1 // SPDX-License-Identifier: 0BSD 2 3 /////////////////////////////////////////////////////////////////////////////// 4 // 5 /// \file index.c 6 /// \brief Handling of .xz Indexes and some other Stream information 7 // 8 // Author: Lasse Collin 9 // 10 /////////////////////////////////////////////////////////////////////////////// 11 12 #include "common.h" 13 #include "index.h" 14 #include "stream_flags_common.h" 15 16 17 /// \brief How many Records to allocate at once 18 /// 19 /// This should be big enough to avoid making lots of tiny allocations 20 /// but small enough to avoid too much unused memory at once. 21 #define INDEX_GROUP_SIZE 512 22 23 24 /// \brief How many Records can be allocated at once at maximum 25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record)) 26 27 28 /// \brief Base structure for index_stream and index_group structures 29 typedef struct index_tree_node_s index_tree_node; 30 struct index_tree_node_s { 31 /// Uncompressed start offset of this Stream (relative to the 32 /// beginning of the file) or Block (relative to the beginning 33 /// of the Stream) 34 lzma_vli uncompressed_base; 35 36 /// Compressed start offset of this Stream or Block 37 lzma_vli compressed_base; 38 39 index_tree_node *parent; 40 index_tree_node *left; 41 index_tree_node *right; 42 }; 43 44 45 /// \brief AVL tree to hold index_stream or index_group structures 46 typedef struct { 47 /// Root node 48 index_tree_node *root; 49 50 /// Leftmost node. Since the tree will be filled sequentially, 51 /// this won't change after the first node has been added to 52 /// the tree. 53 index_tree_node *leftmost; 54 55 /// The rightmost node in the tree. Since the tree is filled 56 /// sequentially, this is always the node where to add the new data. 57 index_tree_node *rightmost; 58 59 /// Number of nodes in the tree 60 uint32_t count; 61 62 } index_tree; 63 64 65 typedef struct { 66 lzma_vli uncompressed_sum; 67 lzma_vli unpadded_sum; 68 } index_record; 69 70 71 typedef struct { 72 /// Every Record group is part of index_stream.groups tree. 73 index_tree_node node; 74 75 /// Number of Blocks in this Stream before this group. 76 lzma_vli number_base; 77 78 /// Number of Records that can be put in records[]. 79 size_t allocated; 80 81 /// Index of the last Record in use. 82 size_t last; 83 84 /// The sizes in this array are stored as cumulative sums relative 85 /// to the beginning of the Stream. This makes it possible to 86 /// use binary search in lzma_index_locate(). 87 /// 88 /// Note that the cumulative summing is done specially for 89 /// unpadded_sum: The previous value is rounded up to the next 90 /// multiple of four before adding the Unpadded Size of the new 91 /// Block. The total encoded size of the Blocks in the Stream 92 /// is records[last].unpadded_sum in the last Record group of 93 /// the Stream. 94 /// 95 /// For example, if the Unpadded Sizes are 39, 57, and 81, the 96 /// stored values are 39, 97 (40 + 57), and 181 (100 + 181). 97 /// The total encoded size of these Blocks is 184. 98 /// 99 /// This is a flexible array, because it makes easy to optimize 100 /// memory usage in case someone concatenates many Streams that 101 /// have only one or few Blocks. 102 index_record records[]; 103 104 } index_group; 105 106 107 typedef struct { 108 /// Every index_stream is a node in the tree of Streams. 109 index_tree_node node; 110 111 /// Number of this Stream (first one is 1) 112 uint32_t number; 113 114 /// Total number of Blocks before this Stream 115 lzma_vli block_number_base; 116 117 /// Record groups of this Stream are stored in a tree. 118 /// It's a T-tree with AVL-tree balancing. There are 119 /// INDEX_GROUP_SIZE Records per node by default. 120 /// This keeps the number of memory allocations reasonable 121 /// and finding a Record is fast. 122 index_tree groups; 123 124 /// Number of Records in this Stream 125 lzma_vli record_count; 126 127 /// Size of the List of Records field in this Stream. This is used 128 /// together with record_count to calculate the size of the Index 129 /// field and thus the total size of the Stream. 130 lzma_vli index_list_size; 131 132 /// Stream Flags of this Stream. This is meaningful only if 133 /// the Stream Flags have been told us with lzma_index_stream_flags(). 134 /// Initially stream_flags.version is set to UINT32_MAX to indicate 135 /// that the Stream Flags are unknown. 136 lzma_stream_flags stream_flags; 137 138 /// Amount of Stream Padding after this Stream. This defaults to 139 /// zero and can be set with lzma_index_stream_padding(). 140 lzma_vli stream_padding; 141 142 } index_stream; 143 144 145 struct lzma_index_s { 146 /// AVL-tree containing the Stream(s). Often there is just one 147 /// Stream, but using a tree keeps lookups fast even when there 148 /// are many concatenated Streams. 149 index_tree streams; 150 151 /// Uncompressed size of all the Blocks in the Stream(s) 152 lzma_vli uncompressed_size; 153 154 /// Total size of all the Blocks in the Stream(s) 155 lzma_vli total_size; 156 157 /// Total number of Records in all Streams in this lzma_index 158 lzma_vli record_count; 159 160 /// Size of the List of Records field if all the Streams in this 161 /// lzma_index were packed into a single Stream (makes it simpler to 162 /// take many .xz files and combine them into a single Stream). 163 /// 164 /// This value together with record_count is needed to calculate 165 /// Backward Size that is stored into Stream Footer. 166 lzma_vli index_list_size; 167 168 /// How many Records to allocate at once in lzma_index_append(). 169 /// This defaults to INDEX_GROUP_SIZE but can be overridden with 170 /// lzma_index_prealloc(). 171 size_t prealloc; 172 173 /// Bitmask indicating what integrity check types have been used 174 /// as set by lzma_index_stream_flags(). The bit of the last Stream 175 /// is not included here, since it is possible to change it by 176 /// calling lzma_index_stream_flags() again. 177 uint32_t checks; 178 }; 179 180 181 static void 182 index_tree_init(index_tree *tree) 183 { 184 tree->root = NULL; 185 tree->leftmost = NULL; 186 tree->rightmost = NULL; 187 tree->count = 0; 188 return; 189 } 190 191 192 /// Helper for index_tree_end() 193 static void 194 index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator, 195 void (*free_func)(void *node, const lzma_allocator *allocator)) 196 { 197 // The tree won't ever be very huge, so recursion should be fine. 198 // 20 levels in the tree is likely quite a lot already in practice. 199 if (node->left != NULL) 200 index_tree_node_end(node->left, allocator, free_func); 201 202 if (node->right != NULL) 203 index_tree_node_end(node->right, allocator, free_func); 204 205 free_func(node, allocator); 206 return; 207 } 208 209 210 /// Free the memory allocated for a tree. Each node is freed using the 211 /// given free_func which is either &lzma_free or &index_stream_end. 212 /// The latter is used to free the Record groups from each index_stream 213 /// before freeing the index_stream itself. 214 static void 215 index_tree_end(index_tree *tree, const lzma_allocator *allocator, 216 void (*free_func)(void *node, const lzma_allocator *allocator)) 217 { 218 assert(free_func != NULL); 219 220 if (tree->root != NULL) 221 index_tree_node_end(tree->root, allocator, free_func); 222 223 return; 224 } 225 226 227 /// Add a new node to the tree. node->uncompressed_base and 228 /// node->compressed_base must have been set by the caller already. 229 static void 230 index_tree_append(index_tree *tree, index_tree_node *node) 231 { 232 node->parent = tree->rightmost; 233 node->left = NULL; 234 node->right = NULL; 235 236 ++tree->count; 237 238 // Handle the special case of adding the first node. 239 if (tree->root == NULL) { 240 tree->root = node; 241 tree->leftmost = node; 242 tree->rightmost = node; 243 return; 244 } 245 246 // The tree is always filled sequentially. 247 assert(tree->rightmost->uncompressed_base <= node->uncompressed_base); 248 assert(tree->rightmost->compressed_base < node->compressed_base); 249 250 // Add the new node after the rightmost node. It's the correct 251 // place due to the reason above. 252 tree->rightmost->right = node; 253 tree->rightmost = node; 254 255 // Balance the AVL-tree if needed. We don't need to keep the balance 256 // factors in nodes, because we always fill the tree sequentially, 257 // and thus know the state of the tree just by looking at the node 258 // count. From the node count we can calculate how many steps to go 259 // up in the tree to find the rotation root. 260 uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count)); 261 if (up != 0) { 262 // Locate the root node for the rotation. 263 up = ctz32(tree->count) + 2; 264 do { 265 node = node->parent; 266 } while (--up > 0); 267 268 // Rotate left using node as the rotation root. 269 index_tree_node *pivot = node->right; 270 271 if (node->parent == NULL) { 272 tree->root = pivot; 273 } else { 274 assert(node->parent->right == node); 275 node->parent->right = pivot; 276 } 277 278 pivot->parent = node->parent; 279 280 node->right = pivot->left; 281 if (node->right != NULL) 282 node->right->parent = node; 283 284 pivot->left = node; 285 node->parent = pivot; 286 } 287 288 return; 289 } 290 291 292 /// Get the next node in the tree. Return NULL if there are no more nodes. 293 static void * 294 index_tree_next(const index_tree_node *node) 295 { 296 if (node->right != NULL) { 297 node = node->right; 298 while (node->left != NULL) 299 node = node->left; 300 301 return (void *)(node); 302 } 303 304 while (node->parent != NULL && node->parent->right == node) 305 node = node->parent; 306 307 return (void *)(node->parent); 308 } 309 310 311 /// Locate a node that contains the given uncompressed offset. It is 312 /// caller's job to check that target is not bigger than the uncompressed 313 /// size of the tree (the last node would be returned in that case still). 314 static void * 315 index_tree_locate(const index_tree *tree, lzma_vli target) 316 { 317 const index_tree_node *result = NULL; 318 const index_tree_node *node = tree->root; 319 320 assert(tree->leftmost == NULL 321 || tree->leftmost->uncompressed_base == 0); 322 323 // Consecutive nodes may have the same uncompressed_base. 324 // We must pick the rightmost one. 325 while (node != NULL) { 326 if (node->uncompressed_base > target) { 327 node = node->left; 328 } else { 329 result = node; 330 node = node->right; 331 } 332 } 333 334 return (void *)(result); 335 } 336 337 338 /// Allocate and initialize a new Stream using the given base offsets. 339 static index_stream * 340 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, 341 uint32_t stream_number, lzma_vli block_number_base, 342 const lzma_allocator *allocator) 343 { 344 index_stream *s = lzma_alloc(sizeof(index_stream), allocator); 345 if (s == NULL) 346 return NULL; 347 348 s->node.uncompressed_base = uncompressed_base; 349 s->node.compressed_base = compressed_base; 350 s->node.parent = NULL; 351 s->node.left = NULL; 352 s->node.right = NULL; 353 354 s->number = stream_number; 355 s->block_number_base = block_number_base; 356 357 index_tree_init(&s->groups); 358 359 s->record_count = 0; 360 s->index_list_size = 0; 361 s->stream_flags.version = UINT32_MAX; 362 s->stream_padding = 0; 363 364 return s; 365 } 366 367 368 /// Free the memory allocated for a Stream and its Record groups. 369 static void 370 index_stream_end(void *node, const lzma_allocator *allocator) 371 { 372 index_stream *s = node; 373 index_tree_end(&s->groups, allocator, &lzma_free); 374 lzma_free(s, allocator); 375 return; 376 } 377 378 379 static lzma_index * 380 index_init_plain(const lzma_allocator *allocator) 381 { 382 lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator); 383 if (i != NULL) { 384 index_tree_init(&i->streams); 385 i->uncompressed_size = 0; 386 i->total_size = 0; 387 i->record_count = 0; 388 i->index_list_size = 0; 389 i->prealloc = INDEX_GROUP_SIZE; 390 i->checks = 0; 391 } 392 393 return i; 394 } 395 396 397 extern LZMA_API(lzma_index *) 398 lzma_index_init(const lzma_allocator *allocator) 399 { 400 lzma_index *i = index_init_plain(allocator); 401 if (i == NULL) 402 return NULL; 403 404 index_stream *s = index_stream_init(0, 0, 1, 0, allocator); 405 if (s == NULL) { 406 lzma_free(i, allocator); 407 return NULL; 408 } 409 410 index_tree_append(&i->streams, &s->node); 411 412 return i; 413 } 414 415 416 extern LZMA_API(void) 417 lzma_index_end(lzma_index *i, const lzma_allocator *allocator) 418 { 419 // NOTE: If you modify this function, check also the bottom 420 // of lzma_index_cat(). 421 if (i != NULL) { 422 index_tree_end(&i->streams, allocator, &index_stream_end); 423 lzma_free(i, allocator); 424 } 425 426 return; 427 } 428 429 430 extern void 431 lzma_index_prealloc(lzma_index *i, lzma_vli records) 432 { 433 if (records > PREALLOC_MAX) 434 records = PREALLOC_MAX; 435 436 i->prealloc = (size_t)(records); 437 return; 438 } 439 440 441 extern LZMA_API(uint64_t) 442 lzma_index_memusage(lzma_vli streams, lzma_vli blocks) 443 { 444 // This calculates an upper bound that is only a little bit 445 // bigger than the exact maximum memory usage with the given 446 // parameters. 447 448 // Typical malloc() overhead is 2 * sizeof(void *) but we take 449 // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE 450 // instead would give too inaccurate estimate. 451 const size_t alloc_overhead = 4 * sizeof(void *); 452 453 // Amount of memory needed for each Stream base structures. 454 // We assume that every Stream has at least one Block and 455 // thus at least one group. 456 const size_t stream_base = sizeof(index_stream) 457 + sizeof(index_group) + 2 * alloc_overhead; 458 459 // Amount of memory needed per group. 460 const size_t group_base = sizeof(index_group) 461 + INDEX_GROUP_SIZE * sizeof(index_record) 462 + alloc_overhead; 463 464 // Number of groups. There may actually be more, but that overhead 465 // has been taken into account in stream_base already. 466 const lzma_vli groups 467 = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE; 468 469 // Memory used by index_stream and index_group structures. 470 const uint64_t streams_mem = streams * stream_base; 471 const uint64_t groups_mem = groups * group_base; 472 473 // Memory used by the base structure. 474 const uint64_t index_base = sizeof(lzma_index) + alloc_overhead; 475 476 // Validate the arguments and catch integer overflows. 477 // Maximum number of Streams is "only" UINT32_MAX, because 478 // that limit is used by the tree containing the Streams. 479 const uint64_t limit = UINT64_MAX - index_base; 480 if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX 481 || streams > limit / stream_base 482 || groups > limit / group_base 483 || limit - streams_mem < groups_mem) 484 return UINT64_MAX; 485 486 return index_base + streams_mem + groups_mem; 487 } 488 489 490 extern LZMA_API(uint64_t) 491 lzma_index_memused(const lzma_index *i) 492 { 493 return lzma_index_memusage(i->streams.count, i->record_count); 494 } 495 496 497 extern LZMA_API(lzma_vli) 498 lzma_index_block_count(const lzma_index *i) 499 { 500 return i->record_count; 501 } 502 503 504 extern LZMA_API(lzma_vli) 505 lzma_index_stream_count(const lzma_index *i) 506 { 507 return i->streams.count; 508 } 509 510 511 extern LZMA_API(lzma_vli) 512 lzma_index_size(const lzma_index *i) 513 { 514 return index_size(i->record_count, i->index_list_size); 515 } 516 517 518 extern LZMA_API(lzma_vli) 519 lzma_index_total_size(const lzma_index *i) 520 { 521 return i->total_size; 522 } 523 524 525 extern LZMA_API(lzma_vli) 526 lzma_index_stream_size(const lzma_index *i) 527 { 528 // Stream Header + Blocks + Index + Stream Footer 529 return LZMA_STREAM_HEADER_SIZE + i->total_size 530 + index_size(i->record_count, i->index_list_size) 531 + LZMA_STREAM_HEADER_SIZE; 532 } 533 534 535 static lzma_vli 536 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, 537 lzma_vli record_count, lzma_vli index_list_size, 538 lzma_vli stream_padding) 539 { 540 // Earlier Streams and Stream Paddings + Stream Header 541 // + Blocks + Index + Stream Footer + Stream Padding 542 // 543 // This might go over LZMA_VLI_MAX due to too big unpadded_sum 544 // when this function is used in lzma_index_append(). 545 lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE 546 + stream_padding + vli_ceil4(unpadded_sum); 547 if (file_size > LZMA_VLI_MAX) 548 return LZMA_VLI_UNKNOWN; 549 550 // The same applies here. 551 file_size += index_size(record_count, index_list_size); 552 if (file_size > LZMA_VLI_MAX) 553 return LZMA_VLI_UNKNOWN; 554 555 return file_size; 556 } 557 558 559 extern LZMA_API(lzma_vli) 560 lzma_index_file_size(const lzma_index *i) 561 { 562 const index_stream *s = (const index_stream *)(i->streams.rightmost); 563 const index_group *g = (const index_group *)(s->groups.rightmost); 564 return index_file_size(s->node.compressed_base, 565 g == NULL ? 0 : g->records[g->last].unpadded_sum, 566 s->record_count, s->index_list_size, 567 s->stream_padding); 568 } 569 570 571 extern LZMA_API(lzma_vli) 572 lzma_index_uncompressed_size(const lzma_index *i) 573 { 574 return i->uncompressed_size; 575 } 576 577 578 extern LZMA_API(uint32_t) 579 lzma_index_checks(const lzma_index *i) 580 { 581 uint32_t checks = i->checks; 582 583 // Get the type of the Check of the last Stream too. 584 const index_stream *s = (const index_stream *)(i->streams.rightmost); 585 if (s->stream_flags.version != UINT32_MAX) 586 checks |= UINT32_C(1) << s->stream_flags.check; 587 588 return checks; 589 } 590 591 592 extern uint32_t 593 lzma_index_padding_size(const lzma_index *i) 594 { 595 return (LZMA_VLI_C(4) - index_size_unpadded( 596 i->record_count, i->index_list_size)) & 3; 597 } 598 599 600 extern LZMA_API(lzma_ret) 601 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags) 602 { 603 if (i == NULL || stream_flags == NULL) 604 return LZMA_PROG_ERROR; 605 606 // Validate the Stream Flags. 607 return_if_error(lzma_stream_flags_compare( 608 stream_flags, stream_flags)); 609 610 index_stream *s = (index_stream *)(i->streams.rightmost); 611 s->stream_flags = *stream_flags; 612 613 return LZMA_OK; 614 } 615 616 617 extern LZMA_API(lzma_ret) 618 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding) 619 { 620 if (i == NULL || stream_padding > LZMA_VLI_MAX 621 || (stream_padding & 3) != 0) 622 return LZMA_PROG_ERROR; 623 624 index_stream *s = (index_stream *)(i->streams.rightmost); 625 626 // Check that the new value won't make the file grow too big. 627 const lzma_vli old_stream_padding = s->stream_padding; 628 s->stream_padding = 0; 629 if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) { 630 s->stream_padding = old_stream_padding; 631 return LZMA_DATA_ERROR; 632 } 633 634 s->stream_padding = stream_padding; 635 return LZMA_OK; 636 } 637 638 639 extern LZMA_API(lzma_ret) 640 lzma_index_append(lzma_index *i, const lzma_allocator *allocator, 641 lzma_vli unpadded_size, lzma_vli uncompressed_size) 642 { 643 // Validate. 644 if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN 645 || unpadded_size > UNPADDED_SIZE_MAX 646 || uncompressed_size > LZMA_VLI_MAX) 647 return LZMA_PROG_ERROR; 648 649 index_stream *s = (index_stream *)(i->streams.rightmost); 650 index_group *g = (index_group *)(s->groups.rightmost); 651 652 const lzma_vli compressed_base = g == NULL ? 0 653 : vli_ceil4(g->records[g->last].unpadded_sum); 654 const lzma_vli uncompressed_base = g == NULL ? 0 655 : g->records[g->last].uncompressed_sum; 656 const uint32_t index_list_size_add = lzma_vli_size(unpadded_size) 657 + lzma_vli_size(uncompressed_size); 658 659 // Check that uncompressed size will not overflow. 660 if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX) 661 return LZMA_DATA_ERROR; 662 663 // Check that the new unpadded sum will not overflow. This is 664 // checked again in index_file_size(), but the unpadded sum is 665 // passed to vli_ceil4() which expects a valid lzma_vli value. 666 if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX) 667 return LZMA_DATA_ERROR; 668 669 // Check that the file size will stay within limits. 670 if (index_file_size(s->node.compressed_base, 671 compressed_base + unpadded_size, s->record_count + 1, 672 s->index_list_size + index_list_size_add, 673 s->stream_padding) == LZMA_VLI_UNKNOWN) 674 return LZMA_DATA_ERROR; 675 676 // The size of the Index field must not exceed the maximum value 677 // that can be stored in the Backward Size field. 678 if (index_size(i->record_count + 1, 679 i->index_list_size + index_list_size_add) 680 > LZMA_BACKWARD_SIZE_MAX) 681 return LZMA_DATA_ERROR; 682 683 if (g != NULL && g->last + 1 < g->allocated) { 684 // There is space in the last group at least for one Record. 685 ++g->last; 686 } else { 687 // We need to allocate a new group. 688 g = lzma_alloc(sizeof(index_group) 689 + i->prealloc * sizeof(index_record), 690 allocator); 691 if (g == NULL) 692 return LZMA_MEM_ERROR; 693 694 g->last = 0; 695 g->allocated = i->prealloc; 696 697 // Reset prealloc so that if the application happens to 698 // add new Records, the allocation size will be sane. 699 i->prealloc = INDEX_GROUP_SIZE; 700 701 // Set the start offsets of this group. 702 g->node.uncompressed_base = uncompressed_base; 703 g->node.compressed_base = compressed_base; 704 g->number_base = s->record_count + 1; 705 706 // Add the new group to the Stream. 707 index_tree_append(&s->groups, &g->node); 708 } 709 710 // Add the new Record to the group. 711 g->records[g->last].uncompressed_sum 712 = uncompressed_base + uncompressed_size; 713 g->records[g->last].unpadded_sum 714 = compressed_base + unpadded_size; 715 716 // Update the totals. 717 ++s->record_count; 718 s->index_list_size += index_list_size_add; 719 720 i->total_size += vli_ceil4(unpadded_size); 721 i->uncompressed_size += uncompressed_size; 722 ++i->record_count; 723 i->index_list_size += index_list_size_add; 724 725 return LZMA_OK; 726 } 727 728 729 /// Structure to pass info to index_cat_helper() 730 typedef struct { 731 /// Uncompressed size of the destination 732 lzma_vli uncompressed_size; 733 734 /// Compressed file size of the destination 735 lzma_vli file_size; 736 737 /// Same as above but for Block numbers 738 lzma_vli block_number_add; 739 740 /// Number of Streams that were in the destination index before we 741 /// started appending new Streams from the source index. This is 742 /// used to fix the Stream numbering. 743 uint32_t stream_number_add; 744 745 /// Destination index' Stream tree 746 index_tree *streams; 747 748 } index_cat_info; 749 750 751 /// Add the Stream nodes from the source index to dest using recursion. 752 /// Simplest iterative traversal of the source tree wouldn't work, because 753 /// we update the pointers in nodes when moving them to the destination tree. 754 static void 755 index_cat_helper(const index_cat_info *info, index_stream *this) 756 { 757 index_stream *left = (index_stream *)(this->node.left); 758 index_stream *right = (index_stream *)(this->node.right); 759 760 if (left != NULL) 761 index_cat_helper(info, left); 762 763 this->node.uncompressed_base += info->uncompressed_size; 764 this->node.compressed_base += info->file_size; 765 this->number += info->stream_number_add; 766 this->block_number_base += info->block_number_add; 767 index_tree_append(info->streams, &this->node); 768 769 if (right != NULL) 770 index_cat_helper(info, right); 771 772 return; 773 } 774 775 776 extern LZMA_API(lzma_ret) 777 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src, 778 const lzma_allocator *allocator) 779 { 780 if (dest == NULL || src == NULL) 781 return LZMA_PROG_ERROR; 782 783 const lzma_vli dest_file_size = lzma_index_file_size(dest); 784 785 // Check that we don't exceed the file size limits. 786 if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX 787 || dest->uncompressed_size + src->uncompressed_size 788 > LZMA_VLI_MAX) 789 return LZMA_DATA_ERROR; 790 791 // Check that the encoded size of the combined lzma_indexes stays 792 // within limits. In theory, this should be done only if we know 793 // that the user plans to actually combine the Streams and thus 794 // construct a single Index (probably rare). However, exceeding 795 // this limit is quite theoretical, so we do this check always 796 // to simplify things elsewhere. 797 { 798 const lzma_vli dest_size = index_size_unpadded( 799 dest->record_count, dest->index_list_size); 800 const lzma_vli src_size = index_size_unpadded( 801 src->record_count, src->index_list_size); 802 if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX) 803 return LZMA_DATA_ERROR; 804 } 805 806 // Optimize the last group to minimize memory usage. Allocation has 807 // to be done before modifying dest or src. 808 { 809 index_stream *s = (index_stream *)(dest->streams.rightmost); 810 index_group *g = (index_group *)(s->groups.rightmost); 811 if (g != NULL && g->last + 1 < g->allocated) { 812 assert(g->node.left == NULL); 813 assert(g->node.right == NULL); 814 815 index_group *newg = lzma_alloc(sizeof(index_group) 816 + (g->last + 1) 817 * sizeof(index_record), 818 allocator); 819 if (newg == NULL) 820 return LZMA_MEM_ERROR; 821 822 newg->node = g->node; 823 newg->allocated = g->last + 1; 824 newg->last = g->last; 825 newg->number_base = g->number_base; 826 827 memcpy(newg->records, g->records, newg->allocated 828 * sizeof(index_record)); 829 830 if (g->node.parent != NULL) { 831 assert(g->node.parent->right == &g->node); 832 g->node.parent->right = &newg->node; 833 } 834 835 if (s->groups.leftmost == &g->node) { 836 assert(s->groups.root == &g->node); 837 s->groups.leftmost = &newg->node; 838 s->groups.root = &newg->node; 839 } 840 841 assert(s->groups.rightmost == &g->node); 842 s->groups.rightmost = &newg->node; 843 844 lzma_free(g, allocator); 845 846 // NOTE: newg isn't leaked here because 847 // newg == (void *)&newg->node. 848 } 849 } 850 851 // dest->checks includes the check types of all except the last Stream 852 // in dest. Set the bit for the check type of the last Stream now so 853 // that it won't get lost when Stream(s) from src are appended to dest. 854 dest->checks = lzma_index_checks(dest); 855 856 // Add all the Streams from src to dest. Update the base offsets 857 // of each Stream from src. 858 const index_cat_info info = { 859 .uncompressed_size = dest->uncompressed_size, 860 .file_size = dest_file_size, 861 .stream_number_add = dest->streams.count, 862 .block_number_add = dest->record_count, 863 .streams = &dest->streams, 864 }; 865 index_cat_helper(&info, (index_stream *)(src->streams.root)); 866 867 // Update info about all the combined Streams. 868 dest->uncompressed_size += src->uncompressed_size; 869 dest->total_size += src->total_size; 870 dest->record_count += src->record_count; 871 dest->index_list_size += src->index_list_size; 872 dest->checks |= src->checks; 873 874 // There's nothing else left in src than the base structure. 875 lzma_free(src, allocator); 876 877 return LZMA_OK; 878 } 879 880 881 /// Duplicate an index_stream. 882 static index_stream * 883 index_dup_stream(const index_stream *src, const lzma_allocator *allocator) 884 { 885 // Catch a somewhat theoretical integer overflow. 886 if (src->record_count > PREALLOC_MAX) 887 return NULL; 888 889 // Allocate and initialize a new Stream. 890 index_stream *dest = index_stream_init(src->node.compressed_base, 891 src->node.uncompressed_base, src->number, 892 src->block_number_base, allocator); 893 if (dest == NULL) 894 return NULL; 895 896 // Copy the overall information. 897 dest->record_count = src->record_count; 898 dest->index_list_size = src->index_list_size; 899 dest->stream_flags = src->stream_flags; 900 dest->stream_padding = src->stream_padding; 901 902 // Return if there are no groups to duplicate. 903 if (src->groups.leftmost == NULL) 904 return dest; 905 906 // Allocate memory for the Records. We put all the Records into 907 // a single group. It's simplest and also tends to make 908 // lzma_index_locate() a little bit faster with very big Indexes. 909 index_group *destg = lzma_alloc(sizeof(index_group) 910 + src->record_count * sizeof(index_record), 911 allocator); 912 if (destg == NULL) { 913 index_stream_end(dest, allocator); 914 return NULL; 915 } 916 917 // Initialize destg. 918 destg->node.uncompressed_base = 0; 919 destg->node.compressed_base = 0; 920 destg->number_base = 1; 921 destg->allocated = src->record_count; 922 destg->last = src->record_count - 1; 923 924 // Go through all the groups in src and copy the Records into destg. 925 const index_group *srcg = (const index_group *)(src->groups.leftmost); 926 size_t i = 0; 927 do { 928 memcpy(destg->records + i, srcg->records, 929 (srcg->last + 1) * sizeof(index_record)); 930 i += srcg->last + 1; 931 srcg = index_tree_next(&srcg->node); 932 } while (srcg != NULL); 933 934 assert(i == destg->allocated); 935 936 // Add the group to the new Stream. 937 index_tree_append(&dest->groups, &destg->node); 938 939 return dest; 940 } 941 942 943 extern LZMA_API(lzma_index *) 944 lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator) 945 { 946 // Allocate the base structure (no initial Stream). 947 lzma_index *dest = index_init_plain(allocator); 948 if (dest == NULL) 949 return NULL; 950 951 // Copy the totals. 952 dest->uncompressed_size = src->uncompressed_size; 953 dest->total_size = src->total_size; 954 dest->record_count = src->record_count; 955 dest->index_list_size = src->index_list_size; 956 957 // Copy the Streams and the groups in them. 958 const index_stream *srcstream 959 = (const index_stream *)(src->streams.leftmost); 960 do { 961 index_stream *deststream = index_dup_stream( 962 srcstream, allocator); 963 if (deststream == NULL) { 964 lzma_index_end(dest, allocator); 965 return NULL; 966 } 967 968 index_tree_append(&dest->streams, &deststream->node); 969 970 srcstream = index_tree_next(&srcstream->node); 971 } while (srcstream != NULL); 972 973 return dest; 974 } 975 976 977 /// Indexing for lzma_index_iter.internal[] 978 enum { 979 ITER_INDEX, 980 ITER_STREAM, 981 ITER_GROUP, 982 ITER_RECORD, 983 ITER_METHOD, 984 }; 985 986 987 /// Values for lzma_index_iter.internal[ITER_METHOD].s 988 enum { 989 ITER_METHOD_NORMAL, 990 ITER_METHOD_NEXT, 991 ITER_METHOD_LEFTMOST, 992 }; 993 994 995 static void 996 iter_set_info(lzma_index_iter *iter) 997 { 998 const lzma_index *i = iter->internal[ITER_INDEX].p; 999 const index_stream *stream = iter->internal[ITER_STREAM].p; 1000 const index_group *group = iter->internal[ITER_GROUP].p; 1001 const size_t record = iter->internal[ITER_RECORD].s; 1002 1003 // lzma_index_iter.internal must not contain a pointer to the last 1004 // group in the index, because that may be reallocated by 1005 // lzma_index_cat(). 1006 if (group == NULL) { 1007 // There are no groups. 1008 assert(stream->groups.root == NULL); 1009 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; 1010 1011 } else if (i->streams.rightmost != &stream->node 1012 || stream->groups.rightmost != &group->node) { 1013 // The group is not not the last group in the index. 1014 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; 1015 1016 } else if (stream->groups.leftmost != &group->node) { 1017 // The group isn't the only group in the Stream, thus we 1018 // know that it must have a parent group i.e. it's not 1019 // the root node. 1020 assert(stream->groups.root != &group->node); 1021 assert(group->node.parent->right == &group->node); 1022 iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT; 1023 iter->internal[ITER_GROUP].p = group->node.parent; 1024 1025 } else { 1026 // The Stream has only one group. 1027 assert(stream->groups.root == &group->node); 1028 assert(group->node.parent == NULL); 1029 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; 1030 iter->internal[ITER_GROUP].p = NULL; 1031 } 1032 1033 // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t 1034 // internally. 1035 iter->stream.number = stream->number; 1036 iter->stream.block_count = stream->record_count; 1037 iter->stream.compressed_offset = stream->node.compressed_base; 1038 iter->stream.uncompressed_offset = stream->node.uncompressed_base; 1039 1040 // iter->stream.flags will be NULL if the Stream Flags haven't been 1041 // set with lzma_index_stream_flags(). 1042 iter->stream.flags = stream->stream_flags.version == UINT32_MAX 1043 ? NULL : &stream->stream_flags; 1044 iter->stream.padding = stream->stream_padding; 1045 1046 if (stream->groups.rightmost == NULL) { 1047 // Stream has no Blocks. 1048 iter->stream.compressed_size = index_size(0, 0) 1049 + 2 * LZMA_STREAM_HEADER_SIZE; 1050 iter->stream.uncompressed_size = 0; 1051 } else { 1052 const index_group *g = (const index_group *)( 1053 stream->groups.rightmost); 1054 1055 // Stream Header + Stream Footer + Index + Blocks 1056 iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE 1057 + index_size(stream->record_count, 1058 stream->index_list_size) 1059 + vli_ceil4(g->records[g->last].unpadded_sum); 1060 iter->stream.uncompressed_size 1061 = g->records[g->last].uncompressed_sum; 1062 } 1063 1064 if (group != NULL) { 1065 iter->block.number_in_stream = group->number_base + record; 1066 iter->block.number_in_file = iter->block.number_in_stream 1067 + stream->block_number_base; 1068 1069 iter->block.compressed_stream_offset 1070 = record == 0 ? group->node.compressed_base 1071 : vli_ceil4(group->records[ 1072 record - 1].unpadded_sum); 1073 iter->block.uncompressed_stream_offset 1074 = record == 0 ? group->node.uncompressed_base 1075 : group->records[record - 1].uncompressed_sum; 1076 1077 iter->block.uncompressed_size 1078 = group->records[record].uncompressed_sum 1079 - iter->block.uncompressed_stream_offset; 1080 iter->block.unpadded_size 1081 = group->records[record].unpadded_sum 1082 - iter->block.compressed_stream_offset; 1083 iter->block.total_size = vli_ceil4(iter->block.unpadded_size); 1084 1085 iter->block.compressed_stream_offset 1086 += LZMA_STREAM_HEADER_SIZE; 1087 1088 iter->block.compressed_file_offset 1089 = iter->block.compressed_stream_offset 1090 + iter->stream.compressed_offset; 1091 iter->block.uncompressed_file_offset 1092 = iter->block.uncompressed_stream_offset 1093 + iter->stream.uncompressed_offset; 1094 } 1095 1096 return; 1097 } 1098 1099 1100 extern LZMA_API(void) 1101 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i) 1102 { 1103 iter->internal[ITER_INDEX].p = i; 1104 lzma_index_iter_rewind(iter); 1105 return; 1106 } 1107 1108 1109 extern LZMA_API(void) 1110 lzma_index_iter_rewind(lzma_index_iter *iter) 1111 { 1112 iter->internal[ITER_STREAM].p = NULL; 1113 iter->internal[ITER_GROUP].p = NULL; 1114 iter->internal[ITER_RECORD].s = 0; 1115 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; 1116 return; 1117 } 1118 1119 1120 extern LZMA_API(lzma_bool) 1121 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode) 1122 { 1123 // Catch unsupported mode values. 1124 if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK) 1125 return true; 1126 1127 const lzma_index *i = iter->internal[ITER_INDEX].p; 1128 const index_stream *stream = iter->internal[ITER_STREAM].p; 1129 const index_group *group = NULL; 1130 size_t record = iter->internal[ITER_RECORD].s; 1131 1132 // If we are being asked for the next Stream, leave group to NULL 1133 // so that the rest of the this function thinks that this Stream 1134 // has no groups and will thus go to the next Stream. 1135 if (mode != LZMA_INDEX_ITER_STREAM) { 1136 // Get the pointer to the current group. See iter_set_inf() 1137 // for explanation. 1138 switch (iter->internal[ITER_METHOD].s) { 1139 case ITER_METHOD_NORMAL: 1140 group = iter->internal[ITER_GROUP].p; 1141 break; 1142 1143 case ITER_METHOD_NEXT: 1144 group = index_tree_next(iter->internal[ITER_GROUP].p); 1145 break; 1146 1147 case ITER_METHOD_LEFTMOST: 1148 group = (const index_group *)( 1149 stream->groups.leftmost); 1150 break; 1151 } 1152 } 1153 1154 again: 1155 if (stream == NULL) { 1156 // We at the beginning of the lzma_index. 1157 // Locate the first Stream. 1158 stream = (const index_stream *)(i->streams.leftmost); 1159 if (mode >= LZMA_INDEX_ITER_BLOCK) { 1160 // Since we are being asked to return information 1161 // about the first a Block, skip Streams that have 1162 // no Blocks. 1163 while (stream->groups.leftmost == NULL) { 1164 stream = index_tree_next(&stream->node); 1165 if (stream == NULL) 1166 return true; 1167 } 1168 } 1169 1170 // Start from the first Record in the Stream. 1171 group = (const index_group *)(stream->groups.leftmost); 1172 record = 0; 1173 1174 } else if (group != NULL && record < group->last) { 1175 // The next Record is in the same group. 1176 ++record; 1177 1178 } else { 1179 // This group has no more Records or this Stream has 1180 // no Blocks at all. 1181 record = 0; 1182 1183 // If group is not NULL, this Stream has at least one Block 1184 // and thus at least one group. Find the next group. 1185 if (group != NULL) 1186 group = index_tree_next(&group->node); 1187 1188 if (group == NULL) { 1189 // This Stream has no more Records. Find the next 1190 // Stream. If we are being asked to return information 1191 // about a Block, we skip empty Streams. 1192 do { 1193 stream = index_tree_next(&stream->node); 1194 if (stream == NULL) 1195 return true; 1196 } while (mode >= LZMA_INDEX_ITER_BLOCK 1197 && stream->groups.leftmost == NULL); 1198 1199 group = (const index_group *)( 1200 stream->groups.leftmost); 1201 } 1202 } 1203 1204 if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) { 1205 // We need to look for the next Block again if this Block 1206 // is empty. 1207 if (record == 0) { 1208 if (group->node.uncompressed_base 1209 == group->records[0].uncompressed_sum) 1210 goto again; 1211 } else if (group->records[record - 1].uncompressed_sum 1212 == group->records[record].uncompressed_sum) { 1213 goto again; 1214 } 1215 } 1216 1217 iter->internal[ITER_STREAM].p = stream; 1218 iter->internal[ITER_GROUP].p = group; 1219 iter->internal[ITER_RECORD].s = record; 1220 1221 iter_set_info(iter); 1222 1223 return false; 1224 } 1225 1226 1227 extern LZMA_API(lzma_bool) 1228 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target) 1229 { 1230 const lzma_index *i = iter->internal[ITER_INDEX].p; 1231 1232 // If the target is past the end of the file, return immediately. 1233 if (i->uncompressed_size <= target) 1234 return true; 1235 1236 // Locate the Stream containing the target offset. 1237 const index_stream *stream = index_tree_locate(&i->streams, target); 1238 assert(stream != NULL); 1239 target -= stream->node.uncompressed_base; 1240 1241 // Locate the group containing the target offset. 1242 const index_group *group = index_tree_locate(&stream->groups, target); 1243 assert(group != NULL); 1244 1245 // Use binary search to locate the exact Record. It is the first 1246 // Record whose uncompressed_sum is greater than target. 1247 // This is because we want the rightmost Record that fulfills the 1248 // search criterion. It is possible that there are empty Blocks; 1249 // we don't want to return them. 1250 size_t left = 0; 1251 size_t right = group->last; 1252 1253 while (left < right) { 1254 const size_t pos = left + (right - left) / 2; 1255 if (group->records[pos].uncompressed_sum <= target) 1256 left = pos + 1; 1257 else 1258 right = pos; 1259 } 1260 1261 iter->internal[ITER_STREAM].p = stream; 1262 iter->internal[ITER_GROUP].p = group; 1263 iter->internal[ITER_RECORD].s = left; 1264 1265 iter_set_info(iter); 1266 1267 return false; 1268 } 1269