xref: /freebsd/contrib/xz/src/liblzma/common/index.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       index.c
4 /// \brief      Handling of .xz Indexes and some other Stream information
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "index.h"
14 #include "stream_flags_common.h"
15 
16 
17 /// \brief      How many Records to allocate at once
18 ///
19 /// This should be big enough to avoid making lots of tiny allocations
20 /// but small enough to avoid too much unused memory at once.
21 #define INDEX_GROUP_SIZE 512
22 
23 
24 /// \brief      How many Records can be allocated at once at maximum
25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26 
27 
28 /// \brief      Base structure for index_stream and index_group structures
29 typedef struct index_tree_node_s index_tree_node;
30 struct index_tree_node_s {
31 	/// Uncompressed start offset of this Stream (relative to the
32 	/// beginning of the file) or Block (relative to the beginning
33 	/// of the Stream)
34 	lzma_vli uncompressed_base;
35 
36 	/// Compressed start offset of this Stream or Block
37 	lzma_vli compressed_base;
38 
39 	index_tree_node *parent;
40 	index_tree_node *left;
41 	index_tree_node *right;
42 };
43 
44 
45 /// \brief      AVL tree to hold index_stream or index_group structures
46 typedef struct {
47 	/// Root node
48 	index_tree_node *root;
49 
50 	/// Leftmost node. Since the tree will be filled sequentially,
51 	/// this won't change after the first node has been added to
52 	/// the tree.
53 	index_tree_node *leftmost;
54 
55 	/// The rightmost node in the tree. Since the tree is filled
56 	/// sequentially, this is always the node where to add the new data.
57 	index_tree_node *rightmost;
58 
59 	/// Number of nodes in the tree
60 	uint32_t count;
61 
62 } index_tree;
63 
64 
65 typedef struct {
66 	lzma_vli uncompressed_sum;
67 	lzma_vli unpadded_sum;
68 } index_record;
69 
70 
71 typedef struct {
72 	/// Every Record group is part of index_stream.groups tree.
73 	index_tree_node node;
74 
75 	/// Number of Blocks in this Stream before this group.
76 	lzma_vli number_base;
77 
78 	/// Number of Records that can be put in records[].
79 	size_t allocated;
80 
81 	/// Index of the last Record in use.
82 	size_t last;
83 
84 	/// The sizes in this array are stored as cumulative sums relative
85 	/// to the beginning of the Stream. This makes it possible to
86 	/// use binary search in lzma_index_locate().
87 	///
88 	/// Note that the cumulative summing is done specially for
89 	/// unpadded_sum: The previous value is rounded up to the next
90 	/// multiple of four before adding the Unpadded Size of the new
91 	/// Block. The total encoded size of the Blocks in the Stream
92 	/// is records[last].unpadded_sum in the last Record group of
93 	/// the Stream.
94 	///
95 	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
96 	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97 	/// The total encoded size of these Blocks is 184.
98 	///
99 	/// This is a flexible array, because it makes easy to optimize
100 	/// memory usage in case someone concatenates many Streams that
101 	/// have only one or few Blocks.
102 	index_record records[];
103 
104 } index_group;
105 
106 
107 typedef struct {
108 	/// Every index_stream is a node in the tree of Sreams.
109 	index_tree_node node;
110 
111 	/// Number of this Stream (first one is 1)
112 	uint32_t number;
113 
114 	/// Total number of Blocks before this Stream
115 	lzma_vli block_number_base;
116 
117 	/// Record groups of this Stream are stored in a tree.
118 	/// It's a T-tree with AVL-tree balancing. There are
119 	/// INDEX_GROUP_SIZE Records per node by default.
120 	/// This keeps the number of memory allocations reasonable
121 	/// and finding a Record is fast.
122 	index_tree groups;
123 
124 	/// Number of Records in this Stream
125 	lzma_vli record_count;
126 
127 	/// Size of the List of Records field in this Stream. This is used
128 	/// together with record_count to calculate the size of the Index
129 	/// field and thus the total size of the Stream.
130 	lzma_vli index_list_size;
131 
132 	/// Stream Flags of this Stream. This is meaningful only if
133 	/// the Stream Flags have been told us with lzma_index_stream_flags().
134 	/// Initially stream_flags.version is set to UINT32_MAX to indicate
135 	/// that the Stream Flags are unknown.
136 	lzma_stream_flags stream_flags;
137 
138 	/// Amount of Stream Padding after this Stream. This defaults to
139 	/// zero and can be set with lzma_index_stream_padding().
140 	lzma_vli stream_padding;
141 
142 } index_stream;
143 
144 
145 struct lzma_index_s {
146 	/// AVL-tree containing the Stream(s). Often there is just one
147 	/// Stream, but using a tree keeps lookups fast even when there
148 	/// are many concatenated Streams.
149 	index_tree streams;
150 
151 	/// Uncompressed size of all the Blocks in the Stream(s)
152 	lzma_vli uncompressed_size;
153 
154 	/// Total size of all the Blocks in the Stream(s)
155 	lzma_vli total_size;
156 
157 	/// Total number of Records in all Streams in this lzma_index
158 	lzma_vli record_count;
159 
160 	/// Size of the List of Records field if all the Streams in this
161 	/// lzma_index were packed into a single Stream (makes it simpler to
162 	/// take many .xz files and combine them into a single Stream).
163 	///
164 	/// This value together with record_count is needed to calculate
165 	/// Backward Size that is stored into Stream Footer.
166 	lzma_vli index_list_size;
167 
168 	/// How many Records to allocate at once in lzma_index_append().
169 	/// This defaults to INDEX_GROUP_SIZE but can be overriden with
170 	/// lzma_index_prealloc().
171 	size_t prealloc;
172 
173 	/// Bitmask indicating what integrity check types have been used
174 	/// as set by lzma_index_stream_flags(). The bit of the last Stream
175 	/// is not included here, since it is possible to change it by
176 	/// calling lzma_index_stream_flags() again.
177 	uint32_t checks;
178 };
179 
180 
181 static void
182 index_tree_init(index_tree *tree)
183 {
184 	tree->root = NULL;
185 	tree->leftmost = NULL;
186 	tree->rightmost = NULL;
187 	tree->count = 0;
188 	return;
189 }
190 
191 
192 /// Helper for index_tree_end()
193 static void
194 index_tree_node_end(index_tree_node *node, lzma_allocator *allocator,
195 		void (*free_func)(void *node, lzma_allocator *allocator))
196 {
197 	// The tree won't ever be very huge, so recursion should be fine.
198 	// 20 levels in the tree is likely quite a lot already in practice.
199 	if (node->left != NULL)
200 		index_tree_node_end(node->left, allocator, free_func);
201 
202 	if (node->right != NULL)
203 		index_tree_node_end(node->right, allocator, free_func);
204 
205 	if (free_func != NULL)
206 		free_func(node, allocator);
207 
208 	lzma_free(node, allocator);
209 	return;
210 }
211 
212 
213 /// Free the meory allocated for a tree. If free_func is not NULL,
214 /// it is called on each node before freeing the node. This is used
215 /// to free the Record groups from each index_stream before freeing
216 /// the index_stream itself.
217 static void
218 index_tree_end(index_tree *tree, lzma_allocator *allocator,
219 		void (*free_func)(void *node, lzma_allocator *allocator))
220 {
221 	if (tree->root != NULL)
222 		index_tree_node_end(tree->root, allocator, free_func);
223 
224 	return;
225 }
226 
227 
228 /// Add a new node to the tree. node->uncompressed_base and
229 /// node->compressed_base must have been set by the caller already.
230 static void
231 index_tree_append(index_tree *tree, index_tree_node *node)
232 {
233 	node->parent = tree->rightmost;
234 	node->left = NULL;
235 	node->right = NULL;
236 
237 	++tree->count;
238 
239 	// Handle the special case of adding the first node.
240 	if (tree->root == NULL) {
241 		tree->root = node;
242 		tree->leftmost = node;
243 		tree->rightmost = node;
244 		return;
245 	}
246 
247 	// The tree is always filled sequentially.
248 	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
249 	assert(tree->rightmost->compressed_base < node->compressed_base);
250 
251 	// Add the new node after the rightmost node. It's the correct
252 	// place due to the reason above.
253 	tree->rightmost->right = node;
254 	tree->rightmost = node;
255 
256 	// Balance the AVL-tree if needed. We don't need to keep the balance
257 	// factors in nodes, because we always fill the tree sequentially,
258 	// and thus know the state of the tree just by looking at the node
259 	// count. From the node count we can calculate how many steps to go
260 	// up in the tree to find the rotation root.
261 	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
262 	if (up != 0) {
263 		// Locate the root node for the rotation.
264 		up = ctz32(tree->count) + 2;
265 		do {
266 			node = node->parent;
267 		} while (--up > 0);
268 
269 		// Rotate left using node as the rotation root.
270 		index_tree_node *pivot = node->right;
271 
272 		if (node->parent == NULL) {
273 			tree->root = pivot;
274 		} else {
275 			assert(node->parent->right == node);
276 			node->parent->right = pivot;
277 		}
278 
279 		pivot->parent = node->parent;
280 
281 		node->right = pivot->left;
282 		if (node->right != NULL)
283 			node->right->parent = node;
284 
285 		pivot->left = node;
286 		node->parent = pivot;
287 	}
288 
289 	return;
290 }
291 
292 
293 /// Get the next node in the tree. Return NULL if there are no more nodes.
294 static void *
295 index_tree_next(const index_tree_node *node)
296 {
297 	if (node->right != NULL) {
298 		node = node->right;
299 		while (node->left != NULL)
300 			node = node->left;
301 
302 		return (void *)(node);
303 	}
304 
305 	while (node->parent != NULL && node->parent->right == node)
306 		node = node->parent;
307 
308 	return (void *)(node->parent);
309 }
310 
311 
312 /// Locate a node that contains the given uncompressed offset. It is
313 /// caller's job to check that target is not bigger than the uncompressed
314 /// size of the tree (the last node would be returned in that case still).
315 static void *
316 index_tree_locate(const index_tree *tree, lzma_vli target)
317 {
318 	const index_tree_node *result = NULL;
319 	const index_tree_node *node = tree->root;
320 
321 	assert(tree->leftmost == NULL
322 			|| tree->leftmost->uncompressed_base == 0);
323 
324 	// Consecutive nodes may have the same uncompressed_base.
325 	// We must pick the rightmost one.
326 	while (node != NULL) {
327 		if (node->uncompressed_base > target) {
328 			node = node->left;
329 		} else {
330 			result = node;
331 			node = node->right;
332 		}
333 	}
334 
335 	return (void *)(result);
336 }
337 
338 
339 /// Allocate and initialize a new Stream using the given base offsets.
340 static index_stream *
341 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
342 		lzma_vli stream_number, lzma_vli block_number_base,
343 		lzma_allocator *allocator)
344 {
345 	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
346 	if (s == NULL)
347 		return NULL;
348 
349 	s->node.uncompressed_base = uncompressed_base;
350 	s->node.compressed_base = compressed_base;
351 	s->node.parent = NULL;
352 	s->node.left = NULL;
353 	s->node.right = NULL;
354 
355 	s->number = stream_number;
356 	s->block_number_base = block_number_base;
357 
358 	index_tree_init(&s->groups);
359 
360 	s->record_count = 0;
361 	s->index_list_size = 0;
362 	s->stream_flags.version = UINT32_MAX;
363 	s->stream_padding = 0;
364 
365 	return s;
366 }
367 
368 
369 /// Free the memory allocated for a Stream and its Record groups.
370 static void
371 index_stream_end(void *node, lzma_allocator *allocator)
372 {
373 	index_stream *s = node;
374 	index_tree_end(&s->groups, allocator, NULL);
375 	return;
376 }
377 
378 
379 static lzma_index *
380 index_init_plain(lzma_allocator *allocator)
381 {
382 	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
383 	if (i != NULL) {
384 		index_tree_init(&i->streams);
385 		i->uncompressed_size = 0;
386 		i->total_size = 0;
387 		i->record_count = 0;
388 		i->index_list_size = 0;
389 		i->prealloc = INDEX_GROUP_SIZE;
390 		i->checks = 0;
391 	}
392 
393 	return i;
394 }
395 
396 
397 extern LZMA_API(lzma_index *)
398 lzma_index_init(lzma_allocator *allocator)
399 {
400 	lzma_index *i = index_init_plain(allocator);
401 	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
402 	if (i == NULL || s == NULL) {
403 		index_stream_end(s, allocator);
404 		lzma_free(i, allocator);
405 	}
406 
407 	index_tree_append(&i->streams, &s->node);
408 
409 	return i;
410 }
411 
412 
413 extern LZMA_API(void)
414 lzma_index_end(lzma_index *i, lzma_allocator *allocator)
415 {
416 	// NOTE: If you modify this function, check also the bottom
417 	// of lzma_index_cat().
418 	if (i != NULL) {
419 		index_tree_end(&i->streams, allocator, &index_stream_end);
420 		lzma_free(i, allocator);
421 	}
422 
423 	return;
424 }
425 
426 
427 extern void
428 lzma_index_prealloc(lzma_index *i, lzma_vli records)
429 {
430 	if (records > PREALLOC_MAX)
431 		records = PREALLOC_MAX;
432 
433 	i->prealloc = (size_t)(records);
434 	return;
435 }
436 
437 
438 extern LZMA_API(uint64_t)
439 lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
440 {
441 	// This calculates an upper bound that is only a little bit
442 	// bigger than the exact maximum memory usage with the given
443 	// parameters.
444 
445 	// Typical malloc() overhead is 2 * sizeof(void *) but we take
446 	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
447 	// instead would give too inaccurate estimate.
448 	const size_t alloc_overhead = 4 * sizeof(void *);
449 
450 	// Amount of memory needed for each Stream base structures.
451 	// We assume that every Stream has at least one Block and
452 	// thus at least one group.
453 	const size_t stream_base = sizeof(index_stream)
454 			+ sizeof(index_group) + 2 * alloc_overhead;
455 
456 	// Amount of memory needed per group.
457 	const size_t group_base = sizeof(index_group)
458 			+ INDEX_GROUP_SIZE * sizeof(index_record)
459 			+ alloc_overhead;
460 
461 	// Number of groups. There may actually be more, but that overhead
462 	// has been taken into account in stream_base already.
463 	const lzma_vli groups
464 			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
465 
466 	// Memory used by index_stream and index_group structures.
467 	const uint64_t streams_mem = streams * stream_base;
468 	const uint64_t groups_mem = groups * group_base;
469 
470 	// Memory used by the base structure.
471 	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
472 
473 	// Validate the arguments and catch integer overflows.
474 	// Maximum number of Streams is "only" UINT32_MAX, because
475 	// that limit is used by the tree containing the Streams.
476 	const uint64_t limit = UINT64_MAX - index_base;
477 	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
478 			|| streams > limit / stream_base
479 			|| groups > limit / group_base
480 			|| limit - streams_mem < groups_mem)
481 		return UINT64_MAX;
482 
483 	return index_base + streams_mem + groups_mem;
484 }
485 
486 
487 extern LZMA_API(uint64_t)
488 lzma_index_memused(const lzma_index *i)
489 {
490 	return lzma_index_memusage(i->streams.count, i->record_count);
491 }
492 
493 
494 extern LZMA_API(lzma_vli)
495 lzma_index_block_count(const lzma_index *i)
496 {
497 	return i->record_count;
498 }
499 
500 
501 extern LZMA_API(lzma_vli)
502 lzma_index_stream_count(const lzma_index *i)
503 {
504 	return i->streams.count;
505 }
506 
507 
508 extern LZMA_API(lzma_vli)
509 lzma_index_size(const lzma_index *i)
510 {
511 	return index_size(i->record_count, i->index_list_size);
512 }
513 
514 
515 extern LZMA_API(lzma_vli)
516 lzma_index_total_size(const lzma_index *i)
517 {
518 	return i->total_size;
519 }
520 
521 
522 extern LZMA_API(lzma_vli)
523 lzma_index_stream_size(const lzma_index *i)
524 {
525 	// Stream Header + Blocks + Index + Stream Footer
526 	return LZMA_STREAM_HEADER_SIZE + i->total_size
527 			+ index_size(i->record_count, i->index_list_size)
528 			+ LZMA_STREAM_HEADER_SIZE;
529 }
530 
531 
532 static lzma_vli
533 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
534 		lzma_vli record_count, lzma_vli index_list_size,
535 		lzma_vli stream_padding)
536 {
537 	// Earlier Streams and Stream Paddings + Stream Header
538 	// + Blocks + Index + Stream Footer + Stream Padding
539 	//
540 	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
541 	// when this function is used in lzma_index_append().
542 	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
543 			+ stream_padding + vli_ceil4(unpadded_sum);
544 	if (file_size > LZMA_VLI_MAX)
545 		return LZMA_VLI_UNKNOWN;
546 
547 	// The same applies here.
548 	file_size += index_size(record_count, index_list_size);
549 	if (file_size > LZMA_VLI_MAX)
550 		return LZMA_VLI_UNKNOWN;
551 
552 	return file_size;
553 }
554 
555 
556 extern LZMA_API(lzma_vli)
557 lzma_index_file_size(const lzma_index *i)
558 {
559 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
560 	const index_group *g = (const index_group *)(s->groups.rightmost);
561 	return index_file_size(s->node.compressed_base,
562 			g == NULL ? 0 : g->records[g->last].unpadded_sum,
563 			s->record_count, s->index_list_size,
564 			s->stream_padding);
565 }
566 
567 
568 extern LZMA_API(lzma_vli)
569 lzma_index_uncompressed_size(const lzma_index *i)
570 {
571 	return i->uncompressed_size;
572 }
573 
574 
575 extern LZMA_API(uint32_t)
576 lzma_index_checks(const lzma_index *i)
577 {
578 	uint32_t checks = i->checks;
579 
580 	// Get the type of the Check of the last Stream too.
581 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
582 	if (s->stream_flags.version != UINT32_MAX)
583 		checks |= UINT32_C(1) << s->stream_flags.check;
584 
585 	return checks;
586 }
587 
588 
589 extern uint32_t
590 lzma_index_padding_size(const lzma_index *i)
591 {
592 	return (LZMA_VLI_C(4) - index_size_unpadded(
593 			i->record_count, i->index_list_size)) & 3;
594 }
595 
596 
597 extern LZMA_API(lzma_ret)
598 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
599 {
600 	if (i == NULL || stream_flags == NULL)
601 		return LZMA_PROG_ERROR;
602 
603 	// Validate the Stream Flags.
604 	return_if_error(lzma_stream_flags_compare(
605 			stream_flags, stream_flags));
606 
607 	index_stream *s = (index_stream *)(i->streams.rightmost);
608 	s->stream_flags = *stream_flags;
609 
610 	return LZMA_OK;
611 }
612 
613 
614 extern LZMA_API(lzma_ret)
615 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
616 {
617 	if (i == NULL || stream_padding > LZMA_VLI_MAX
618 			|| (stream_padding & 3) != 0)
619 		return LZMA_PROG_ERROR;
620 
621 	index_stream *s = (index_stream *)(i->streams.rightmost);
622 
623 	// Check that the new value won't make the file grow too big.
624 	const lzma_vli old_stream_padding = s->stream_padding;
625 	s->stream_padding = 0;
626 	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
627 		s->stream_padding = old_stream_padding;
628 		return LZMA_DATA_ERROR;
629 	}
630 
631 	s->stream_padding = stream_padding;
632 	return LZMA_OK;
633 }
634 
635 
636 extern LZMA_API(lzma_ret)
637 lzma_index_append(lzma_index *i, lzma_allocator *allocator,
638 		lzma_vli unpadded_size, lzma_vli uncompressed_size)
639 {
640 	// Validate.
641 	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
642 			|| unpadded_size > UNPADDED_SIZE_MAX
643 			|| uncompressed_size > LZMA_VLI_MAX)
644 		return LZMA_PROG_ERROR;
645 
646 	index_stream *s = (index_stream *)(i->streams.rightmost);
647 	index_group *g = (index_group *)(s->groups.rightmost);
648 
649 	const lzma_vli compressed_base = g == NULL ? 0
650 			: vli_ceil4(g->records[g->last].unpadded_sum);
651 	const lzma_vli uncompressed_base = g == NULL ? 0
652 			: g->records[g->last].uncompressed_sum;
653 	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
654 			+ lzma_vli_size(uncompressed_size);
655 
656 	// Check that the file size will stay within limits.
657 	if (index_file_size(s->node.compressed_base,
658 			compressed_base + unpadded_size, s->record_count + 1,
659 			s->index_list_size + index_list_size_add,
660 			s->stream_padding) == LZMA_VLI_UNKNOWN)
661 		return LZMA_DATA_ERROR;
662 
663 	// The size of the Index field must not exceed the maximum value
664 	// that can be stored in the Backward Size field.
665 	if (index_size(i->record_count + 1,
666 			i->index_list_size + index_list_size_add)
667 			> LZMA_BACKWARD_SIZE_MAX)
668 		return LZMA_DATA_ERROR;
669 
670 	if (g != NULL && g->last + 1 < g->allocated) {
671 		// There is space in the last group at least for one Record.
672 		++g->last;
673 	} else {
674 		// We need to allocate a new group.
675 		g = lzma_alloc(sizeof(index_group)
676 				+ i->prealloc * sizeof(index_record),
677 				allocator);
678 		if (g == NULL)
679 			return LZMA_MEM_ERROR;
680 
681 		g->last = 0;
682 		g->allocated = i->prealloc;
683 
684 		// Reset prealloc so that if the application happens to
685 		// add new Records, the allocation size will be sane.
686 		i->prealloc = INDEX_GROUP_SIZE;
687 
688 		// Set the start offsets of this group.
689 		g->node.uncompressed_base = uncompressed_base;
690 		g->node.compressed_base = compressed_base;
691 		g->number_base = s->record_count + 1;
692 
693 		// Add the new group to the Stream.
694 		index_tree_append(&s->groups, &g->node);
695 	}
696 
697 	// Add the new Record to the group.
698 	g->records[g->last].uncompressed_sum
699 			= uncompressed_base + uncompressed_size;
700 	g->records[g->last].unpadded_sum
701 			= compressed_base + unpadded_size;
702 
703 	// Update the totals.
704 	++s->record_count;
705 	s->index_list_size += index_list_size_add;
706 
707 	i->total_size += vli_ceil4(unpadded_size);
708 	i->uncompressed_size += uncompressed_size;
709 	++i->record_count;
710 	i->index_list_size += index_list_size_add;
711 
712 	return LZMA_OK;
713 }
714 
715 
716 /// Structure to pass info to index_cat_helper()
717 typedef struct {
718 	/// Uncompressed size of the destination
719 	lzma_vli uncompressed_size;
720 
721 	/// Compressed file size of the destination
722 	lzma_vli file_size;
723 
724 	/// Same as above but for Block numbers
725 	lzma_vli block_number_add;
726 
727 	/// Number of Streams that were in the destination index before we
728 	/// started appending new Streams from the source index. This is
729 	/// used to fix the Stream numbering.
730 	uint32_t stream_number_add;
731 
732 	/// Destination index' Stream tree
733 	index_tree *streams;
734 
735 } index_cat_info;
736 
737 
738 /// Add the Stream nodes from the source index to dest using recursion.
739 /// Simplest iterative traversal of the source tree wouldn't work, because
740 /// we update the pointers in nodes when moving them to the destination tree.
741 static void
742 index_cat_helper(const index_cat_info *info, index_stream *this)
743 {
744 	index_stream *left = (index_stream *)(this->node.left);
745 	index_stream *right = (index_stream *)(this->node.right);
746 
747 	if (left != NULL)
748 		index_cat_helper(info, left);
749 
750 	this->node.uncompressed_base += info->uncompressed_size;
751 	this->node.compressed_base += info->file_size;
752 	this->number += info->stream_number_add;
753 	this->block_number_base += info->block_number_add;
754 	index_tree_append(info->streams, &this->node);
755 
756 	if (right != NULL)
757 		index_cat_helper(info, right);
758 
759 	return;
760 }
761 
762 
763 extern LZMA_API(lzma_ret)
764 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
765 		lzma_allocator *allocator)
766 {
767 	const lzma_vli dest_file_size = lzma_index_file_size(dest);
768 
769 	// Check that we don't exceed the file size limits.
770 	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
771 			|| dest->uncompressed_size + src->uncompressed_size
772 				> LZMA_VLI_MAX)
773 		return LZMA_DATA_ERROR;
774 
775 	// Check that the encoded size of the combined lzma_indexes stays
776 	// within limits. In theory, this should be done only if we know
777 	// that the user plans to actually combine the Streams and thus
778 	// construct a single Index (probably rare). However, exceeding
779 	// this limit is quite theoretical, so we do this check always
780 	// to simplify things elsewhere.
781 	{
782 		const lzma_vli dest_size = index_size_unpadded(
783 				dest->record_count, dest->index_list_size);
784 		const lzma_vli src_size = index_size_unpadded(
785 				src->record_count, src->index_list_size);
786 		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
787 			return LZMA_DATA_ERROR;
788 	}
789 
790 	// Optimize the last group to minimize memory usage. Allocation has
791 	// to be done before modifying dest or src.
792 	{
793 		index_stream *s = (index_stream *)(dest->streams.rightmost);
794 		index_group *g = (index_group *)(s->groups.rightmost);
795 		if (g != NULL && g->last + 1 < g->allocated) {
796 			assert(g->node.left == NULL);
797 			assert(g->node.right == NULL);
798 
799 			index_group *newg = lzma_alloc(sizeof(index_group)
800 					+ (g->last + 1)
801 					* sizeof(index_record),
802 					allocator);
803 			if (newg == NULL)
804 				return LZMA_MEM_ERROR;
805 
806 			newg->node = g->node;
807 			newg->allocated = g->last + 1;
808 			newg->last = g->last;
809 			newg->number_base = g->number_base;
810 
811 			memcpy(newg->records, g->records, newg->allocated
812 					* sizeof(index_record));
813 
814 			if (g->node.parent != NULL) {
815 				assert(g->node.parent->right == &g->node);
816 				g->node.parent->right = &newg->node;
817 			}
818 
819 			if (s->groups.leftmost == &g->node) {
820 				assert(s->groups.root == &g->node);
821 				s->groups.leftmost = &newg->node;
822 				s->groups.root = &newg->node;
823 			}
824 
825 			if (s->groups.rightmost == &g->node)
826 				s->groups.rightmost = &newg->node;
827 
828 			lzma_free(g, allocator);
829 		}
830 	}
831 
832 	// Add all the Streams from src to dest. Update the base offsets
833 	// of each Stream from src.
834 	const index_cat_info info = {
835 		.uncompressed_size = dest->uncompressed_size,
836 		.file_size = dest_file_size,
837 		.stream_number_add = dest->streams.count,
838 		.block_number_add = dest->record_count,
839 		.streams = &dest->streams,
840 	};
841 	index_cat_helper(&info, (index_stream *)(src->streams.root));
842 
843 	// Update info about all the combined Streams.
844 	dest->uncompressed_size += src->uncompressed_size;
845 	dest->total_size += src->total_size;
846 	dest->record_count += src->record_count;
847 	dest->index_list_size += src->index_list_size;
848 	dest->checks = lzma_index_checks(dest) | src->checks;
849 
850 	// There's nothing else left in src than the base structure.
851 	lzma_free(src, allocator);
852 
853 	return LZMA_OK;
854 }
855 
856 
857 /// Duplicate an index_stream.
858 static index_stream *
859 index_dup_stream(const index_stream *src, lzma_allocator *allocator)
860 {
861 	// Catch a somewhat theoretical integer overflow.
862 	if (src->record_count > PREALLOC_MAX)
863 		return NULL;
864 
865 	// Allocate and initialize a new Stream.
866 	index_stream *dest = index_stream_init(src->node.compressed_base,
867 			src->node.uncompressed_base, src->number,
868 			src->block_number_base, allocator);
869 
870 	// Return immediately if allocation failed or if there are
871 	// no groups to duplicate.
872 	if (dest == NULL || src->groups.leftmost == NULL)
873 		return dest;
874 
875 	// Copy the overall information.
876 	dest->record_count = src->record_count;
877 	dest->index_list_size = src->index_list_size;
878 	dest->stream_flags = src->stream_flags;
879 	dest->stream_padding = src->stream_padding;
880 
881 	// Allocate memory for the Records. We put all the Records into
882 	// a single group. It's simplest and also tends to make
883 	// lzma_index_locate() a little bit faster with very big Indexes.
884 	index_group *destg = lzma_alloc(sizeof(index_group)
885 			+ src->record_count * sizeof(index_record),
886 			allocator);
887 	if (destg == NULL) {
888 		index_stream_end(dest, allocator);
889 		return NULL;
890 	}
891 
892 	// Initialize destg.
893 	destg->node.uncompressed_base = 0;
894 	destg->node.compressed_base = 0;
895 	destg->number_base = 1;
896 	destg->allocated = src->record_count;
897 	destg->last = src->record_count - 1;
898 
899 	// Go through all the groups in src and copy the Records into destg.
900 	const index_group *srcg = (const index_group *)(src->groups.leftmost);
901 	size_t i = 0;
902 	do {
903 		memcpy(destg->records + i, srcg->records,
904 				(srcg->last + 1) * sizeof(index_record));
905 		i += srcg->last + 1;
906 		srcg = index_tree_next(&srcg->node);
907 	} while (srcg != NULL);
908 
909 	assert(i == destg->allocated);
910 
911 	// Add the group to the new Stream.
912 	index_tree_append(&dest->groups, &destg->node);
913 
914 	return dest;
915 }
916 
917 
918 extern LZMA_API(lzma_index *)
919 lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
920 {
921 	// Allocate the base structure (no initial Stream).
922 	lzma_index *dest = index_init_plain(allocator);
923 	if (dest == NULL)
924 		return NULL;
925 
926 	// Copy the totals.
927 	dest->uncompressed_size = src->uncompressed_size;
928 	dest->total_size = src->total_size;
929 	dest->record_count = src->record_count;
930 	dest->index_list_size = src->index_list_size;
931 
932 	// Copy the Streams and the groups in them.
933 	const index_stream *srcstream
934 			= (const index_stream *)(src->streams.leftmost);
935 	do {
936 		index_stream *deststream = index_dup_stream(
937 				srcstream, allocator);
938 		if (deststream == NULL) {
939 			lzma_index_end(dest, allocator);
940 			return NULL;
941 		}
942 
943 		index_tree_append(&dest->streams, &deststream->node);
944 
945 		srcstream = index_tree_next(&srcstream->node);
946 	} while (srcstream != NULL);
947 
948 	return dest;
949 }
950 
951 
952 /// Indexing for lzma_index_iter.internal[]
953 enum {
954 	ITER_INDEX,
955 	ITER_STREAM,
956 	ITER_GROUP,
957 	ITER_RECORD,
958 	ITER_METHOD,
959 };
960 
961 
962 /// Values for lzma_index_iter.internal[ITER_METHOD].s
963 enum {
964 	ITER_METHOD_NORMAL,
965 	ITER_METHOD_NEXT,
966 	ITER_METHOD_LEFTMOST,
967 };
968 
969 
970 static void
971 iter_set_info(lzma_index_iter *iter)
972 {
973 	const lzma_index *i = iter->internal[ITER_INDEX].p;
974 	const index_stream *stream = iter->internal[ITER_STREAM].p;
975 	const index_group *group = iter->internal[ITER_GROUP].p;
976 	const size_t record = iter->internal[ITER_RECORD].s;
977 
978 	// lzma_index_iter.internal must not contain a pointer to the last
979 	// group in the index, because that may be reallocated by
980 	// lzma_index_cat().
981 	if (group == NULL) {
982 		// There are no groups.
983 		assert(stream->groups.root == NULL);
984 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
985 
986 	} else if (i->streams.rightmost != &stream->node
987 			|| stream->groups.rightmost != &group->node) {
988 		// The group is not not the last group in the index.
989 		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
990 
991 	} else if (stream->groups.leftmost != &group->node) {
992 		// The group isn't the only group in the Stream, thus we
993 		// know that it must have a parent group i.e. it's not
994 		// the root node.
995 		assert(stream->groups.root != &group->node);
996 		assert(group->node.parent->right == &group->node);
997 		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
998 		iter->internal[ITER_GROUP].p = group->node.parent;
999 
1000 	} else {
1001 		// The Stream has only one group.
1002 		assert(stream->groups.root == &group->node);
1003 		assert(group->node.parent == NULL);
1004 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1005 		iter->internal[ITER_GROUP].p = NULL;
1006 	}
1007 
1008 	iter->stream.number = stream->number;
1009 	iter->stream.block_count = stream->record_count;
1010 	iter->stream.compressed_offset = stream->node.compressed_base;
1011 	iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1012 
1013 	// iter->stream.flags will be NULL if the Stream Flags haven't been
1014 	// set with lzma_index_stream_flags().
1015 	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1016 			? NULL : &stream->stream_flags;
1017 	iter->stream.padding = stream->stream_padding;
1018 
1019 	if (stream->groups.rightmost == NULL) {
1020 		// Stream has no Blocks.
1021 		iter->stream.compressed_size = index_size(0, 0)
1022 				+ 2 * LZMA_STREAM_HEADER_SIZE;
1023 		iter->stream.uncompressed_size = 0;
1024 	} else {
1025 		const index_group *g = (const index_group *)(
1026 				stream->groups.rightmost);
1027 
1028 		// Stream Header + Stream Footer + Index + Blocks
1029 		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1030 				+ index_size(stream->record_count,
1031 					stream->index_list_size)
1032 				+ vli_ceil4(g->records[g->last].unpadded_sum);
1033 		iter->stream.uncompressed_size
1034 				= g->records[g->last].uncompressed_sum;
1035 	}
1036 
1037 	if (group != NULL) {
1038 		iter->block.number_in_stream = group->number_base + record;
1039 		iter->block.number_in_file = iter->block.number_in_stream
1040 				+ stream->block_number_base;
1041 
1042 		iter->block.compressed_stream_offset
1043 				= record == 0 ? group->node.compressed_base
1044 				: vli_ceil4(group->records[
1045 					record - 1].unpadded_sum);
1046 		iter->block.uncompressed_stream_offset
1047 				= record == 0 ? group->node.uncompressed_base
1048 				: group->records[record - 1].uncompressed_sum;
1049 
1050 		iter->block.uncompressed_size
1051 				= group->records[record].uncompressed_sum
1052 				- iter->block.uncompressed_stream_offset;
1053 		iter->block.unpadded_size
1054 				= group->records[record].unpadded_sum
1055 				- iter->block.compressed_stream_offset;
1056 		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1057 
1058 		iter->block.compressed_stream_offset
1059 				+= LZMA_STREAM_HEADER_SIZE;
1060 
1061 		iter->block.compressed_file_offset
1062 				= iter->block.compressed_stream_offset
1063 				+ iter->stream.compressed_offset;
1064 		iter->block.uncompressed_file_offset
1065 				= iter->block.uncompressed_stream_offset
1066 				+ iter->stream.uncompressed_offset;
1067 	}
1068 
1069 	return;
1070 }
1071 
1072 
1073 extern LZMA_API(void)
1074 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1075 {
1076 	iter->internal[ITER_INDEX].p = i;
1077 	lzma_index_iter_rewind(iter);
1078 	return;
1079 }
1080 
1081 
1082 extern LZMA_API(void)
1083 lzma_index_iter_rewind(lzma_index_iter *iter)
1084 {
1085 	iter->internal[ITER_STREAM].p = NULL;
1086 	iter->internal[ITER_GROUP].p = NULL;
1087 	iter->internal[ITER_RECORD].s = 0;
1088 	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1089 	return;
1090 }
1091 
1092 
1093 extern LZMA_API(lzma_bool)
1094 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1095 {
1096 	// Catch unsupported mode values.
1097 	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1098 		return true;
1099 
1100 	const lzma_index *i = iter->internal[ITER_INDEX].p;
1101 	const index_stream *stream = iter->internal[ITER_STREAM].p;
1102 	const index_group *group = NULL;
1103 	size_t record = iter->internal[ITER_RECORD].s;
1104 
1105 	// If we are being asked for the next Stream, leave group to NULL
1106 	// so that the rest of the this function thinks that this Stream
1107 	// has no groups and will thus go to the next Stream.
1108 	if (mode != LZMA_INDEX_ITER_STREAM) {
1109 		// Get the pointer to the current group. See iter_set_inf()
1110 		// for explanation.
1111 		switch (iter->internal[ITER_METHOD].s) {
1112 		case ITER_METHOD_NORMAL:
1113 			group = iter->internal[ITER_GROUP].p;
1114 			break;
1115 
1116 		case ITER_METHOD_NEXT:
1117 			group = index_tree_next(iter->internal[ITER_GROUP].p);
1118 			break;
1119 
1120 		case ITER_METHOD_LEFTMOST:
1121 			group = (const index_group *)(
1122 					stream->groups.leftmost);
1123 			break;
1124 		}
1125 	}
1126 
1127 again:
1128 	if (stream == NULL) {
1129 		// We at the beginning of the lzma_index.
1130 		// Locate the first Stream.
1131 		stream = (const index_stream *)(i->streams.leftmost);
1132 		if (mode >= LZMA_INDEX_ITER_BLOCK) {
1133 			// Since we are being asked to return information
1134 			// about the first a Block, skip Streams that have
1135 			// no Blocks.
1136 			while (stream->groups.leftmost == NULL) {
1137 				stream = index_tree_next(&stream->node);
1138 				if (stream == NULL)
1139 					return true;
1140 			}
1141 		}
1142 
1143 		// Start from the first Record in the Stream.
1144 		group = (const index_group *)(stream->groups.leftmost);
1145 		record = 0;
1146 
1147 	} else if (group != NULL && record < group->last) {
1148 		// The next Record is in the same group.
1149 		++record;
1150 
1151 	} else {
1152 		// This group has no more Records or this Stream has
1153 		// no Blocks at all.
1154 		record = 0;
1155 
1156 		// If group is not NULL, this Stream has at least one Block
1157 		// and thus at least one group. Find the next group.
1158 		if (group != NULL)
1159 			group = index_tree_next(&group->node);
1160 
1161 		if (group == NULL) {
1162 			// This Stream has no more Records. Find the next
1163 			// Stream. If we are being asked to return information
1164 			// about a Block, we skip empty Streams.
1165 			do {
1166 				stream = index_tree_next(&stream->node);
1167 				if (stream == NULL)
1168 					return true;
1169 			} while (mode >= LZMA_INDEX_ITER_BLOCK
1170 					&& stream->groups.leftmost == NULL);
1171 
1172 			group = (const index_group *)(
1173 					stream->groups.leftmost);
1174 		}
1175 	}
1176 
1177 	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1178 		// We need to look for the next Block again if this Block
1179 		// is empty.
1180 		if (record == 0) {
1181 			if (group->node.uncompressed_base
1182 					== group->records[0].uncompressed_sum)
1183 				goto again;
1184 		} else if (group->records[record - 1].uncompressed_sum
1185 				== group->records[record].uncompressed_sum) {
1186 			goto again;
1187 		}
1188 	}
1189 
1190 	iter->internal[ITER_STREAM].p = stream;
1191 	iter->internal[ITER_GROUP].p = group;
1192 	iter->internal[ITER_RECORD].s = record;
1193 
1194 	iter_set_info(iter);
1195 
1196 	return false;
1197 }
1198 
1199 
1200 extern LZMA_API(lzma_bool)
1201 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1202 {
1203 	const lzma_index *i = iter->internal[ITER_INDEX].p;
1204 
1205 	// If the target is past the end of the file, return immediately.
1206 	if (i->uncompressed_size <= target)
1207 		return true;
1208 
1209 	// Locate the Stream containing the target offset.
1210 	const index_stream *stream = index_tree_locate(&i->streams, target);
1211 	assert(stream != NULL);
1212 	target -= stream->node.uncompressed_base;
1213 
1214 	// Locate the group containing the target offset.
1215 	const index_group *group = index_tree_locate(&stream->groups, target);
1216 	assert(group != NULL);
1217 
1218 	// Use binary search to locate the exact Record. It is the first
1219 	// Record whose uncompressed_sum is greater than target.
1220 	// This is because we want the rightmost Record that fullfills the
1221 	// search criterion. It is possible that there are empty Blocks;
1222 	// we don't want to return them.
1223 	size_t left = 0;
1224 	size_t right = group->last;
1225 
1226 	while (left < right) {
1227 		const size_t pos = left + (right - left) / 2;
1228 		if (group->records[pos].uncompressed_sum <= target)
1229 			left = pos + 1;
1230 		else
1231 			right = pos;
1232 	}
1233 
1234 	iter->internal[ITER_STREAM].p = stream;
1235 	iter->internal[ITER_GROUP].p = group;
1236 	iter->internal[ITER_RECORD].s = left;
1237 
1238 	iter_set_info(iter);
1239 
1240 	return false;
1241 }
1242