin LI lzma_outq_enable_partial_output( 68773ed8e77SXin LI &coder->outq, 68873ed8e77SXin LI &worker_enable_partial_update); 68973ed8e77SXin LI 69073ed8e77SXin LI // Loop until a Block wasn't finished. 69173ed8e77SXin LI // It's important to loop around even if 69273ed8e77SXin LI // *out_pos == out_size because there could 69373ed8e77SXin LI // be an empty Block that will return 69473ed8e77SXin LI // LZMA_STREAM_END without needing any 69573ed8e77SXin LI // output space. 69673ed8e77SXin LI } while (ret == LZMA_STREAM_END); 69773ed8e77SXin LI 69873ed8e77SXin LI // Check if lzma_outq_read reported an error from 69973ed8e77SXin LI // the Block decoder. 70073ed8e77SXin LI if (ret != LZMA_OK) 70173ed8e77SXin LI break; 70273ed8e77SXin LI 70373ed8e77SXin LI // If the output buffer is now full but it wasn't full 70473ed8e77SXin LI // when this function was called, set out_was_filled. 70573ed8e77SXin LI // This way the next call to stream_decode_mt() knows 70673ed8e77SXin LI // that some output was produced and no output space 70773ed8e77SXin LI // remained in the previous call to stream_decode_mt(). 70873ed8e77SXin LI if (*out_pos == out_size && *out_pos != out_start) 70973ed8e77SXin LI coder->out_was_filled = true; 71073ed8e77SXin LI 71173ed8e77SXin LI // Check if any thread has indicated an error. 71273ed8e77SXin LI if (coder->thread_error != LZMA_OK) { 71373ed8e77SXin LI // If LZMA_FAIL_FAST was used, report errors 71473ed8e77SXin LI // from worker threads immediately. 71573ed8e77SXin LI if (coder->fail_fast) { 71673ed8e77SXin LI ret = coder->thread_error; 71773ed8e77SXin LI break; 71873ed8e77SXin LI } 71973ed8e77SXin LI 72073ed8e77SXin LI // Otherwise set pending_error. The value we 72173ed8e77SXin LI // set here will not actually get used other 72273ed8e77SXin LI // than working as a flag that an error has 72373ed8e77SXin LI // occurred. This is because in SEQ_ERROR 72473ed8e77SXin LI // all output before the error will be read 72573ed8e77SXin LI // first by calling this function, and once we 72673ed8e77SXin LI // reach the location of the (first) error the 72773ed8e77SXin LI // error code from the above lzma_outq_read() 72873ed8e77SXin LI // will be returned to the application. 72973ed8e77SXin LI // 73073ed8e77SXin LI // Use LZMA_PROG_ERROR since the value should 73173ed8e77SXin LI // never leak to the application. It's 73273ed8e77SXin LI // possible that pending_error has already 73373ed8e77SXin LI // been set but that doesn't matter: if we get 73473ed8e77SXin LI // here, pending_error only works as a flag. 73573ed8e77SXin LI coder->pending_error = LZMA_PROG_ERROR; 73673ed8e77SXin LI } 73773ed8e77SXin LI 73873ed8e77SXin LI // Check if decoding of the next Block can be started. 73973ed8e77SXin LI // The memusage of the active threads must be low 74073ed8e77SXin LI // enough, there must be a free buffer slot in the 74173ed8e77SXin LI // output queue, and there must be a free thread 74273ed8e77SXin LI // (that can be either created or an existing one 74373ed8e77SXin LI // reused). 74473ed8e77SXin LI // 74573ed8e77SXin LI // NOTE: This is checked after reading the output 74673ed8e77SXin LI // above because reading the output can free a slot in 74773ed8e77SXin LI // the output queue and also reduce active memusage. 74873ed8e77SXin LI // 74973ed8e77SXin LI // NOTE: If output queue is empty, then input will 75073ed8e77SXin LI // always be possible. 75173ed8e77SXin LI if (input_is_possible != NULL 75273ed8e77SXin LI && coder->memlimit_threading 75373ed8e77SXin LI - coder->mem_in_use 75473ed8e77SXin LI - coder->outq.mem_in_use 75573ed8e77SXin LI >= coder->mem_next_block 75673ed8e77SXin LI && lzma_outq_has_buf(&coder->outq) 75773ed8e77SXin LI && (coder->threads_initialized 75873ed8e77SXin LI < coder->threads_max 75973ed8e77SXin LI || coder->threads_free 76073ed8e77SXin LI != NULL)) { 76173ed8e77SXin LI *input_is_possible = true; 76273ed8e77SXin LI break; 76373ed8e77SXin LI } 76473ed8e77SXin LI 76573ed8e77SXin LI // If the caller doesn't want us to block, return now. 76673ed8e77SXin LI if (!waiting_allowed) 76773ed8e77SXin LI break; 76873ed8e77SXin LI 76973ed8e77SXin LI // This check is needed only when input_is_possible 77073ed8e77SXin LI // is NULL. We must return if we aren't waiting for 77173ed8e77SXin LI // input to become possible and there is no more 77273ed8e77SXin LI // output coming from the queue. 77373ed8e77SXin LI if (lzma_outq_is_empty(&coder->outq)) { 77473ed8e77SXin LI assert(input_is_possible == NULL); 77573ed8e77SXin LI break; 77673ed8e77SXin LI } 77773ed8e77SXin LI 77873ed8e77SXin LI // If there is more data available from the queue, 77973ed8e77SXin LI // our out buffer must be full and we need to return 78073ed8e77SXin LI // so that the application can provide more output 78173ed8e77SXin LI // space. 78273ed8e77SXin LI // 78373ed8e77SXin LI // NOTE: In general lzma_outq_is_readable() can return 78473ed8e77SXin LI // true also when there are no more bytes available. 78573ed8e77SXin LI // This can happen when a Block has finished without 78673ed8e77SXin LI // providing any new output. We know that this is not 78773ed8e77SXin LI // the case because in the beginning of this loop we 78873ed8e77SXin LI // tried to read as much as possible even when we had 78973ed8e77SXin LI // no output space left and the mutex has been locked 79073ed8e77SXin LI // all the time (so worker threads cannot have changed 79173ed8e77SXin LI // anything). Thus there must be actual pending output 79273ed8e77SXin LI // in the queue. 79373ed8e77SXin LI if (lzma_outq_is_readable(&coder->outq)) { 79473ed8e77SXin LI assert(*out_pos == out_size); 79573ed8e77SXin LI break; 79673ed8e77SXin LI } 79773ed8e77SXin LI 79873ed8e77SXin LI // If the application stops providing more input 79973ed8e77SXin LI // in the middle of a Block, there will eventually 80073ed8e77SXin LI // be one worker thread left that is stuck waiting for 80173ed8e77SXin LI // more input (that might never arrive) and a matching 80273ed8e77SXin LI // outbuf which the worker thread cannot finish due 80373ed8e77SXin LI // to lack of input. We must detect this situation, 80473ed8e77SXin LI // otherwise we would end up waiting indefinitely 80573ed8e77SXin LI // (if no timeout is in use) or keep returning 80673ed8e77SXin LI // LZMA_TIMED_OUT while making no progress. Thus, the 80773ed8e77SXin LI // application would never get LZMA_BUF_ERROR from 80873ed8e77SXin LI // lzma_code() which would tell the application that 80973ed8e77SXin LI // no more progress is possible. No LZMA_BUF_ERROR 81073ed8e77SXin LI // means that, for example, truncated .xz files could 81173ed8e77SXin LI // cause an infinite loop. 81273ed8e77SXin LI // 81373ed8e77SXin LI // A worker thread doing partial updates will 81473ed8e77SXin LI // store not only the output position in outbuf->pos 81573ed8e77SXin LI // but also the matching input position in 81673ed8e77SXin LI // outbuf->decoder_in_pos. Here we check if that 81773ed8e77SXin LI // input position matches the amount of input that 81873ed8e77SXin LI // the worker thread has been given (in_filled). 81973ed8e77SXin LI // If so, we must return and not wait as no more 82073ed8e77SXin LI // output will be coming without first getting more 82173ed8e77SXin LI // input to the worker thread. If the application 82273ed8e77SXin LI // keeps calling lzma_code() without providing more 82373ed8e77SXin LI // input, it will eventually get LZMA_BUF_ERROR. 82473ed8e77SXin LI // 82573ed8e77SXin LI // NOTE: We can read partial_update and in_filled 82673ed8e77SXin LI // without thr->mutex as only the main thread 82773ed8e77SXin LI // modifies these variables. decoder_in_pos requires 82873ed8e77SXin LI // coder->mutex which we are already holding. 82973ed8e77SXin LI if (coder->thr != NULL && coder->thr->partial_update 83073ed8e77SXin LI != PARTIAL_DISABLED) { 83173ed8e77SXin LI // There is exactly one outbuf in the queue. 83273ed8e77SXin LI assert(coder->thr->outbuf == coder->outq.head); 83373ed8e77SXin LI assert(coder->thr->outbuf == coder->outq.tail); 83473ed8e77SXin LI 83573ed8e77SXin LI if (coder->thr->outbuf->decoder_in_pos 83673ed8e77SXin LI == coder->thr->in_filled) 83773ed8e77SXin LI break; 83873ed8e77SXin LI } 83973ed8e77SXin LI 84073ed8e77SXin LI // Wait for input or output to become possible. 84173ed8e77SXin LI if (coder->timeout != 0) { 84273ed8e77SXin LI // See the comment in stream_encoder_mt.c 84373ed8e77SXin LI // about why mythread_condtime_set() is used 84473ed8e77SXin LI // like this. 84573ed8e77SXin LI // 84673ed8e77SXin LI // FIXME? 84773ed8e77SXin LI // In contrast to the encoder, this calls 84873ed8e77SXin LI // _condtime_set while the mutex is locked. 84973ed8e77SXin LI if (!*has_blocked) { 85073ed8e77SXin LI *has_blocked = true; 85173ed8e77SXin LI mythread_condtime_set(wait_abs, 85273ed8e77SXin LI &coder->cond, 85373ed8e77SXin LI coder->timeout); 85473ed8e77SXin LI } 85573ed8e77SXin LI 85673ed8e77SXin LI if (mythread_cond_timedwait(&coder->cond, 85773ed8e77SXin LI &coder->mutex, 85873ed8e77SXin LI wait_abs) != 0) { 85973ed8e77SXin LI ret = LZMA_TIMED_OUT; 86073ed8e77SXin LI break; 86173ed8e77SXin LI } 86273ed8e77SXin LI } else { 86373ed8e77SXin LI mythread_cond_wait(&coder->cond, 86473ed8e77SXin LI &coder->mutex); 86573ed8e77SXin LI } 86673ed8e77SXin LI } while (ret == LZMA_OK); 86773ed8e77SXin LI } 86873ed8e77SXin LI 86973ed8e77SXin LI // If we are returning an error, then the application cannot get 87073ed8e77SXin LI // more output from us and thus keeping the threads running is 87173ed8e77SXin LI // useless and waste of CPU time. 87273ed8e77SXin LI if (ret != LZMA_OK && ret != LZMA_TIMED_OUT) 87373ed8e77SXin LI threads_stop(coder); 87473ed8e77SXin LI 87573ed8e77SXin LI return ret; 87673ed8e77SXin LI } 87773ed8e77SXin LI 87873ed8e77SXin LI 87973ed8e77SXin LI static lzma_ret 88073ed8e77SXin LI decode_block_header(struct lzma_stream_coder *coder, 88173ed8e77SXin LI const lzma_allocator *allocator, const uint8_t *restrict in, 88273ed8e77SXin LI size_t *restrict in_pos, size_t in_size) 88373ed8e77SXin LI { 88473ed8e77SXin LI if (*in_pos >= in_size) 88573ed8e77SXin LI return LZMA_OK; 88673ed8e77SXin LI 88773ed8e77SXin LI if (coder->pos == 0) { 88873ed8e77SXin LI // Detect if it's Index. 889047153b4SXin LI if (in[*in_pos] == INDEX_INDICATOR) 89073ed8e77SXin LI return LZMA_INDEX_DETECTED; 89173ed8e77SXin LI 89273ed8e77SXin LI // Calculate the size of the Block Header. Note that 89373ed8e77SXin LI // Block Header decoder wants to see this byte too 89473ed8e77SXin LI // so don't advance *in_pos. 89573ed8e77SXin LI coder->block_options.header_size 89673ed8e77SXin LI = lzma_block_header_size_decode( 89773ed8e77SXin LI in[*in_pos]); 89873ed8e77SXin LI } 89973ed8e77SXin LI 90073ed8e77SXin LI // Copy the Block Header to the internal buffer. 90173ed8e77SXin LI lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 90273ed8e77SXin LI coder->block_options.header_size); 90373ed8e77SXin LI 90473ed8e77SXin LI // Return if we didn't get the whole Block Header yet. 90573ed8e77SXin LI if (coder->pos < coder->block_options.header_size) 90673ed8e77SXin LI return LZMA_OK; 90773ed8e77SXin LI 90873ed8e77SXin LI coder->pos = 0; 90973ed8e77SXin LI 91073ed8e77SXin LI // Version 1 is needed to support the .ignore_check option. 91173ed8e77SXin LI coder->block_options.version = 1; 91273ed8e77SXin LI 91373ed8e77SXin LI // Block Header decoder will initialize all members of this array 91473ed8e77SXin LI // so we don't need to do it here. 91573ed8e77SXin LI coder->block_options.filters = coder->filters; 91673ed8e77SXin LI 91773ed8e77SXin LI // Decode the Block Header. 91873ed8e77SXin LI return_if_error(lzma_block_header_decode(&coder->block_options, 91973ed8e77SXin LI allocator, coder->buffer)); 92073ed8e77SXin LI 92173ed8e77SXin LI // If LZMA_IGNORE_CHECK was used, this flag needs to be set. 92273ed8e77SXin LI // It has to be set after lzma_block_header_decode() because 92373ed8e77SXin LI // it always resets this to false. 92473ed8e77SXin LI coder->block_options.ignore_check = coder->ignore_check; 92573ed8e77SXin LI 92673ed8e77SXin LI // coder->block_options is ready now. 92773ed8e77SXin LI return LZMA_STREAM_END; 92873ed8e77SXin LI } 92973ed8e77SXin LI 93073ed8e77SXin LI 93173ed8e77SXin LI /// Get the size of the Compressed Data + Block Padding + Check. 93273ed8e77SXin LI static size_t 93373ed8e77SXin LI comp_blk_size(const struct lzma_stream_coder *coder) 93473ed8e77SXin LI { 93573ed8e77SXin LI return vli_ceil4(coder->block_options.compressed_size) 93673ed8e77SXin LI + lzma_check_size(coder->stream_flags.check); 93773ed8e77SXin LI } 93873ed8e77SXin LI 93973ed8e77SXin LI 94073ed8e77SXin LI /// Returns true if the size (compressed or uncompressed) is such that 94173ed8e77SXin LI /// threaded decompression cannot be used. Sizes that are too big compared 94273ed8e77SXin LI /// to SIZE_MAX must be rejected to avoid integer overflows and truncations 94373ed8e77SXin LI /// when lzma_vli is assigned to a size_t. 94473ed8e77SXin LI static bool 94573ed8e77SXin LI is_direct_mode_needed(lzma_vli size) 94673ed8e77SXin LI { 94773ed8e77SXin LI return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3; 94873ed8e77SXin LI } 94973ed8e77SXin LI 95073ed8e77SXin LI 95173ed8e77SXin LI static lzma_ret 95273ed8e77SXin LI stream_decoder_reset(struct lzma_stream_coder *coder, 95373ed8e77SXin LI const lzma_allocator *allocator) 95473ed8e77SXin LI { 95573ed8e77SXin LI // Initialize the Index hash used to verify the Index. 95673ed8e77SXin LI coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator); 95773ed8e77SXin LI if (coder->index_hash == NULL) 95873ed8e77SXin LI return LZMA_MEM_ERROR; 95973ed8e77SXin LI 96073ed8e77SXin LI // Reset the rest of the variables. 96173ed8e77SXin LI coder->sequence = SEQ_STREAM_HEADER; 96273ed8e77SXin LI coder->pos = 0; 96373ed8e77SXin LI 96473ed8e77SXin LI return LZMA_OK; 96573ed8e77SXin LI } 96673ed8e77SXin LI 96773ed8e77SXin LI 96873ed8e77SXin LI static lzma_ret 96973ed8e77SXin LI stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator, 97073ed8e77SXin LI const uint8_t *restrict in, size_t *restrict in_pos, 97173ed8e77SXin LI size_t in_size, 97273ed8e77SXin LI uint8_t *restrict out, size_t *restrict out_pos, 97373ed8e77SXin LI size_t out_size, lzma_action action) 97473ed8e77SXin LI { 97573ed8e77SXin LI struct lzma_stream_coder *coder = coder_ptr; 97673ed8e77SXin LI 97773ed8e77SXin LI mythread_condtime wait_abs; 97873ed8e77SXin LI bool has_blocked = false; 97973ed8e77SXin LI 98073ed8e77SXin LI // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should 98173ed8e77SXin LI // tell read_output_and_wait() to wait until it can fill the output 98273ed8e77SXin LI // buffer (or a timeout occurs). Two conditions must be met: 98373ed8e77SXin LI // 98473ed8e77SXin LI // (1) If the caller provided no new input. The reason for this 98573ed8e77SXin LI // can be, for example, the end of the file or that there is 98673ed8e77SXin LI // a pause in the input stream and more input is available 98773ed8e77SXin LI // a little later. In this situation we should wait for output 98873ed8e77SXin LI // because otherwise we would end up in a busy-waiting loop where 98973ed8e77SXin LI // we make no progress and the application just calls us again 99073ed8e77SXin LI // without providing any new input. This would then result in 99173ed8e77SXin LI // LZMA_BUF_ERROR even though more output would be available 99273ed8e77SXin LI // once the worker threads decode more data. 99373ed8e77SXin LI // 99473ed8e77SXin LI // (2) Even if (1) is true, we will not wait if the previous call to 99573ed8e77SXin LI // this function managed to produce some output and the output 99673ed8e77SXin LI // buffer became full. This is for compatibility with applications 99773ed8e77SXin LI // that call lzma_code() in such a way that new input is provided 99873ed8e77SXin LI // only when the output buffer didn't become full. Without this 99973ed8e77SXin LI // trick such applications would have bad performance (bad 100073ed8e77SXin LI // parallelization due to decoder not getting input fast enough). 100173ed8e77SXin LI // 100273ed8e77SXin LI // NOTE: Such loops might require that timeout is disabled (0) 100373ed8e77SXin LI // if they assume that output-not-full implies that all input has 100473ed8e77SXin LI // been consumed. If and only if timeout is enabled, we may return 100573ed8e77SXin LI // when output isn't full *and* not all input has been consumed. 100673ed8e77SXin LI // 100773ed8e77SXin LI // However, if LZMA_FINISH is used, the above is ignored and we always 100873ed8e77SXin LI // wait (timeout can still cause us to return) because we know that 100973ed8e77SXin LI // we won't get any more input. This matters if the input file is 101073ed8e77SXin LI // truncated and we are doing single-shot decoding, that is, 101173ed8e77SXin LI // timeout = 0 and LZMA_FINISH is used on the first call to 101273ed8e77SXin LI // lzma_code() and the output buffer is known to be big enough 101373ed8e77SXin LI // to hold all uncompressed data: 101473ed8e77SXin LI // 101573ed8e77SXin LI // - If LZMA_FINISH wasn't handled specially, we could return 101673ed8e77SXin LI // LZMA_OK before providing all output that is possible with the 101773ed8e77SXin LI // truncated input. The rest would be available if lzma_code() was 101873ed8e77SXin LI // called again but then it's not single-shot decoding anymore. 101973ed8e77SXin LI // 102073ed8e77SXin LI // - By handling LZMA_FINISH specially here, the first call will 102173ed8e77SXin LI // produce all the output, matching the behavior of the 102273ed8e77SXin LI // single-threaded decoder. 102373ed8e77SXin LI // 102473ed8e77SXin LI // So it's a very specific corner case but also easy to avoid. Note 102573ed8e77SXin LI // that this special handling of LZMA_FINISH has no effect for 102673ed8e77SXin LI // single-shot decoding when the input file is valid (not truncated); 102773ed8e77SXin LI // premature LZMA_OK wouldn't be possible as long as timeout = 0. 102873ed8e77SXin LI const bool waiting_allowed = action == LZMA_FINISH 102973ed8e77SXin LI || (*in_pos == in_size && !coder->out_was_filled); 103073ed8e77SXin LI coder->out_was_filled = false; 103173ed8e77SXin LI 103273ed8e77SXin LI while (true) 103373ed8e77SXin LI switch (coder->sequence) { 103473ed8e77SXin LI case SEQ_STREAM_HEADER: { 103573ed8e77SXin LI // Copy the Stream Header to the internal buffer. 103673ed8e77SXin LI const size_t in_old = *in_pos; 103773ed8e77SXin LI lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 103873ed8e77SXin LI LZMA_STREAM_HEADER_SIZE); 103973ed8e77SXin LI coder->progress_in += *in_pos - in_old; 104073ed8e77SXin LI 104173ed8e77SXin LI // Return if we didn't get the whole Stream Header yet. 104273ed8e77SXin LI if (coder->pos < LZMA_STREAM_HEADER_SIZE) 104373ed8e77SXin LI return LZMA_OK; 104473ed8e77SXin LI 104573ed8e77SXin LI coder->pos = 0; 104673ed8e77SXin LI 104773ed8e77SXin LI // Decode the Stream Header. 104873ed8e77SXin LI const lzma_ret ret = lzma_stream_header_decode( 104973ed8e77SXin LI &coder->stream_flags, coder->buffer); 105073ed8e77SXin LI if (ret != LZMA_OK) 105173ed8e77SXin LI return ret == LZMA_FORMAT_ERROR && !coder->first_stream 105273ed8e77SXin LI ? LZMA_DATA_ERROR : ret; 105373ed8e77SXin LI 105473ed8e77SXin LI // If we are decoding concatenated Streams, and the later 105573ed8e77SXin LI // Streams have invalid Header Magic Bytes, we give 105673ed8e77SXin LI // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR. 105773ed8e77SXin LI coder->first_stream = false; 105873ed8e77SXin LI 105973ed8e77SXin LI // Copy the type of the Check so that Block Header and Block 106073ed8e77SXin LI // decoders see it. 106173ed8e77SXin LI coder->block_options.check = coder->stream_flags.check; 106273ed8e77SXin LI 106373ed8e77SXin LI // Even if we return LZMA_*_CHECK below, we want 106473ed8e77SXin LI // to continue from Block Header decoding. 106573ed8e77SXin LI coder->sequence = SEQ_BLOCK_HEADER; 106673ed8e77SXin LI 106773ed8e77SXin LI // Detect if there's no integrity check or if it is 106873ed8e77SXin LI // unsupported if those were requested by the application. 106973ed8e77SXin LI if (coder->tell_no_check && coder->stream_flags.check 107073ed8e77SXin LI == LZMA_CHECK_NONE) 107173ed8e77SXin LI return LZMA_NO_CHECK; 107273ed8e77SXin LI 107373ed8e77SXin LI if (coder->tell_unsupported_check 107473ed8e77SXin LI && !lzma_check_is_supported( 107573ed8e77SXin LI coder->stream_flags.check)) 107673ed8e77SXin LI return LZMA_UNSUPPORTED_CHECK; 107773ed8e77SXin LI 107873ed8e77SXin LI if (coder->tell_any_check) 107973ed8e77SXin LI return LZMA_GET_CHECK; 108073ed8e77SXin LI } 108173ed8e77SXin LI 108273ed8e77SXin LI // Fall through 108373ed8e77SXin LI 108473ed8e77SXin LI case SEQ_BLOCK_HEADER: { 108573ed8e77SXin LI const size_t in_old = *in_pos; 108673ed8e77SXin LI const lzma_ret ret = decode_block_header(coder, allocator, 108773ed8e77SXin LI in, in_pos, in_size); 108873ed8e77SXin LI coder->progress_in += *in_pos - in_old; 108973ed8e77SXin LI 109073ed8e77SXin LI if (ret == LZMA_OK) { 109173ed8e77SXin LI // We didn't decode the whole Block Header yet. 109273ed8e77SXin LI // 109373ed8e77SXin LI // Read output from the queue before returning. This 109473ed8e77SXin LI // is important because it is possible that the 109573ed8e77SXin LI // application doesn't have any new input available 109673ed8e77SXin LI // immediately. If we didn't try to copy output from 109773ed8e77SXin LI // the output queue here, lzma_code() could end up 109873ed8e77SXin LI // returning LZMA_BUF_ERROR even though queued output 109973ed8e77SXin LI // is available. 110073ed8e77SXin LI // 110173ed8e77SXin LI // If the lzma_code() call provided at least one input 110273ed8e77SXin LI // byte, only copy as much data from the output queue 110373ed8e77SXin LI // as is available immediately. This way the 110473ed8e77SXin LI // application will be able to provide more input 110573ed8e77SXin LI // without a delay. 110673ed8e77SXin LI // 110773ed8e77SXin LI // On the other hand, if lzma_code() was called with 110873ed8e77SXin LI // an empty input buffer(*), treat it specially: try 110973ed8e77SXin LI // to fill the output buffer even if it requires 111073ed8e77SXin LI // waiting for the worker threads to provide output 111173ed8e77SXin LI // (timeout, if specified, can still cause us to 111273ed8e77SXin LI // return). 111373ed8e77SXin LI // 111473ed8e77SXin LI // - This way the application will be able to get all 111573ed8e77SXin LI // data that can be decoded from the input provided 111673ed8e77SXin LI // so far. 111773ed8e77SXin LI // 111873ed8e77SXin LI // - We avoid both premature LZMA_BUF_ERROR and 111973ed8e77SXin LI // busy-waiting where the application repeatedly 112073ed8e77SXin LI // calls lzma_code() which immediately returns 112173ed8e77SXin LI // LZMA_OK without providing new data. 112273ed8e77SXin LI // 112373ed8e77SXin LI // - If the queue becomes empty, we won't wait 112473ed8e77SXin LI // anything and will return LZMA_OK immediately 112573ed8e77SXin LI // (coder->timeout is completely ignored). 112673ed8e77SXin LI // 112773ed8e77SXin LI // (*) See the comment at the beginning of this 112873ed8e77SXin LI // function how waiting_allowed is determined 112973ed8e77SXin LI // and why there is an exception to the rule 113073ed8e77SXin LI // of "called with an empty input buffer". 113173ed8e77SXin LI assert(*in_pos == in_size); 113273ed8e77SXin LI 113373ed8e77SXin LI // If LZMA_FINISH was used we know that we won't get 113473ed8e77SXin LI // more input, so the file must be truncated if we 113573ed8e77SXin LI // get here. If worker threads don't detect any 113673ed8e77SXin LI // errors, eventually there will be no more output 113773ed8e77SXin LI // while we keep returning LZMA_OK which gets 113873ed8e77SXin LI // converted to LZMA_BUF_ERROR in lzma_code(). 113973ed8e77SXin LI // 114073ed8e77SXin LI // If fail-fast is enabled then we will return 114173ed8e77SXin LI // immediately using LZMA_DATA_ERROR instead of 114273ed8e77SXin LI // LZMA_OK or LZMA_BUF_ERROR. Rationale for the 114373ed8e77SXin LI // error code: 114473ed8e77SXin LI // 114573ed8e77SXin LI // - Worker threads may have a large amount of 114673ed8e77SXin LI // not-yet-decoded input data and we don't 114773ed8e77SXin LI // know for sure if all data is valid. Bad 114873ed8e77SXin LI // data there would result in LZMA_DATA_ERROR 114973ed8e77SXin LI // when fail-fast isn't used. 115073ed8e77SXin LI // 115173ed8e77SXin LI // - Immediate LZMA_BUF_ERROR would be a bit weird 115273ed8e77SXin LI // considering the older liblzma code. lzma_code() 115373ed8e77SXin LI // even has an assertion to prevent coders from 115473ed8e77SXin LI // returning LZMA_BUF_ERROR directly. 115573ed8e77SXin LI // 115673ed8e77SXin LI // The downside of this is that with fail-fast apps 115773ed8e77SXin LI // cannot always distinguish between corrupt and 115873ed8e77SXin LI // truncated files. 115973ed8e77SXin LI if (action == LZMA_FINISH && coder->fail_fast) { 116073ed8e77SXin LI // We won't produce any more output. Stop 116173ed8e77SXin LI // the unfinished worker threads so they 116273ed8e77SXin LI // won't waste CPU time. 116373ed8e77SXin LI threads_stop(coder); 116473ed8e77SXin LI return LZMA_DATA_ERROR; 116573ed8e77SXin LI } 116673ed8e77SXin LI 116773ed8e77SXin LI // read_output_and_wait() will call threads_stop() 116873ed8e77SXin LI // if needed so with that we can use return_if_error. 116973ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 117073ed8e77SXin LI out, out_pos, out_size, 117173ed8e77SXin LI NULL, waiting_allowed, 117273ed8e77SXin LI &wait_abs, &has_blocked)); 117373ed8e77SXin LI 117473ed8e77SXin LI if (coder->pending_error != LZMA_OK) { 117573ed8e77SXin LI coder->sequence = SEQ_ERROR; 117673ed8e77SXin LI break; 117773ed8e77SXin LI } 117873ed8e77SXin LI 117973ed8e77SXin LI return LZMA_OK; 118073ed8e77SXin LI } 118173ed8e77SXin LI 118273ed8e77SXin LI if (ret == LZMA_INDEX_DETECTED) { 118373ed8e77SXin LI coder->sequence = SEQ_INDEX_WAIT_OUTPUT; 118473ed8e77SXin LI break; 118573ed8e77SXin LI } 118673ed8e77SXin LI 118773ed8e77SXin LI // See if an error occurred. 118873ed8e77SXin LI if (ret != LZMA_STREAM_END) { 118973ed8e77SXin LI // NOTE: Here and in all other places where 119073ed8e77SXin LI // pending_error is set, it may overwrite the value 119173ed8e77SXin LI // (LZMA_PROG_ERROR) set by read_output_and_wait(). 119273ed8e77SXin LI // That function might overwrite value set here too. 119373ed8e77SXin LI // These are fine because when read_output_and_wait() 119473ed8e77SXin LI // sets pending_error, it actually works as a flag 119573ed8e77SXin LI // variable only ("some error has occurred") and the 119673ed8e77SXin LI // actual value of pending_error is not used in 119773ed8e77SXin LI // SEQ_ERROR. In such cases SEQ_ERROR will eventually 119873ed8e77SXin LI // get the correct error code from the return value of 119973ed8e77SXin LI // a later read_output_and_wait() call. 120073ed8e77SXin LI coder->pending_error = ret; 120173ed8e77SXin LI coder->sequence = SEQ_ERROR; 120273ed8e77SXin LI break; 120373ed8e77SXin LI } 120473ed8e77SXin LI 120573ed8e77SXin LI // Calculate the memory usage of the filters / Block decoder. 120673ed8e77SXin LI coder->mem_next_filters = lzma_raw_decoder_memusage( 120773ed8e77SXin LI coder->filters); 120873ed8e77SXin LI 120973ed8e77SXin LI if (coder->mem_next_filters == UINT64_MAX) { 121073ed8e77SXin LI // One or more unknown Filter IDs. 121173ed8e77SXin LI coder->pending_error = LZMA_OPTIONS_ERROR; 121273ed8e77SXin LI coder->sequence = SEQ_ERROR; 121373ed8e77SXin LI break; 121473ed8e77SXin LI } 121573ed8e77SXin LI 121673ed8e77SXin LI coder->sequence = SEQ_BLOCK_INIT; 121773ed8e77SXin LI } 121873ed8e77SXin LI 121973ed8e77SXin LI // Fall through 122073ed8e77SXin LI 122173ed8e77SXin LI case SEQ_BLOCK_INIT: { 122273ed8e77SXin LI // Check if decoding is possible at all with the current 122373ed8e77SXin LI // memlimit_stop which we must never exceed. 122473ed8e77SXin LI // 122573ed8e77SXin LI // This needs to be the first thing in SEQ_BLOCK_INIT 122673ed8e77SXin LI // to make it possible to restart decoding after increasing 122773ed8e77SXin LI // memlimit_stop with lzma_memlimit_set(). 122873ed8e77SXin LI if (coder->mem_next_filters > coder->memlimit_stop) { 122973ed8e77SXin LI // Flush pending output before returning 123073ed8e77SXin LI // LZMA_MEMLIMIT_ERROR. If the application doesn't 123173ed8e77SXin LI // want to increase the limit, at least it will get 123273ed8e77SXin LI // all the output possible so far. 123373ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 123473ed8e77SXin LI out, out_pos, out_size, 123573ed8e77SXin LI NULL, true, &wait_abs, &has_blocked)); 123673ed8e77SXin LI 123773ed8e77SXin LI if (!lzma_outq_is_empty(&coder->outq)) 123873ed8e77SXin LI return LZMA_OK; 123973ed8e77SXin LI 124073ed8e77SXin LI return LZMA_MEMLIMIT_ERROR; 124173ed8e77SXin LI } 124273ed8e77SXin LI 124373ed8e77SXin LI // Check if the size information is available in Block Header. 124473ed8e77SXin LI // If it is, check if the sizes are small enough that we don't 124573ed8e77SXin LI // need to worry *too* much about integer overflows later in 124673ed8e77SXin LI // the code. If these conditions are not met, we must use the 124773ed8e77SXin LI // single-threaded direct mode. 124873ed8e77SXin LI if (is_direct_mode_needed(coder->block_options.compressed_size) 124973ed8e77SXin LI || is_direct_mode_needed( 125073ed8e77SXin LI coder->block_options.uncompressed_size)) { 125173ed8e77SXin LI coder->sequence = SEQ_BLOCK_DIRECT_INIT; 125273ed8e77SXin LI break; 125373ed8e77SXin LI } 125473ed8e77SXin LI 125573ed8e77SXin LI // Calculate the amount of memory needed for the input and 125673ed8e77SXin LI // output buffers in threaded mode. 125773ed8e77SXin LI // 125873ed8e77SXin LI // These cannot overflow because we already checked that 125973ed8e77SXin LI // the sizes are small enough using is_direct_mode_needed(). 126073ed8e77SXin LI coder->mem_next_in = comp_blk_size(coder); 126173ed8e77SXin LI const uint64_t mem_buffers = coder->mem_next_in 126273ed8e77SXin LI + lzma_outq_outbuf_memusage( 126373ed8e77SXin LI coder->block_options.uncompressed_size); 126473ed8e77SXin LI 126573ed8e77SXin LI // Add the amount needed by the filters. 126673ed8e77SXin LI // Avoid integer overflows. 126773ed8e77SXin LI if (UINT64_MAX - mem_buffers < coder->mem_next_filters) { 126873ed8e77SXin LI // Use direct mode if the memusage would overflow. 126973ed8e77SXin LI // This is a theoretical case that shouldn't happen 127073ed8e77SXin LI // in practice unless the input file is weird (broken 127173ed8e77SXin LI // or malicious). 127273ed8e77SXin LI coder->sequence = SEQ_BLOCK_DIRECT_INIT; 127373ed8e77SXin LI break; 127473ed8e77SXin LI } 127573ed8e77SXin LI 127673ed8e77SXin LI // Amount of memory needed to decode this Block in 127773ed8e77SXin LI // threaded mode: 127873ed8e77SXin LI coder->mem_next_block = coder->mem_next_filters + mem_buffers; 127973ed8e77SXin LI 128073ed8e77SXin LI // If this alone would exceed memlimit_threading, then we must 128173ed8e77SXin LI // use the single-threaded direct mode. 128273ed8e77SXin LI if (coder->mem_next_block > coder->memlimit_threading) { 128373ed8e77SXin LI coder->sequence = SEQ_BLOCK_DIRECT_INIT; 128473ed8e77SXin LI break; 128573ed8e77SXin LI } 128673ed8e77SXin LI 128773ed8e77SXin LI // Use the threaded mode. Free the direct mode decoder in 128873ed8e77SXin LI // case it has been initialized. 128973ed8e77SXin LI lzma_next_end(&coder->block_decoder, allocator); 129073ed8e77SXin LI coder->mem_direct_mode = 0; 129173ed8e77SXin LI 129273ed8e77SXin LI // Since we already know what the sizes are supposed to be, 129373ed8e77SXin LI // we can already add them to the Index hash. The Block 129473ed8e77SXin LI // decoder will verify the values while decoding. 129573ed8e77SXin LI const lzma_ret ret = lzma_index_hash_append(coder->index_hash, 129673ed8e77SXin LI lzma_block_unpadded_size( 129773ed8e77SXin LI &coder->block_options), 129873ed8e77SXin LI coder->block_options.uncompressed_size); 129973ed8e77SXin LI if (ret != LZMA_OK) { 130073ed8e77SXin LI coder->pending_error = ret; 130173ed8e77SXin LI coder->sequence = SEQ_ERROR; 130273ed8e77SXin LI break; 130373ed8e77SXin LI } 130473ed8e77SXin LI 130573ed8e77SXin LI coder->sequence = SEQ_BLOCK_THR_INIT; 130673ed8e77SXin LI } 130773ed8e77SXin LI 130873ed8e77SXin LI // Fall through 130973ed8e77SXin LI 131073ed8e77SXin LI case SEQ_BLOCK_THR_INIT: { 131173ed8e77SXin LI // We need to wait for a multiple conditions to become true 131273ed8e77SXin LI // until we can initialize the Block decoder and let a worker 131373ed8e77SXin LI // thread decode it: 131473ed8e77SXin LI // 131573ed8e77SXin LI // - Wait for the memory usage of the active threads to drop 131673ed8e77SXin LI // so that starting the decoding of this Block won't make 131773ed8e77SXin LI // us go over memlimit_threading. 131873ed8e77SXin LI // 131973ed8e77SXin LI // - Wait for at least one free output queue slot. 132073ed8e77SXin LI // 132173ed8e77SXin LI // - Wait for a free worker thread. 132273ed8e77SXin LI // 132373ed8e77SXin LI // While we wait, we must copy decompressed data to the out 132473ed8e77SXin LI // buffer and catch possible decoder errors. 132573ed8e77SXin LI // 132673ed8e77SXin LI // read_output_and_wait() does all the above. 132773ed8e77SXin LI bool block_can_start = false; 132873ed8e77SXin LI 132973ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 133073ed8e77SXin LI out, out_pos, out_size, 133173ed8e77SXin LI &block_can_start, true, 133273ed8e77SXin LI &wait_abs, &has_blocked)); 133373ed8e77SXin LI 133473ed8e77SXin LI if (coder->pending_error != LZMA_OK) { 133573ed8e77SXin LI coder->sequence = SEQ_ERROR; 133673ed8e77SXin LI break; 133773ed8e77SXin LI } 133873ed8e77SXin LI 133973ed8e77SXin LI if (!block_can_start) { 134073ed8e77SXin LI // It's not a timeout because return_if_error handles 134173ed8e77SXin LI // it already. Output queue cannot be empty either 134273ed8e77SXin LI // because in that case block_can_start would have 134373ed8e77SXin LI // been true. Thus the output buffer must be full and 134473ed8e77SXin LI // the queue isn't empty. 134573ed8e77SXin LI assert(*out_pos == out_size); 134673ed8e77SXin LI assert(!lzma_outq_is_empty(&coder->outq)); 134773ed8e77SXin LI return LZMA_OK; 134873ed8e77SXin LI } 134973ed8e77SXin LI 135073ed8e77SXin LI // We know that we can start decoding this Block without 135173ed8e77SXin LI // exceeding memlimit_threading. However, to stay below 135273ed8e77SXin LI // memlimit_threading may require freeing some of the 135373ed8e77SXin LI // cached memory. 135473ed8e77SXin LI // 135573ed8e77SXin LI // Get a local copy of variables that require locking the 135673ed8e77SXin LI // mutex. It is fine if the worker threads modify the real 135773ed8e77SXin LI // values after we read these as those changes can only be 135873ed8e77SXin LI // towards more favorable conditions (less memory in use, 135973ed8e77SXin LI // more in cache). 1360c917796cSXin LI // 13611f3ced26SXin LI // These are initialized to silence warnings. 1362c917796cSXin LI uint64_t mem_in_use = 0; 1363c917796cSXin LI uint64_t mem_cached = 0; 1364c917796cSXin LI struct worker_thread *thr = NULL; 136573ed8e77SXin LI 136673ed8e77SXin LI mythread_sync(coder->mutex) { 136773ed8e77SXin LI mem_in_use = coder->mem_in_use; 136873ed8e77SXin LI mem_cached = coder->mem_cached; 136973ed8e77SXin LI thr = coder->threads_free; 137073ed8e77SXin LI } 137173ed8e77SXin LI 137273ed8e77SXin LI // The maximum amount of memory that can be held by other 137373ed8e77SXin LI // threads and cached buffers while allowing us to start 137473ed8e77SXin LI // decoding the next Block. 137573ed8e77SXin LI const uint64_t mem_max = coder->memlimit_threading 137673ed8e77SXin LI - coder->mem_next_block; 137773ed8e77SXin LI 137873ed8e77SXin LI // If the existing allocations are so large that starting 137973ed8e77SXin LI // to decode this Block might exceed memlimit_threads, 138073ed8e77SXin LI // try to free memory from the output queue cache first. 138173ed8e77SXin LI // 138273ed8e77SXin LI // NOTE: This math assumes the worst case. It's possible 138373ed8e77SXin LI // that the limit wouldn't be exceeded if the existing cached 138473ed8e77SXin LI // allocations are reused. 138573ed8e77SXin LI if (mem_in_use + mem_cached + coder->outq.mem_allocated 138673ed8e77SXin LI > mem_max) { 138773ed8e77SXin LI // Clear the outq cache except leave one buffer in 138873ed8e77SXin LI // the cache if its size is correct. That way we 138973ed8e77SXin LI // don't free and almost immediately reallocate 139073ed8e77SXin LI // an identical buffer. 139173ed8e77SXin LI lzma_outq_clear_cache2(&coder->outq, allocator, 139273ed8e77SXin LI coder->block_options.uncompressed_size); 139373ed8e77SXin LI } 139473ed8e77SXin LI 139573ed8e77SXin LI // If there is at least one worker_thread in the cache and 139673ed8e77SXin LI // the existing allocations are so large that starting to 139773ed8e77SXin LI // decode this Block might exceed memlimit_threads, free 139873ed8e77SXin LI // memory by freeing cached Block decoders. 139973ed8e77SXin LI // 140073ed8e77SXin LI // NOTE: The comparison is different here than above. 140173ed8e77SXin LI // Here we don't care about cached buffers in outq anymore 140273ed8e77SXin LI // and only look at memory actually in use. This is because 140373ed8e77SXin LI // if there is something in outq cache, it's a single buffer 140473ed8e77SXin LI // that can be used as is. We ensured this in the above 140573ed8e77SXin LI // if-block. 140673ed8e77SXin LI uint64_t mem_freed = 0; 140773ed8e77SXin LI if (thr != NULL && mem_in_use + mem_cached 140873ed8e77SXin LI + coder->outq.mem_in_use > mem_max) { 140973ed8e77SXin LI // Don't free the first Block decoder if its memory 141073ed8e77SXin LI // usage isn't greater than what this Block will need. 141173ed8e77SXin LI // Typically the same filter chain is used for all 141273ed8e77SXin LI // Blocks so this way the allocations can be reused 141373ed8e77SXin LI // when get_thread() picks the first worker_thread 141473ed8e77SXin LI // from the cache. 141573ed8e77SXin LI if (thr->mem_filters <= coder->mem_next_filters) 141673ed8e77SXin LI thr = thr->next; 141773ed8e77SXin LI 141873ed8e77SXin LI while (thr != NULL) { 141973ed8e77SXin LI lzma_next_end(&thr->block_decoder, allocator); 142073ed8e77SXin LI mem_freed += thr->mem_filters; 142173ed8e77SXin LI thr->mem_filters = 0; 142273ed8e77SXin LI thr = thr->next; 142373ed8e77SXin LI } 142473ed8e77SXin LI } 142573ed8e77SXin LI 142673ed8e77SXin LI // Update the memory usage counters. Note that coder->mem_* 14271f3ced26SXin LI // may have changed since we read them so we must subtract 142873ed8e77SXin LI // or add the changes. 142973ed8e77SXin LI mythread_sync(coder->mutex) { 143073ed8e77SXin LI coder->mem_cached -= mem_freed; 143173ed8e77SXin LI 143273ed8e77SXin LI // Memory needed for the filters and the input buffer. 143373ed8e77SXin LI // The output queue takes care of its own counter so 143473ed8e77SXin LI // we don't touch it here. 143573ed8e77SXin LI // 143673ed8e77SXin LI // NOTE: After this, coder->mem_in_use + 143773ed8e77SXin LI // coder->mem_cached might count the same thing twice. 143873ed8e77SXin LI // If so, this will get corrected in get_thread() when 143973ed8e77SXin LI // a worker_thread is picked from coder->free_threads 14401f3ced26SXin LI // and its memory usage is subtracted from mem_cached. 144173ed8e77SXin LI coder->mem_in_use += coder->mem_next_in 144273ed8e77SXin LI + coder->mem_next_filters; 144373ed8e77SXin LI } 144473ed8e77SXin LI 144573ed8e77SXin LI // Allocate memory for the output buffer in the output queue. 144673ed8e77SXin LI lzma_ret ret = lzma_outq_prealloc_buf( 144773ed8e77SXin LI &coder->outq, allocator, 144873ed8e77SXin LI coder->block_options.uncompressed_size); 144973ed8e77SXin LI if (ret != LZMA_OK) { 145073ed8e77SXin LI threads_stop(coder); 145173ed8e77SXin LI return ret; 145273ed8e77SXin LI } 145373ed8e77SXin LI 145473ed8e77SXin LI // Set up coder->thr. 145573ed8e77SXin LI ret = get_thread(coder, allocator); 145673ed8e77SXin LI if (ret != LZMA_OK) { 145773ed8e77SXin LI threads_stop(coder); 145873ed8e77SXin LI return ret; 145973ed8e77SXin LI } 146073ed8e77SXin LI 146173ed8e77SXin LI // The new Block decoder memory usage is already counted in 146273ed8e77SXin LI // coder->mem_in_use. Store it in the thread too. 146373ed8e77SXin LI coder->thr->mem_filters = coder->mem_next_filters; 146473ed8e77SXin LI 146573ed8e77SXin LI // Initialize the Block decoder. 146673ed8e77SXin LI coder->thr->block_options = coder->block_options; 146773ed8e77SXin LI ret = lzma_block_decoder_init( 146873ed8e77SXin LI &coder->thr->block_decoder, allocator, 146973ed8e77SXin LI &coder->thr->block_options); 147073ed8e77SXin LI 147173ed8e77SXin LI // Free the allocated filter options since they are needed 147273ed8e77SXin LI // only to initialize the Block decoder. 147373ed8e77SXin LI lzma_filters_free(coder->filters, allocator); 147473ed8e77SXin LI coder->thr->block_options.filters = NULL; 147573ed8e77SXin LI 147673ed8e77SXin LI // Check if memory usage calculation and Block encoder 147773ed8e77SXin LI // initialization succeeded. 147873ed8e77SXin LI if (ret != LZMA_OK) { 147973ed8e77SXin LI coder->pending_error = ret; 148073ed8e77SXin LI coder->sequence = SEQ_ERROR; 148173ed8e77SXin LI break; 148273ed8e77SXin LI } 148373ed8e77SXin LI 148473ed8e77SXin LI // Allocate the input buffer. 148573ed8e77SXin LI coder->thr->in_size = coder->mem_next_in; 148673ed8e77SXin LI coder->thr->in = lzma_alloc(coder->thr->in_size, allocator); 148773ed8e77SXin LI if (coder->thr->in == NULL) { 148873ed8e77SXin LI threads_stop(coder); 148973ed8e77SXin LI return LZMA_MEM_ERROR; 149073ed8e77SXin LI } 149173ed8e77SXin LI 149273ed8e77SXin LI // Get the preallocated output buffer. 149373ed8e77SXin LI coder->thr->outbuf = lzma_outq_get_buf( 149473ed8e77SXin LI &coder->outq, coder->thr); 149573ed8e77SXin LI 149673ed8e77SXin LI // Start the decoder. 149773ed8e77SXin LI mythread_sync(coder->thr->mutex) { 149873ed8e77SXin LI assert(coder->thr->state == THR_IDLE); 149973ed8e77SXin LI coder->thr->state = THR_RUN; 150073ed8e77SXin LI mythread_cond_signal(&coder->thr->cond); 150173ed8e77SXin LI } 150273ed8e77SXin LI 150373ed8e77SXin LI // Enable output from the thread that holds the oldest output 150473ed8e77SXin LI // buffer in the output queue (if such a thread exists). 150573ed8e77SXin LI mythread_sync(coder->mutex) { 150673ed8e77SXin LI lzma_outq_enable_partial_output(&coder->outq, 150773ed8e77SXin LI &worker_enable_partial_update); 150873ed8e77SXin LI } 150973ed8e77SXin LI 151073ed8e77SXin LI coder->sequence = SEQ_BLOCK_THR_RUN; 151173ed8e77SXin LI } 151273ed8e77SXin LI 151373ed8e77SXin LI // Fall through 151473ed8e77SXin LI 151573ed8e77SXin LI case SEQ_BLOCK_THR_RUN: { 151673ed8e77SXin LI if (action == LZMA_FINISH && coder->fail_fast) { 151773ed8e77SXin LI // We know that we won't get more input and that 151873ed8e77SXin LI // the caller wants fail-fast behavior. If we see 151973ed8e77SXin LI // that we don't have enough input to finish this 152073ed8e77SXin LI // Block, return LZMA_DATA_ERROR immediately. 152173ed8e77SXin LI // See SEQ_BLOCK_HEADER for the error code rationale. 152273ed8e77SXin LI const size_t in_avail = in_size - *in_pos; 152373ed8e77SXin LI const size_t in_needed = coder->thr->in_size 152473ed8e77SXin LI - coder->thr->in_filled; 152573ed8e77SXin LI if (in_avail < in_needed) { 152673ed8e77SXin LI threads_stop(coder); 152773ed8e77SXin LI return LZMA_DATA_ERROR; 152873ed8e77SXin LI } 152973ed8e77SXin LI } 153073ed8e77SXin LI 153173ed8e77SXin LI // Copy input to the worker thread. 153273ed8e77SXin LI size_t cur_in_filled = coder->thr->in_filled; 153373ed8e77SXin LI lzma_bufcpy(in, in_pos, in_size, coder->thr->in, 153473ed8e77SXin LI &cur_in_filled, coder->thr->in_size); 153573ed8e77SXin LI 153673ed8e77SXin LI // Tell the thread how much we copied. 153773ed8e77SXin LI mythread_sync(coder->thr->mutex) { 153873ed8e77SXin LI coder->thr->in_filled = cur_in_filled; 153973ed8e77SXin LI 154073ed8e77SXin LI // NOTE: Most of the time we are copying input faster 154173ed8e77SXin LI // than the thread can decode so most of the time 154273ed8e77SXin LI // calling mythread_cond_signal() is useless but 154373ed8e77SXin LI // we cannot make it conditional because thr->in_pos 154473ed8e77SXin LI // is updated without a mutex. And the overhead should 154573ed8e77SXin LI // be very much negligible anyway. 154673ed8e77SXin LI mythread_cond_signal(&coder->thr->cond); 154773ed8e77SXin LI } 154873ed8e77SXin LI 154973ed8e77SXin LI // Read output from the output queue. Just like in 155073ed8e77SXin LI // SEQ_BLOCK_HEADER, we wait to fill the output buffer 155173ed8e77SXin LI // only if waiting_allowed was set to true in the beginning 155273ed8e77SXin LI // of this function (see the comment there). 155373ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 155473ed8e77SXin LI out, out_pos, out_size, 155573ed8e77SXin LI NULL, waiting_allowed, 155673ed8e77SXin LI &wait_abs, &has_blocked)); 155773ed8e77SXin LI 155873ed8e77SXin LI if (coder->pending_error != LZMA_OK) { 155973ed8e77SXin LI coder->sequence = SEQ_ERROR; 156073ed8e77SXin LI break; 156173ed8e77SXin LI } 156273ed8e77SXin LI 156373ed8e77SXin LI // Return if the input didn't contain the whole Block. 156473ed8e77SXin LI if (coder->thr->in_filled < coder->thr->in_size) { 156573ed8e77SXin LI assert(*in_pos == in_size); 156673ed8e77SXin LI return LZMA_OK; 156773ed8e77SXin LI } 156873ed8e77SXin LI 156973ed8e77SXin LI // The whole Block has been copied to the thread-specific 157073ed8e77SXin LI // buffer. Continue from the next Block Header or Index. 157173ed8e77SXin LI coder->thr = NULL; 157273ed8e77SXin LI coder->sequence = SEQ_BLOCK_HEADER; 157373ed8e77SXin LI break; 157473ed8e77SXin LI } 157573ed8e77SXin LI 157673ed8e77SXin LI case SEQ_BLOCK_DIRECT_INIT: { 157773ed8e77SXin LI // Wait for the threads to finish and that all decoded data 157873ed8e77SXin LI // has been copied to the output. That is, wait until the 157973ed8e77SXin LI // output queue becomes empty. 158073ed8e77SXin LI // 158173ed8e77SXin LI // NOTE: No need to check for coder->pending_error as 158273ed8e77SXin LI // we aren't consuming any input until the queue is empty 158373ed8e77SXin LI // and if there is a pending error, read_output_and_wait() 158473ed8e77SXin LI // will eventually return it before the queue is empty. 158573ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 158673ed8e77SXin LI out, out_pos, out_size, 158773ed8e77SXin LI NULL, true, &wait_abs, &has_blocked)); 158873ed8e77SXin LI if (!lzma_outq_is_empty(&coder->outq)) 158973ed8e77SXin LI return LZMA_OK; 159073ed8e77SXin LI 159173ed8e77SXin LI // Free the cached output buffers. 159273ed8e77SXin LI lzma_outq_clear_cache(&coder->outq, allocator); 159373ed8e77SXin LI 159473ed8e77SXin LI // Get rid of the worker threads, including the coder->threads 159573ed8e77SXin LI // array. 159673ed8e77SXin LI threads_end(coder, allocator); 159773ed8e77SXin LI 159873ed8e77SXin LI // Initialize the Block decoder. 159973ed8e77SXin LI const lzma_ret ret = lzma_block_decoder_init( 160073ed8e77SXin LI &coder->block_decoder, allocator, 160173ed8e77SXin LI &coder->block_options); 160273ed8e77SXin LI 160373ed8e77SXin LI // Free the allocated filter options since they are needed 160473ed8e77SXin LI // only to initialize the Block decoder. 160573ed8e77SXin LI lzma_filters_free(coder->filters, allocator); 160673ed8e77SXin LI coder->block_options.filters = NULL; 160773ed8e77SXin LI 160873ed8e77SXin LI // Check if Block decoder initialization succeeded. 160973ed8e77SXin LI if (ret != LZMA_OK) 161073ed8e77SXin LI return ret; 161173ed8e77SXin LI 161273ed8e77SXin LI // Make the memory usage visible to _memconfig(). 161373ed8e77SXin LI coder->mem_direct_mode = coder->mem_next_filters; 161473ed8e77SXin LI 161573ed8e77SXin LI coder->sequence = SEQ_BLOCK_DIRECT_RUN; 161673ed8e77SXin LI } 161773ed8e77SXin LI 161873ed8e77SXin LI // Fall through 161973ed8e77SXin LI 162073ed8e77SXin LI case SEQ_BLOCK_DIRECT_RUN: { 162173ed8e77SXin LI const size_t in_old = *in_pos; 162273ed8e77SXin LI const size_t out_old = *out_pos; 162373ed8e77SXin LI const lzma_ret ret = coder->block_decoder.code( 162473ed8e77SXin LI coder->block_decoder.coder, allocator, 162573ed8e77SXin LI in, in_pos, in_size, out, out_pos, out_size, 162673ed8e77SXin LI action); 162773ed8e77SXin LI coder->progress_in += *in_pos - in_old; 162873ed8e77SXin LI coder->progress_out += *out_pos - out_old; 162973ed8e77SXin LI 163073ed8e77SXin LI if (ret != LZMA_STREAM_END) 163173ed8e77SXin LI return ret; 163273ed8e77SXin LI 163373ed8e77SXin LI // Block decoded successfully. Add the new size pair to 163473ed8e77SXin LI // the Index hash. 163573ed8e77SXin LI return_if_error(lzma_index_hash_append(coder->index_hash, 163673ed8e77SXin LI lzma_block_unpadded_size( 163773ed8e77SXin LI &coder->block_options), 163873ed8e77SXin LI coder->block_options.uncompressed_size)); 163973ed8e77SXin LI 164073ed8e77SXin LI coder->sequence = SEQ_BLOCK_HEADER; 164173ed8e77SXin LI break; 164273ed8e77SXin LI } 164373ed8e77SXin LI 164473ed8e77SXin LI case SEQ_INDEX_WAIT_OUTPUT: 164573ed8e77SXin LI // Flush the output from all worker threads so that we can 164673ed8e77SXin LI // decode the Index without thinking about threading. 164773ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 164873ed8e77SXin LI out, out_pos, out_size, 164973ed8e77SXin LI NULL, true, &wait_abs, &has_blocked)); 165073ed8e77SXin LI 165173ed8e77SXin LI if (!lzma_outq_is_empty(&coder->outq)) 165273ed8e77SXin LI return LZMA_OK; 165373ed8e77SXin LI 165473ed8e77SXin LI coder->sequence = SEQ_INDEX_DECODE; 165573ed8e77SXin LI 165673ed8e77SXin LI // Fall through 165773ed8e77SXin LI 165873ed8e77SXin LI case SEQ_INDEX_DECODE: { 165973ed8e77SXin LI // If we don't have any input, don't call 166073ed8e77SXin LI // lzma_index_hash_decode() since it would return 166173ed8e77SXin LI // LZMA_BUF_ERROR, which we must not do here. 166273ed8e77SXin LI if (*in_pos >= in_size) 166373ed8e77SXin LI return LZMA_OK; 166473ed8e77SXin LI 166573ed8e77SXin LI // Decode the Index and compare it to the hash calculated 166673ed8e77SXin LI // from the sizes of the Blocks (if any). 166773ed8e77SXin LI const size_t in_old = *in_pos; 166873ed8e77SXin LI const lzma_ret ret = lzma_index_hash_decode(coder->index_hash, 166973ed8e77SXin LI in, in_pos, in_size); 167073ed8e77SXin LI coder->progress_in += *in_pos - in_old; 167173ed8e77SXin LI if (ret != LZMA_STREAM_END) 167273ed8e77SXin LI return ret; 167373ed8e77SXin LI 167473ed8e77SXin LI coder->sequence = SEQ_STREAM_FOOTER; 167573ed8e77SXin LI } 167673ed8e77SXin LI 167773ed8e77SXin LI // Fall through 167873ed8e77SXin LI 167973ed8e77SXin LI case SEQ_STREAM_FOOTER: { 168073ed8e77SXin LI // Copy the Stream Footer to the internal buffer. 168173ed8e77SXin LI const size_t in_old = *in_pos; 168273ed8e77SXin LI lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, 168373ed8e77SXin LI LZMA_STREAM_HEADER_SIZE); 168473ed8e77SXin LI coder->progress_in += *in_pos - in_old; 168573ed8e77SXin LI 168673ed8e77SXin LI // Return if we didn't get the whole Stream Footer yet. 168773ed8e77SXin LI if (coder->pos < LZMA_STREAM_HEADER_SIZE) 168873ed8e77SXin LI return LZMA_OK; 168973ed8e77SXin LI 169073ed8e77SXin LI coder->pos = 0; 169173ed8e77SXin LI 169273ed8e77SXin LI // Decode the Stream Footer. The decoder gives 169373ed8e77SXin LI // LZMA_FORMAT_ERROR if the magic bytes don't match, 169473ed8e77SXin LI // so convert that return code to LZMA_DATA_ERROR. 169573ed8e77SXin LI lzma_stream_flags footer_flags; 169673ed8e77SXin LI const lzma_ret ret = lzma_stream_footer_decode( 169773ed8e77SXin LI &footer_flags, coder->buffer); 169873ed8e77SXin LI if (ret != LZMA_OK) 169973ed8e77SXin LI return ret == LZMA_FORMAT_ERROR 170073ed8e77SXin LI ? LZMA_DATA_ERROR : ret; 170173ed8e77SXin LI 170273ed8e77SXin LI // Check that Index Size stored in the Stream Footer matches 170373ed8e77SXin LI // the real size of the Index field. 170473ed8e77SXin LI if (lzma_index_hash_size(coder->index_hash) 170573ed8e77SXin LI != footer_flags.backward_size) 170673ed8e77SXin LI return LZMA_DATA_ERROR; 170773ed8e77SXin LI 170873ed8e77SXin LI // Compare that the Stream Flags fields are identical in 170973ed8e77SXin LI // both Stream Header and Stream Footer. 171073ed8e77SXin LI return_if_error(lzma_stream_flags_compare( 171173ed8e77SXin LI &coder->stream_flags, &footer_flags)); 171273ed8e77SXin LI 171373ed8e77SXin LI if (!coder->concatenated) 171473ed8e77SXin LI return LZMA_STREAM_END; 171573ed8e77SXin LI 171673ed8e77SXin LI coder->sequence = SEQ_STREAM_PADDING; 171773ed8e77SXin LI } 171873ed8e77SXin LI 171973ed8e77SXin LI // Fall through 172073ed8e77SXin LI 172173ed8e77SXin LI case SEQ_STREAM_PADDING: 172273ed8e77SXin LI assert(coder->concatenated); 172373ed8e77SXin LI 172473ed8e77SXin LI // Skip over possible Stream Padding. 172573ed8e77SXin LI while (true) { 172673ed8e77SXin LI if (*in_pos >= in_size) { 172773ed8e77SXin LI // Unless LZMA_FINISH was used, we cannot 172873ed8e77SXin LI // know if there's more input coming later. 172973ed8e77SXin LI if (action != LZMA_FINISH) 173073ed8e77SXin LI return LZMA_OK; 173173ed8e77SXin LI 173273ed8e77SXin LI // Stream Padding must be a multiple of 173373ed8e77SXin LI // four bytes. 173473ed8e77SXin LI return coder->pos == 0 173573ed8e77SXin LI ? LZMA_STREAM_END 173673ed8e77SXin LI : LZMA_DATA_ERROR; 173773ed8e77SXin LI } 173873ed8e77SXin LI 173973ed8e77SXin LI // If the byte is not zero, it probably indicates 174073ed8e77SXin LI // beginning of a new Stream (or the file is corrupt). 174173ed8e77SXin LI if (in[*in_pos] != 0x00) 174273ed8e77SXin LI break; 174373ed8e77SXin LI 174473ed8e77SXin LI ++*in_pos; 174573ed8e77SXin LI ++coder->progress_in; 174673ed8e77SXin LI coder->pos = (coder->pos + 1) & 3; 174773ed8e77SXin LI } 174873ed8e77SXin LI 174973ed8e77SXin LI // Stream Padding must be a multiple of four bytes (empty 175073ed8e77SXin LI // Stream Padding is OK). 175173ed8e77SXin LI if (coder->pos != 0) { 175273ed8e77SXin LI ++*in_pos; 175373ed8e77SXin LI ++coder->progress_in; 175473ed8e77SXin LI return LZMA_DATA_ERROR; 175573ed8e77SXin LI } 175673ed8e77SXin LI 175773ed8e77SXin LI // Prepare to decode the next Stream. 175873ed8e77SXin LI return_if_error(stream_decoder_reset(coder, allocator)); 175973ed8e77SXin LI break; 176073ed8e77SXin LI 176173ed8e77SXin LI case SEQ_ERROR: 176273ed8e77SXin LI if (!coder->fail_fast) { 176373ed8e77SXin LI // Let the application get all data before the point 176473ed8e77SXin LI // where the error was detected. This matches the 176573ed8e77SXin LI // behavior of single-threaded use. 176673ed8e77SXin LI // 176773ed8e77SXin LI // FIXME? Some errors (LZMA_MEM_ERROR) don't get here, 176873ed8e77SXin LI // they are returned immediately. Thus in rare cases 176973ed8e77SXin LI // the output will be less than in the single-threaded 177073ed8e77SXin LI // mode. Maybe this doesn't matter much in practice. 177173ed8e77SXin LI return_if_error(read_output_and_wait(coder, allocator, 177273ed8e77SXin LI out, out_pos, out_size, 177373ed8e77SXin LI NULL, true, &wait_abs, &has_blocked)); 177473ed8e77SXin LI 177573ed8e77SXin LI // We get here only if the error happened in the main 177673ed8e77SXin LI // thread, for example, unsupported Block Header. 177773ed8e77SXin LI if (!lzma_outq_is_empty(&coder->outq)) 177873ed8e77SXin LI return LZMA_OK; 177973ed8e77SXin LI } 178073ed8e77SXin LI 178173ed8e77SXin LI // We only get here if no errors were detected by the worker 178273ed8e77SXin LI // threads. Errors from worker threads would have already been 178373ed8e77SXin LI // returned by the call to read_output_and_wait() above. 178473ed8e77SXin LI return coder->pending_error; 178573ed8e77SXin LI 178673ed8e77SXin LI default: 178773ed8e77SXin LI assert(0); 178873ed8e77SXin LI return LZMA_PROG_ERROR; 178973ed8e77SXin LI } 179073ed8e77SXin LI 179173ed8e77SXin LI // Never reached 179273ed8e77SXin LI } 179373ed8e77SXin LI 179473ed8e77SXin LI 179573ed8e77SXin LI static void 179673ed8e77SXin LI stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator) 179773ed8e77SXin LI { 179873ed8e77SXin LI struct lzma_stream_coder *coder = coder_ptr; 179973ed8e77SXin LI 180073ed8e77SXin LI threads_end(coder, allocator); 180173ed8e77SXin LI lzma_outq_end(&coder->outq, allocator); 180273ed8e77SXin LI 180373ed8e77SXin LI lzma_next_end(&coder->block_decoder, allocator); 180473ed8e77SXin LI lzma_filters_free(coder->filters, allocator); 180573ed8e77SXin LI lzma_index_hash_end(coder->index_hash, allocator); 180673ed8e77SXin LI 180773ed8e77SXin LI lzma_free(coder, allocator); 180873ed8e77SXin LI return; 180973ed8e77SXin LI } 181073ed8e77SXin LI 181173ed8e77SXin LI 181273ed8e77SXin LI static lzma_check 181373ed8e77SXin LI stream_decoder_mt_get_check(const void *coder_ptr) 181473ed8e77SXin LI { 181573ed8e77SXin LI const struct lzma_stream_coder *coder = coder_ptr; 181673ed8e77SXin LI return coder->stream_flags.check; 181773ed8e77SXin LI } 181873ed8e77SXin LI 181973ed8e77SXin LI 182073ed8e77SXin LI static lzma_ret 182173ed8e77SXin LI stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage, 182273ed8e77SXin LI uint64_t *old_memlimit, uint64_t new_memlimit) 182373ed8e77SXin LI { 182473ed8e77SXin LI // NOTE: This function gets/sets memlimit_stop. For now, 182573ed8e77SXin LI // memlimit_threading cannot be modified after initialization. 182673ed8e77SXin LI // 182773ed8e77SXin LI // *memusage will include cached memory too. Excluding cached memory 182873ed8e77SXin LI // would be misleading and it wouldn't help the applications to 182973ed8e77SXin LI // know how much memory is actually needed to decompress the file 183073ed8e77SXin LI // because the higher the number of threads and the memlimits are 183173ed8e77SXin LI // the more memory the decoder may use. 183273ed8e77SXin LI // 183373ed8e77SXin LI // Setting a new limit includes the cached memory too and too low 183473ed8e77SXin LI // limits will be rejected. Alternative could be to free the cached 183573ed8e77SXin LI // memory immediately if that helps to bring the limit down but 183673ed8e77SXin LI // the current way is the simplest. It's unlikely that limit needs 183773ed8e77SXin LI // to be lowered in the middle of a file anyway; the typical reason 183873ed8e77SXin LI // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR 183973ed8e77SXin LI // and even such use isn't common. 184073ed8e77SXin LI struct lzma_stream_coder *coder = coder_ptr; 184173ed8e77SXin LI 184273ed8e77SXin LI mythread_sync(coder->mutex) { 184373ed8e77SXin LI *memusage = coder->mem_direct_mode 184473ed8e77SXin LI + coder->mem_in_use 184573ed8e77SXin LI + coder->mem_cached 184673ed8e77SXin LI + coder->outq.mem_allocated; 184773ed8e77SXin LI } 184873ed8e77SXin LI 184973ed8e77SXin LI // If no filter chains are allocated, *memusage may be zero. 185073ed8e77SXin LI // Always return at least LZMA_MEMUSAGE_BASE. 185173ed8e77SXin LI if (*memusage < LZMA_MEMUSAGE_BASE) 185273ed8e77SXin LI *memusage = LZMA_MEMUSAGE_BASE; 185373ed8e77SXin LI 185473ed8e77SXin LI *old_memlimit = coder->memlimit_stop; 185573ed8e77SXin LI 185673ed8e77SXin LI if (new_memlimit != 0) { 185773ed8e77SXin LI if (new_memlimit < *memusage) 185873ed8e77SXin LI return LZMA_MEMLIMIT_ERROR; 185973ed8e77SXin LI 186073ed8e77SXin LI coder->memlimit_stop = new_memlimit; 186173ed8e77SXin LI } 186273ed8e77SXin LI 186373ed8e77SXin LI return LZMA_OK; 186473ed8e77SXin LI } 186573ed8e77SXin LI 186673ed8e77SXin LI 186773ed8e77SXin LI static void 186873ed8e77SXin LI stream_decoder_mt_get_progress(void *coder_ptr, 186973ed8e77SXin LI uint64_t *progress_in, uint64_t *progress_out) 187073ed8e77SXin LI { 187173ed8e77SXin LI struct lzma_stream_coder *coder = coder_ptr; 187273ed8e77SXin LI 187373ed8e77SXin LI // Lock coder->mutex to prevent finishing threads from moving their 187473ed8e77SXin LI // progress info from the worker_thread structure to lzma_stream_coder. 187573ed8e77SXin LI mythread_sync(coder->mutex) { 187673ed8e77SXin LI *progress_in = coder->progress_in; 187773ed8e77SXin LI *progress_out = coder->progress_out; 187873ed8e77SXin LI 187973ed8e77SXin LI for (size_t i = 0; i < coder->threads_initialized; ++i) { 188073ed8e77SXin LI mythread_sync(coder->threads[i].mutex) { 188173ed8e77SXin LI *progress_in += coder->threads[i].progress_in; 188273ed8e77SXin LI *progress_out += coder->threads[i] 188373ed8e77SXin LI .progress_out; 188473ed8e77SXin LI } 188573ed8e77SXin LI } 188673ed8e77SXin LI } 188773ed8e77SXin LI 188873ed8e77SXin LI return; 188973ed8e77SXin LI } 189073ed8e77SXin LI 189173ed8e77SXin LI 189273ed8e77SXin LI static lzma_ret 189373ed8e77SXin LI stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator, 189473ed8e77SXin LI const lzma_mt *options) 189573ed8e77SXin LI { 189673ed8e77SXin LI struct lzma_stream_coder *coder; 189773ed8e77SXin LI 189873ed8e77SXin LI if (options->threads == 0 || options->threads > LZMA_THREADS_MAX) 189973ed8e77SXin LI return LZMA_OPTIONS_ERROR; 190073ed8e77SXin LI 190173ed8e77SXin LI if (options->flags & ~LZMA_SUPPORTED_FLAGS) 190273ed8e77SXin LI return LZMA_OPTIONS_ERROR; 190373ed8e77SXin LI 190473ed8e77SXin LI lzma_next_coder_init(&stream_decoder_mt_init, next, allocator); 190573ed8e77SXin LI 190673ed8e77SXin LI coder = next->coder; 190773ed8e77SXin LI if (!coder) { 190873ed8e77SXin LI coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator); 190973ed8e77SXin LI if (coder == NULL) 191073ed8e77SXin LI return LZMA_MEM_ERROR; 191173ed8e77SXin LI 191273ed8e77SXin LI next->coder = coder; 191373ed8e77SXin LI 191473ed8e77SXin LI if (mythread_mutex_init(&coder->mutex)) { 191573ed8e77SXin LI lzma_free(coder, allocator); 191673ed8e77SXin LI return LZMA_MEM_ERROR; 191773ed8e77SXin LI } 191873ed8e77SXin LI 191973ed8e77SXin LI if (mythread_cond_init(&coder->cond)) { 192073ed8e77SXin LI mythread_mutex_destroy(&coder->mutex); 192173ed8e77SXin LI lzma_free(coder, allocator); 192273ed8e77SXin LI return LZMA_MEM_ERROR; 192373ed8e77SXin LI } 192473ed8e77SXin LI 192573ed8e77SXin LI next->code = &stream_decode_mt; 192673ed8e77SXin LI next->end = &stream_decoder_mt_end; 192773ed8e77SXin LI next->get_check = &stream_decoder_mt_get_check; 192873ed8e77SXin LI next->memconfig = &stream_decoder_mt_memconfig; 192973ed8e77SXin LI next->get_progress = &stream_decoder_mt_get_progress; 193073ed8e77SXin LI 193173ed8e77SXin LI coder->filters[0].id = LZMA_VLI_UNKNOWN; 193273ed8e77SXin LI memzero(&coder->outq, sizeof(coder->outq)); 193373ed8e77SXin LI 193473ed8e77SXin LI coder->block_decoder = LZMA_NEXT_CODER_INIT; 193573ed8e77SXin LI coder->mem_direct_mode = 0; 193673ed8e77SXin LI 193773ed8e77SXin LI coder->index_hash = NULL; 193873ed8e77SXin LI coder->threads = NULL; 193973ed8e77SXin LI coder->threads_free = NULL; 194073ed8e77SXin LI coder->threads_initialized = 0; 194173ed8e77SXin LI } 194273ed8e77SXin LI 194373ed8e77SXin LI // Cleanup old filter chain if one remains after unfinished decoding 194473ed8e77SXin LI // of a previous Stream. 194573ed8e77SXin LI lzma_filters_free(coder->filters, allocator); 194673ed8e77SXin LI 194773ed8e77SXin LI // By allocating threads from scratch we can start memory-usage 194873ed8e77SXin LI // accounting from scratch, too. Changes in filter and block sizes may 194973ed8e77SXin LI // affect number of threads. 195073ed8e77SXin LI // 195173ed8e77SXin LI // FIXME? Reusing should be easy but unlike the single-threaded 195273ed8e77SXin LI // decoder, with some types of input file combinations reusing 195373ed8e77SXin LI // could leave quite a lot of memory allocated but unused (first 195473ed8e77SXin LI // file could allocate a lot, the next files could use fewer 195573ed8e77SXin LI // threads and some of the allocations from the first file would not 195673ed8e77SXin LI // get freed unless memlimit_threading forces us to clear caches). 195773ed8e77SXin LI // 195873ed8e77SXin LI // NOTE: The direct mode decoder isn't freed here if one exists. 195973ed8e77SXin LI // It will be reused or freed as needed in the main loop. 196073ed8e77SXin LI threads_end(coder, allocator); 196173ed8e77SXin LI 196273ed8e77SXin LI // All memusage counters start at 0 (including mem_direct_mode). 196373ed8e77SXin LI // The little extra that is needed for the structs in this file 196473ed8e77SXin LI // get accounted well enough by the filter chain memory usage 196573ed8e77SXin LI // which adds LZMA_MEMUSAGE_BASE for each chain. However, 196673ed8e77SXin LI // stream_decoder_mt_memconfig() has to handle this specially so that 196773ed8e77SXin LI // it will never return less than LZMA_MEMUSAGE_BASE as memory usage. 196873ed8e77SXin LI coder->mem_in_use = 0; 196973ed8e77SXin LI coder->mem_cached = 0; 197073ed8e77SXin LI coder->mem_next_block = 0; 197173ed8e77SXin LI 197273ed8e77SXin LI coder->progress_in = 0; 197373ed8e77SXin LI coder->progress_out = 0; 197473ed8e77SXin LI 197573ed8e77SXin LI coder->sequence = SEQ_STREAM_HEADER; 197673ed8e77SXin LI coder->thread_error = LZMA_OK; 197773ed8e77SXin LI coder->pending_error = LZMA_OK; 197873ed8e77SXin LI coder->thr = NULL; 197973ed8e77SXin LI 198073ed8e77SXin LI coder->timeout = options->timeout; 198173ed8e77SXin LI 198273ed8e77SXin LI coder->memlimit_threading = my_max(1, options->memlimit_threading); 198373ed8e77SXin LI coder->memlimit_stop = my_max(1, options->memlimit_stop); 198473ed8e77SXin LI if (coder->memlimit_threading > coder->memlimit_stop) 198573ed8e77SXin LI coder->memlimit_threading = coder->memlimit_stop; 198673ed8e77SXin LI 198773ed8e77SXin LI coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0; 198873ed8e77SXin LI coder->tell_unsupported_check 198973ed8e77SXin LI = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0; 199073ed8e77SXin LI coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0; 199173ed8e77SXin LI coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0; 199273ed8e77SXin LI coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0; 199373ed8e77SXin LI coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0; 199473ed8e77SXin LI 199573ed8e77SXin LI coder->first_stream = true; 199673ed8e77SXin LI coder->out_was_filled = false; 199773ed8e77SXin LI coder->pos = 0; 199873ed8e77SXin LI 199973ed8e77SXin LI coder->threads_max = options->threads; 200073ed8e77SXin LI 200173ed8e77SXin LI return_if_error(lzma_outq_init(&coder->outq, allocator, 200273ed8e77SXin LI coder->threads_max)); 200373ed8e77SXin LI 200473ed8e77SXin LI return stream_decoder_reset(coder, allocator); 200573ed8e77SXin LI } 200673ed8e77SXin LI 200773ed8e77SXin LI 200873ed8e77SXin LI extern LZMA_API(lzma_ret) 200973ed8e77SXin LI lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options) 201073ed8e77SXin LI { 201173ed8e77SXin LI lzma_next_strm_init(stream_decoder_mt_init, strm, options); 201273ed8e77SXin LI 201373ed8e77SXin LI strm->internal->supported_actions[LZMA_RUN] = true; 201473ed8e77SXin LI strm->internal->supported_actions[LZMA_FINISH] = true; 201573ed8e77SXin LI 201673ed8e77SXin LI return LZMA_OK; 201773ed8e77SXin LI } 2018