xref: /freebsd/contrib/xz/src/liblzma/common/index.c (revision 1c4ee7dfb8affed302171232b0f612e6bcba3c10)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       index.c
4 /// \brief      Handling of .xz Indexes and some other Stream information
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "common.h"
14 #include "index.h"
15 #include "stream_flags_common.h"
16 
17 
18 /// \brief      How many Records to allocate at once
19 ///
20 /// This should be big enough to avoid making lots of tiny allocations
21 /// but small enough to avoid too much unused memory at once.
22 #define INDEX_GROUP_SIZE 512
23 
24 
25 /// \brief      How many Records can be allocated at once at maximum
26 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
27 
28 
29 /// \brief      Base structure for index_stream and index_group structures
30 typedef struct index_tree_node_s index_tree_node;
31 struct index_tree_node_s {
32 	/// Uncompressed start offset of this Stream (relative to the
33 	/// beginning of the file) or Block (relative to the beginning
34 	/// of the Stream)
35 	lzma_vli uncompressed_base;
36 
37 	/// Compressed start offset of this Stream or Block
38 	lzma_vli compressed_base;
39 
40 	index_tree_node *parent;
41 	index_tree_node *left;
42 	index_tree_node *right;
43 };
44 
45 
46 /// \brief      AVL tree to hold index_stream or index_group structures
47 typedef struct {
48 	/// Root node
49 	index_tree_node *root;
50 
51 	/// Leftmost node. Since the tree will be filled sequentially,
52 	/// this won't change after the first node has been added to
53 	/// the tree.
54 	index_tree_node *leftmost;
55 
56 	/// The rightmost node in the tree. Since the tree is filled
57 	/// sequentially, this is always the node where to add the new data.
58 	index_tree_node *rightmost;
59 
60 	/// Number of nodes in the tree
61 	uint32_t count;
62 
63 } index_tree;
64 
65 
66 typedef struct {
67 	lzma_vli uncompressed_sum;
68 	lzma_vli unpadded_sum;
69 } index_record;
70 
71 
72 typedef struct {
73 	/// Every Record group is part of index_stream.groups tree.
74 	index_tree_node node;
75 
76 	/// Number of Blocks in this Stream before this group.
77 	lzma_vli number_base;
78 
79 	/// Number of Records that can be put in records[].
80 	size_t allocated;
81 
82 	/// Index of the last Record in use.
83 	size_t last;
84 
85 	/// The sizes in this array are stored as cumulative sums relative
86 	/// to the beginning of the Stream. This makes it possible to
87 	/// use binary search in lzma_index_locate().
88 	///
89 	/// Note that the cumulative summing is done specially for
90 	/// unpadded_sum: The previous value is rounded up to the next
91 	/// multiple of four before adding the Unpadded Size of the new
92 	/// Block. The total encoded size of the Blocks in the Stream
93 	/// is records[last].unpadded_sum in the last Record group of
94 	/// the Stream.
95 	///
96 	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
97 	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
98 	/// The total encoded size of these Blocks is 184.
99 	///
100 	/// This is a flexible array, because it makes easy to optimize
101 	/// memory usage in case someone concatenates many Streams that
102 	/// have only one or few Blocks.
103 	index_record records[];
104 
105 } index_group;
106 
107 
108 typedef struct {
109 	/// Every index_stream is a node in the tree of Streams.
110 	index_tree_node node;
111 
112 	/// Number of this Stream (first one is 1)
113 	uint32_t number;
114 
115 	/// Total number of Blocks before this Stream
116 	lzma_vli block_number_base;
117 
118 	/// Record groups of this Stream are stored in a tree.
119 	/// It's a T-tree with AVL-tree balancing. There are
120 	/// INDEX_GROUP_SIZE Records per node by default.
121 	/// This keeps the number of memory allocations reasonable
122 	/// and finding a Record is fast.
123 	index_tree groups;
124 
125 	/// Number of Records in this Stream
126 	lzma_vli record_count;
127 
128 	/// Size of the List of Records field in this Stream. This is used
129 	/// together with record_count to calculate the size of the Index
130 	/// field and thus the total size of the Stream.
131 	lzma_vli index_list_size;
132 
133 	/// Stream Flags of this Stream. This is meaningful only if
134 	/// the Stream Flags have been told us with lzma_index_stream_flags().
135 	/// Initially stream_flags.version is set to UINT32_MAX to indicate
136 	/// that the Stream Flags are unknown.
137 	lzma_stream_flags stream_flags;
138 
139 	/// Amount of Stream Padding after this Stream. This defaults to
140 	/// zero and can be set with lzma_index_stream_padding().
141 	lzma_vli stream_padding;
142 
143 } index_stream;
144 
145 
146 struct lzma_index_s {
147 	/// AVL-tree containing the Stream(s). Often there is just one
148 	/// Stream, but using a tree keeps lookups fast even when there
149 	/// are many concatenated Streams.
150 	index_tree streams;
151 
152 	/// Uncompressed size of all the Blocks in the Stream(s)
153 	lzma_vli uncompressed_size;
154 
155 	/// Total size of all the Blocks in the Stream(s)
156 	lzma_vli total_size;
157 
158 	/// Total number of Records in all Streams in this lzma_index
159 	lzma_vli record_count;
160 
161 	/// Size of the List of Records field if all the Streams in this
162 	/// lzma_index were packed into a single Stream (makes it simpler to
163 	/// take many .xz files and combine them into a single Stream).
164 	///
165 	/// This value together with record_count is needed to calculate
166 	/// Backward Size that is stored into Stream Footer.
167 	lzma_vli index_list_size;
168 
169 	/// How many Records to allocate at once in lzma_index_append().
170 	/// This defaults to INDEX_GROUP_SIZE but can be overridden with
171 	/// lzma_index_prealloc().
172 	size_t prealloc;
173 
174 	/// Bitmask indicating what integrity check types have been used
175 	/// as set by lzma_index_stream_flags(). The bit of the last Stream
176 	/// is not included here, since it is possible to change it by
177 	/// calling lzma_index_stream_flags() again.
178 	uint32_t checks;
179 };
180 
181 
182 static void
183 index_tree_init(index_tree *tree)
184 {
185 	tree->root = NULL;
186 	tree->leftmost = NULL;
187 	tree->rightmost = NULL;
188 	tree->count = 0;
189 	return;
190 }
191 
192 
193 /// Helper for index_tree_end()
194 static void
195 index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
196 		void (*free_func)(void *node, const lzma_allocator *allocator))
197 {
198 	// The tree won't ever be very huge, so recursion should be fine.
199 	// 20 levels in the tree is likely quite a lot already in practice.
200 	if (node->left != NULL)
201 		index_tree_node_end(node->left, allocator, free_func);
202 
203 	if (node->right != NULL)
204 		index_tree_node_end(node->right, allocator, free_func);
205 
206 	free_func(node, allocator);
207 	return;
208 }
209 
210 
211 /// Free the memory allocated for a tree. Each node is freed using the
212 /// given free_func which is either &lzma_free or &index_stream_end.
213 /// The latter is used to free the Record groups from each index_stream
214 /// before freeing the index_stream itself.
215 static void
216 index_tree_end(index_tree *tree, const lzma_allocator *allocator,
217 		void (*free_func)(void *node, const lzma_allocator *allocator))
218 {
219 	assert(free_func != NULL);
220 
221 	if (tree->root != NULL)
222 		index_tree_node_end(tree->root, allocator, free_func);
223 
224 	return;
225 }
226 
227 
228 /// Add a new node to the tree. node->uncompressed_base and
229 /// node->compressed_base must have been set by the caller already.
230 static void
231 index_tree_append(index_tree *tree, index_tree_node *node)
232 {
233 	node->parent = tree->rightmost;
234 	node->left = NULL;
235 	node->right = NULL;
236 
237 	++tree->count;
238 
239 	// Handle the special case of adding the first node.
240 	if (tree->root == NULL) {
241 		tree->root = node;
242 		tree->leftmost = node;
243 		tree->rightmost = node;
244 		return;
245 	}
246 
247 	// The tree is always filled sequentially.
248 	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
249 	assert(tree->rightmost->compressed_base < node->compressed_base);
250 
251 	// Add the new node after the rightmost node. It's the correct
252 	// place due to the reason above.
253 	tree->rightmost->right = node;
254 	tree->rightmost = node;
255 
256 	// Balance the AVL-tree if needed. We don't need to keep the balance
257 	// factors in nodes, because we always fill the tree sequentially,
258 	// and thus know the state of the tree just by looking at the node
259 	// count. From the node count we can calculate how many steps to go
260 	// up in the tree to find the rotation root.
261 	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
262 	if (up != 0) {
263 		// Locate the root node for the rotation.
264 		up = ctz32(tree->count) + 2;
265 		do {
266 			node = node->parent;
267 		} while (--up > 0);
268 
269 		// Rotate left using node as the rotation root.
270 		index_tree_node *pivot = node->right;
271 
272 		if (node->parent == NULL) {
273 			tree->root = pivot;
274 		} else {
275 			assert(node->parent->right == node);
276 			node->parent->right = pivot;
277 		}
278 
279 		pivot->parent = node->parent;
280 
281 		node->right = pivot->left;
282 		if (node->right != NULL)
283 			node->right->parent = node;
284 
285 		pivot->left = node;
286 		node->parent = pivot;
287 	}
288 
289 	return;
290 }
291 
292 
293 /// Get the next node in the tree. Return NULL if there are no more nodes.
294 static void *
295 index_tree_next(const index_tree_node *node)
296 {
297 	if (node->right != NULL) {
298 		node = node->right;
299 		while (node->left != NULL)
300 			node = node->left;
301 
302 		return (void *)(node);
303 	}
304 
305 	while (node->parent != NULL && node->parent->right == node)
306 		node = node->parent;
307 
308 	return (void *)(node->parent);
309 }
310 
311 
312 /// Locate a node that contains the given uncompressed offset. It is
313 /// caller's job to check that target is not bigger than the uncompressed
314 /// size of the tree (the last node would be returned in that case still).
315 static void *
316 index_tree_locate(const index_tree *tree, lzma_vli target)
317 {
318 	const index_tree_node *result = NULL;
319 	const index_tree_node *node = tree->root;
320 
321 	assert(tree->leftmost == NULL
322 			|| tree->leftmost->uncompressed_base == 0);
323 
324 	// Consecutive nodes may have the same uncompressed_base.
325 	// We must pick the rightmost one.
326 	while (node != NULL) {
327 		if (node->uncompressed_base > target) {
328 			node = node->left;
329 		} else {
330 			result = node;
331 			node = node->right;
332 		}
333 	}
334 
335 	return (void *)(result);
336 }
337 
338 
339 /// Allocate and initialize a new Stream using the given base offsets.
340 static index_stream *
341 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
342 		uint32_t stream_number, lzma_vli block_number_base,
343 		const lzma_allocator *allocator)
344 {
345 	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
346 	if (s == NULL)
347 		return NULL;
348 
349 	s->node.uncompressed_base = uncompressed_base;
350 	s->node.compressed_base = compressed_base;
351 	s->node.parent = NULL;
352 	s->node.left = NULL;
353 	s->node.right = NULL;
354 
355 	s->number = stream_number;
356 	s->block_number_base = block_number_base;
357 
358 	index_tree_init(&s->groups);
359 
360 	s->record_count = 0;
361 	s->index_list_size = 0;
362 	s->stream_flags.version = UINT32_MAX;
363 	s->stream_padding = 0;
364 
365 	return s;
366 }
367 
368 
369 /// Free the memory allocated for a Stream and its Record groups.
370 static void
371 index_stream_end(void *node, const lzma_allocator *allocator)
372 {
373 	index_stream *s = node;
374 	index_tree_end(&s->groups, allocator, &lzma_free);
375 	lzma_free(s, allocator);
376 	return;
377 }
378 
379 
380 static lzma_index *
381 index_init_plain(const lzma_allocator *allocator)
382 {
383 	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
384 	if (i != NULL) {
385 		index_tree_init(&i->streams);
386 		i->uncompressed_size = 0;
387 		i->total_size = 0;
388 		i->record_count = 0;
389 		i->index_list_size = 0;
390 		i->prealloc = INDEX_GROUP_SIZE;
391 		i->checks = 0;
392 	}
393 
394 	return i;
395 }
396 
397 
398 extern LZMA_API(lzma_index *)
399 lzma_index_init(const lzma_allocator *allocator)
400 {
401 	lzma_index *i = index_init_plain(allocator);
402 	if (i == NULL)
403 		return NULL;
404 
405 	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
406 	if (s == NULL) {
407 		lzma_free(i, allocator);
408 		return NULL;
409 	}
410 
411 	index_tree_append(&i->streams, &s->node);
412 
413 	return i;
414 }
415 
416 
417 extern LZMA_API(void)
418 lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
419 {
420 	// NOTE: If you modify this function, check also the bottom
421 	// of lzma_index_cat().
422 	if (i != NULL) {
423 		index_tree_end(&i->streams, allocator, &index_stream_end);
424 		lzma_free(i, allocator);
425 	}
426 
427 	return;
428 }
429 
430 
431 extern void
432 lzma_index_prealloc(lzma_index *i, lzma_vli records)
433 {
434 	if (records > PREALLOC_MAX)
435 		records = PREALLOC_MAX;
436 
437 	i->prealloc = (size_t)(records);
438 	return;
439 }
440 
441 
442 extern LZMA_API(uint64_t)
443 lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
444 {
445 	// This calculates an upper bound that is only a little bit
446 	// bigger than the exact maximum memory usage with the given
447 	// parameters.
448 
449 	// Typical malloc() overhead is 2 * sizeof(void *) but we take
450 	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
451 	// instead would give too inaccurate estimate.
452 	const size_t alloc_overhead = 4 * sizeof(void *);
453 
454 	// Amount of memory needed for each Stream base structures.
455 	// We assume that every Stream has at least one Block and
456 	// thus at least one group.
457 	const size_t stream_base = sizeof(index_stream)
458 			+ sizeof(index_group) + 2 * alloc_overhead;
459 
460 	// Amount of memory needed per group.
461 	const size_t group_base = sizeof(index_group)
462 			+ INDEX_GROUP_SIZE * sizeof(index_record)
463 			+ alloc_overhead;
464 
465 	// Number of groups. There may actually be more, but that overhead
466 	// has been taken into account in stream_base already.
467 	const lzma_vli groups
468 			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
469 
470 	// Memory used by index_stream and index_group structures.
471 	const uint64_t streams_mem = streams * stream_base;
472 	const uint64_t groups_mem = groups * group_base;
473 
474 	// Memory used by the base structure.
475 	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
476 
477 	// Validate the arguments and catch integer overflows.
478 	// Maximum number of Streams is "only" UINT32_MAX, because
479 	// that limit is used by the tree containing the Streams.
480 	const uint64_t limit = UINT64_MAX - index_base;
481 	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
482 			|| streams > limit / stream_base
483 			|| groups > limit / group_base
484 			|| limit - streams_mem < groups_mem)
485 		return UINT64_MAX;
486 
487 	return index_base + streams_mem + groups_mem;
488 }
489 
490 
491 extern LZMA_API(uint64_t)
492 lzma_index_memused(const lzma_index *i)
493 {
494 	return lzma_index_memusage(i->streams.count, i->record_count);
495 }
496 
497 
498 extern LZMA_API(lzma_vli)
499 lzma_index_block_count(const lzma_index *i)
500 {
501 	return i->record_count;
502 }
503 
504 
505 extern LZMA_API(lzma_vli)
506 lzma_index_stream_count(const lzma_index *i)
507 {
508 	return i->streams.count;
509 }
510 
511 
512 extern LZMA_API(lzma_vli)
513 lzma_index_size(const lzma_index *i)
514 {
515 	return index_size(i->record_count, i->index_list_size);
516 }
517 
518 
519 extern LZMA_API(lzma_vli)
520 lzma_index_total_size(const lzma_index *i)
521 {
522 	return i->total_size;
523 }
524 
525 
526 extern LZMA_API(lzma_vli)
527 lzma_index_stream_size(const lzma_index *i)
528 {
529 	// Stream Header + Blocks + Index + Stream Footer
530 	return LZMA_STREAM_HEADER_SIZE + i->total_size
531 			+ index_size(i->record_count, i->index_list_size)
532 			+ LZMA_STREAM_HEADER_SIZE;
533 }
534 
535 
536 static lzma_vli
537 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
538 		lzma_vli record_count, lzma_vli index_list_size,
539 		lzma_vli stream_padding)
540 {
541 	// Earlier Streams and Stream Paddings + Stream Header
542 	// + Blocks + Index + Stream Footer + Stream Padding
543 	//
544 	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
545 	// when this function is used in lzma_index_append().
546 	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
547 			+ stream_padding + vli_ceil4(unpadded_sum);
548 	if (file_size > LZMA_VLI_MAX)
549 		return LZMA_VLI_UNKNOWN;
550 
551 	// The same applies here.
552 	file_size += index_size(record_count, index_list_size);
553 	if (file_size > LZMA_VLI_MAX)
554 		return LZMA_VLI_UNKNOWN;
555 
556 	return file_size;
557 }
558 
559 
560 extern LZMA_API(lzma_vli)
561 lzma_index_file_size(const lzma_index *i)
562 {
563 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
564 	const index_group *g = (const index_group *)(s->groups.rightmost);
565 	return index_file_size(s->node.compressed_base,
566 			g == NULL ? 0 : g->records[g->last].unpadded_sum,
567 			s->record_count, s->index_list_size,
568 			s->stream_padding);
569 }
570 
571 
572 extern LZMA_API(lzma_vli)
573 lzma_index_uncompressed_size(const lzma_index *i)
574 {
575 	return i->uncompressed_size;
576 }
577 
578 
579 extern LZMA_API(uint32_t)
580 lzma_index_checks(const lzma_index *i)
581 {
582 	uint32_t checks = i->checks;
583 
584 	// Get the type of the Check of the last Stream too.
585 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
586 	if (s->stream_flags.version != UINT32_MAX)
587 		checks |= UINT32_C(1) << s->stream_flags.check;
588 
589 	return checks;
590 }
591 
592 
593 extern uint32_t
594 lzma_index_padding_size(const lzma_index *i)
595 {
596 	return (LZMA_VLI_C(4) - index_size_unpadded(
597 			i->record_count, i->index_list_size)) & 3;
598 }
599 
600 
601 extern LZMA_API(lzma_ret)
602 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
603 {
604 	if (i == NULL || stream_flags == NULL)
605 		return LZMA_PROG_ERROR;
606 
607 	// Validate the Stream Flags.
608 	return_if_error(lzma_stream_flags_compare(
609 			stream_flags, stream_flags));
610 
611 	index_stream *s = (index_stream *)(i->streams.rightmost);
612 	s->stream_flags = *stream_flags;
613 
614 	return LZMA_OK;
615 }
616 
617 
618 extern LZMA_API(lzma_ret)
619 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
620 {
621 	if (i == NULL || stream_padding > LZMA_VLI_MAX
622 			|| (stream_padding & 3) != 0)
623 		return LZMA_PROG_ERROR;
624 
625 	index_stream *s = (index_stream *)(i->streams.rightmost);
626 
627 	// Check that the new value won't make the file grow too big.
628 	const lzma_vli old_stream_padding = s->stream_padding;
629 	s->stream_padding = 0;
630 	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
631 		s->stream_padding = old_stream_padding;
632 		return LZMA_DATA_ERROR;
633 	}
634 
635 	s->stream_padding = stream_padding;
636 	return LZMA_OK;
637 }
638 
639 
640 extern LZMA_API(lzma_ret)
641 lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
642 		lzma_vli unpadded_size, lzma_vli uncompressed_size)
643 {
644 	// Validate.
645 	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
646 			|| unpadded_size > UNPADDED_SIZE_MAX
647 			|| uncompressed_size > LZMA_VLI_MAX)
648 		return LZMA_PROG_ERROR;
649 
650 	index_stream *s = (index_stream *)(i->streams.rightmost);
651 	index_group *g = (index_group *)(s->groups.rightmost);
652 
653 	const lzma_vli compressed_base = g == NULL ? 0
654 			: vli_ceil4(g->records[g->last].unpadded_sum);
655 	const lzma_vli uncompressed_base = g == NULL ? 0
656 			: g->records[g->last].uncompressed_sum;
657 	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
658 			+ lzma_vli_size(uncompressed_size);
659 
660 	// Check that uncompressed size will not overflow.
661 	if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX)
662 		return LZMA_DATA_ERROR;
663 
664 	// Check that the new unpadded sum will not overflow. This is
665 	// checked again in index_file_size(), but the unpadded sum is
666 	// passed to vli_ceil4() which expects a valid lzma_vli value.
667 	if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX)
668 		return LZMA_DATA_ERROR;
669 
670 	// Check that the file size will stay within limits.
671 	if (index_file_size(s->node.compressed_base,
672 			compressed_base + unpadded_size, s->record_count + 1,
673 			s->index_list_size + index_list_size_add,
674 			s->stream_padding) == LZMA_VLI_UNKNOWN)
675 		return LZMA_DATA_ERROR;
676 
677 	// The size of the Index field must not exceed the maximum value
678 	// that can be stored in the Backward Size field.
679 	if (index_size(i->record_count + 1,
680 			i->index_list_size + index_list_size_add)
681 			> LZMA_BACKWARD_SIZE_MAX)
682 		return LZMA_DATA_ERROR;
683 
684 	if (g != NULL && g->last + 1 < g->allocated) {
685 		// There is space in the last group at least for one Record.
686 		++g->last;
687 	} else {
688 		// We need to allocate a new group.
689 		g = lzma_alloc(sizeof(index_group)
690 				+ i->prealloc * sizeof(index_record),
691 				allocator);
692 		if (g == NULL)
693 			return LZMA_MEM_ERROR;
694 
695 		g->last = 0;
696 		g->allocated = i->prealloc;
697 
698 		// Reset prealloc so that if the application happens to
699 		// add new Records, the allocation size will be sane.
700 		i->prealloc = INDEX_GROUP_SIZE;
701 
702 		// Set the start offsets of this group.
703 		g->node.uncompressed_base = uncompressed_base;
704 		g->node.compressed_base = compressed_base;
705 		g->number_base = s->record_count + 1;
706 
707 		// Add the new group to the Stream.
708 		index_tree_append(&s->groups, &g->node);
709 	}
710 
711 	// Add the new Record to the group.
712 	g->records[g->last].uncompressed_sum
713 			= uncompressed_base + uncompressed_size;
714 	g->records[g->last].unpadded_sum
715 			= compressed_base + unpadded_size;
716 
717 	// Update the totals.
718 	++s->record_count;
719 	s->index_list_size += index_list_size_add;
720 
721 	i->total_size += vli_ceil4(unpadded_size);
722 	i->uncompressed_size += uncompressed_size;
723 	++i->record_count;
724 	i->index_list_size += index_list_size_add;
725 
726 	return LZMA_OK;
727 }
728 
729 
730 /// Structure to pass info to index_cat_helper()
731 typedef struct {
732 	/// Uncompressed size of the destination
733 	lzma_vli uncompressed_size;
734 
735 	/// Compressed file size of the destination
736 	lzma_vli file_size;
737 
738 	/// Same as above but for Block numbers
739 	lzma_vli block_number_add;
740 
741 	/// Number of Streams that were in the destination index before we
742 	/// started appending new Streams from the source index. This is
743 	/// used to fix the Stream numbering.
744 	uint32_t stream_number_add;
745 
746 	/// Destination index' Stream tree
747 	index_tree *streams;
748 
749 } index_cat_info;
750 
751 
752 /// Add the Stream nodes from the source index to dest using recursion.
753 /// Simplest iterative traversal of the source tree wouldn't work, because
754 /// we update the pointers in nodes when moving them to the destination tree.
755 static void
756 index_cat_helper(const index_cat_info *info, index_stream *this)
757 {
758 	index_stream *left = (index_stream *)(this->node.left);
759 	index_stream *right = (index_stream *)(this->node.right);
760 
761 	if (left != NULL)
762 		index_cat_helper(info, left);
763 
764 	this->node.uncompressed_base += info->uncompressed_size;
765 	this->node.compressed_base += info->file_size;
766 	this->number += info->stream_number_add;
767 	this->block_number_base += info->block_number_add;
768 	index_tree_append(info->streams, &this->node);
769 
770 	if (right != NULL)
771 		index_cat_helper(info, right);
772 
773 	return;
774 }
775 
776 
777 extern LZMA_API(lzma_ret)
778 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
779 		const lzma_allocator *allocator)
780 {
781 	if (dest == NULL || src == NULL)
782 		return LZMA_PROG_ERROR;
783 
784 	const lzma_vli dest_file_size = lzma_index_file_size(dest);
785 
786 	// Check that we don't exceed the file size limits.
787 	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
788 			|| dest->uncompressed_size + src->uncompressed_size
789 				> LZMA_VLI_MAX)
790 		return LZMA_DATA_ERROR;
791 
792 	// Check that the encoded size of the combined lzma_indexes stays
793 	// within limits. In theory, this should be done only if we know
794 	// that the user plans to actually combine the Streams and thus
795 	// construct a single Index (probably rare). However, exceeding
796 	// this limit is quite theoretical, so we do this check always
797 	// to simplify things elsewhere.
798 	{
799 		const lzma_vli dest_size = index_size_unpadded(
800 				dest->record_count, dest->index_list_size);
801 		const lzma_vli src_size = index_size_unpadded(
802 				src->record_count, src->index_list_size);
803 		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
804 			return LZMA_DATA_ERROR;
805 	}
806 
807 	// Optimize the last group to minimize memory usage. Allocation has
808 	// to be done before modifying dest or src.
809 	{
810 		index_stream *s = (index_stream *)(dest->streams.rightmost);
811 		index_group *g = (index_group *)(s->groups.rightmost);
812 		if (g != NULL && g->last + 1 < g->allocated) {
813 			assert(g->node.left == NULL);
814 			assert(g->node.right == NULL);
815 
816 			index_group *newg = lzma_alloc(sizeof(index_group)
817 					+ (g->last + 1)
818 					* sizeof(index_record),
819 					allocator);
820 			if (newg == NULL)
821 				return LZMA_MEM_ERROR;
822 
823 			newg->node = g->node;
824 			newg->allocated = g->last + 1;
825 			newg->last = g->last;
826 			newg->number_base = g->number_base;
827 
828 			memcpy(newg->records, g->records, newg->allocated
829 					* sizeof(index_record));
830 
831 			if (g->node.parent != NULL) {
832 				assert(g->node.parent->right == &g->node);
833 				g->node.parent->right = &newg->node;
834 			}
835 
836 			if (s->groups.leftmost == &g->node) {
837 				assert(s->groups.root == &g->node);
838 				s->groups.leftmost = &newg->node;
839 				s->groups.root = &newg->node;
840 			}
841 
842 			assert(s->groups.rightmost == &g->node);
843 			s->groups.rightmost = &newg->node;
844 
845 			lzma_free(g, allocator);
846 
847 			// NOTE: newg isn't leaked here because
848 			// newg == (void *)&newg->node.
849 		}
850 	}
851 
852 	// dest->checks includes the check types of all except the last Stream
853 	// in dest. Set the bit for the check type of the last Stream now so
854 	// that it won't get lost when Stream(s) from src are appended to dest.
855 	dest->checks = lzma_index_checks(dest);
856 
857 	// Add all the Streams from src to dest. Update the base offsets
858 	// of each Stream from src.
859 	const index_cat_info info = {
860 		.uncompressed_size = dest->uncompressed_size,
861 		.file_size = dest_file_size,
862 		.stream_number_add = dest->streams.count,
863 		.block_number_add = dest->record_count,
864 		.streams = &dest->streams,
865 	};
866 	index_cat_helper(&info, (index_stream *)(src->streams.root));
867 
868 	// Update info about all the combined Streams.
869 	dest->uncompressed_size += src->uncompressed_size;
870 	dest->total_size += src->total_size;
871 	dest->record_count += src->record_count;
872 	dest->index_list_size += src->index_list_size;
873 	dest->checks |= src->checks;
874 
875 	// There's nothing else left in src than the base structure.
876 	lzma_free(src, allocator);
877 
878 	return LZMA_OK;
879 }
880 
881 
882 /// Duplicate an index_stream.
883 static index_stream *
884 index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
885 {
886 	// Catch a somewhat theoretical integer overflow.
887 	if (src->record_count > PREALLOC_MAX)
888 		return NULL;
889 
890 	// Allocate and initialize a new Stream.
891 	index_stream *dest = index_stream_init(src->node.compressed_base,
892 			src->node.uncompressed_base, src->number,
893 			src->block_number_base, allocator);
894 	if (dest == NULL)
895 		return NULL;
896 
897 	// Copy the overall information.
898 	dest->record_count = src->record_count;
899 	dest->index_list_size = src->index_list_size;
900 	dest->stream_flags = src->stream_flags;
901 	dest->stream_padding = src->stream_padding;
902 
903 	// Return if there are no groups to duplicate.
904 	if (src->groups.leftmost == NULL)
905 		return dest;
906 
907 	// Allocate memory for the Records. We put all the Records into
908 	// a single group. It's simplest and also tends to make
909 	// lzma_index_locate() a little bit faster with very big Indexes.
910 	index_group *destg = lzma_alloc(sizeof(index_group)
911 			+ src->record_count * sizeof(index_record),
912 			allocator);
913 	if (destg == NULL) {
914 		index_stream_end(dest, allocator);
915 		return NULL;
916 	}
917 
918 	// Initialize destg.
919 	destg->node.uncompressed_base = 0;
920 	destg->node.compressed_base = 0;
921 	destg->number_base = 1;
922 	destg->allocated = src->record_count;
923 	destg->last = src->record_count - 1;
924 
925 	// Go through all the groups in src and copy the Records into destg.
926 	const index_group *srcg = (const index_group *)(src->groups.leftmost);
927 	size_t i = 0;
928 	do {
929 		memcpy(destg->records + i, srcg->records,
930 				(srcg->last + 1) * sizeof(index_record));
931 		i += srcg->last + 1;
932 		srcg = index_tree_next(&srcg->node);
933 	} while (srcg != NULL);
934 
935 	assert(i == destg->allocated);
936 
937 	// Add the group to the new Stream.
938 	index_tree_append(&dest->groups, &destg->node);
939 
940 	return dest;
941 }
942 
943 
944 extern LZMA_API(lzma_index *)
945 lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
946 {
947 	// Allocate the base structure (no initial Stream).
948 	lzma_index *dest = index_init_plain(allocator);
949 	if (dest == NULL)
950 		return NULL;
951 
952 	// Copy the totals.
953 	dest->uncompressed_size = src->uncompressed_size;
954 	dest->total_size = src->total_size;
955 	dest->record_count = src->record_count;
956 	dest->index_list_size = src->index_list_size;
957 
958 	// Copy the Streams and the groups in them.
959 	const index_stream *srcstream
960 			= (const index_stream *)(src->streams.leftmost);
961 	do {
962 		index_stream *deststream = index_dup_stream(
963 				srcstream, allocator);
964 		if (deststream == NULL) {
965 			lzma_index_end(dest, allocator);
966 			return NULL;
967 		}
968 
969 		index_tree_append(&dest->streams, &deststream->node);
970 
971 		srcstream = index_tree_next(&srcstream->node);
972 	} while (srcstream != NULL);
973 
974 	return dest;
975 }
976 
977 
978 /// Indexing for lzma_index_iter.internal[]
979 enum {
980 	ITER_INDEX,
981 	ITER_STREAM,
982 	ITER_GROUP,
983 	ITER_RECORD,
984 	ITER_METHOD,
985 };
986 
987 
988 /// Values for lzma_index_iter.internal[ITER_METHOD].s
989 enum {
990 	ITER_METHOD_NORMAL,
991 	ITER_METHOD_NEXT,
992 	ITER_METHOD_LEFTMOST,
993 };
994 
995 
996 static void
997 iter_set_info(lzma_index_iter *iter)
998 {
999 	const lzma_index *i = iter->internal[ITER_INDEX].p;
1000 	const index_stream *stream = iter->internal[ITER_STREAM].p;
1001 	const index_group *group = iter->internal[ITER_GROUP].p;
1002 	const size_t record = iter->internal[ITER_RECORD].s;
1003 
1004 	// lzma_index_iter.internal must not contain a pointer to the last
1005 	// group in the index, because that may be reallocated by
1006 	// lzma_index_cat().
1007 	if (group == NULL) {
1008 		// There are no groups.
1009 		assert(stream->groups.root == NULL);
1010 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1011 
1012 	} else if (i->streams.rightmost != &stream->node
1013 			|| stream->groups.rightmost != &group->node) {
1014 		// The group is not not the last group in the index.
1015 		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1016 
1017 	} else if (stream->groups.leftmost != &group->node) {
1018 		// The group isn't the only group in the Stream, thus we
1019 		// know that it must have a parent group i.e. it's not
1020 		// the root node.
1021 		assert(stream->groups.root != &group->node);
1022 		assert(group->node.parent->right == &group->node);
1023 		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
1024 		iter->internal[ITER_GROUP].p = group->node.parent;
1025 
1026 	} else {
1027 		// The Stream has only one group.
1028 		assert(stream->groups.root == &group->node);
1029 		assert(group->node.parent == NULL);
1030 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1031 		iter->internal[ITER_GROUP].p = NULL;
1032 	}
1033 
1034 	// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
1035 	// internally.
1036 	iter->stream.number = stream->number;
1037 	iter->stream.block_count = stream->record_count;
1038 	iter->stream.compressed_offset = stream->node.compressed_base;
1039 	iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1040 
1041 	// iter->stream.flags will be NULL if the Stream Flags haven't been
1042 	// set with lzma_index_stream_flags().
1043 	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1044 			? NULL : &stream->stream_flags;
1045 	iter->stream.padding = stream->stream_padding;
1046 
1047 	if (stream->groups.rightmost == NULL) {
1048 		// Stream has no Blocks.
1049 		iter->stream.compressed_size = index_size(0, 0)
1050 				+ 2 * LZMA_STREAM_HEADER_SIZE;
1051 		iter->stream.uncompressed_size = 0;
1052 	} else {
1053 		const index_group *g = (const index_group *)(
1054 				stream->groups.rightmost);
1055 
1056 		// Stream Header + Stream Footer + Index + Blocks
1057 		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1058 				+ index_size(stream->record_count,
1059 					stream->index_list_size)
1060 				+ vli_ceil4(g->records[g->last].unpadded_sum);
1061 		iter->stream.uncompressed_size
1062 				= g->records[g->last].uncompressed_sum;
1063 	}
1064 
1065 	if (group != NULL) {
1066 		iter->block.number_in_stream = group->number_base + record;
1067 		iter->block.number_in_file = iter->block.number_in_stream
1068 				+ stream->block_number_base;
1069 
1070 		iter->block.compressed_stream_offset
1071 				= record == 0 ? group->node.compressed_base
1072 				: vli_ceil4(group->records[
1073 					record - 1].unpadded_sum);
1074 		iter->block.uncompressed_stream_offset
1075 				= record == 0 ? group->node.uncompressed_base
1076 				: group->records[record - 1].uncompressed_sum;
1077 
1078 		iter->block.uncompressed_size
1079 				= group->records[record].uncompressed_sum
1080 				- iter->block.uncompressed_stream_offset;
1081 		iter->block.unpadded_size
1082 				= group->records[record].unpadded_sum
1083 				- iter->block.compressed_stream_offset;
1084 		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1085 
1086 		iter->block.compressed_stream_offset
1087 				+= LZMA_STREAM_HEADER_SIZE;
1088 
1089 		iter->block.compressed_file_offset
1090 				= iter->block.compressed_stream_offset
1091 				+ iter->stream.compressed_offset;
1092 		iter->block.uncompressed_file_offset
1093 				= iter->block.uncompressed_stream_offset
1094 				+ iter->stream.uncompressed_offset;
1095 	}
1096 
1097 	return;
1098 }
1099 
1100 
1101 extern LZMA_API(void)
1102 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1103 {
1104 	iter->internal[ITER_INDEX].p = i;
1105 	lzma_index_iter_rewind(iter);
1106 	return;
1107 }
1108 
1109 
1110 extern LZMA_API(void)
1111 lzma_index_iter_rewind(lzma_index_iter *iter)
1112 {
1113 	iter->internal[ITER_STREAM].p = NULL;
1114 	iter->internal[ITER_GROUP].p = NULL;
1115 	iter->internal[ITER_RECORD].s = 0;
1116 	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1117 	return;
1118 }
1119 
1120 
1121 extern LZMA_API(lzma_bool)
1122 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1123 {
1124 	// Catch unsupported mode values.
1125 	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1126 		return true;
1127 
1128 	const lzma_index *i = iter->internal[ITER_INDEX].p;
1129 	const index_stream *stream = iter->internal[ITER_STREAM].p;
1130 	const index_group *group = NULL;
1131 	size_t record = iter->internal[ITER_RECORD].s;
1132 
1133 	// If we are being asked for the next Stream, leave group to NULL
1134 	// so that the rest of the this function thinks that this Stream
1135 	// has no groups and will thus go to the next Stream.
1136 	if (mode != LZMA_INDEX_ITER_STREAM) {
1137 		// Get the pointer to the current group. See iter_set_inf()
1138 		// for explanation.
1139 		switch (iter->internal[ITER_METHOD].s) {
1140 		case ITER_METHOD_NORMAL:
1141 			group = iter->internal[ITER_GROUP].p;
1142 			break;
1143 
1144 		case ITER_METHOD_NEXT:
1145 			group = index_tree_next(iter->internal[ITER_GROUP].p);
1146 			break;
1147 
1148 		case ITER_METHOD_LEFTMOST:
1149 			group = (const index_group *)(
1150 					stream->groups.leftmost);
1151 			break;
1152 		}
1153 	}
1154 
1155 again:
1156 	if (stream == NULL) {
1157 		// We at the beginning of the lzma_index.
1158 		// Locate the first Stream.
1159 		stream = (const index_stream *)(i->streams.leftmost);
1160 		if (mode >= LZMA_INDEX_ITER_BLOCK) {
1161 			// Since we are being asked to return information
1162 			// about the first a Block, skip Streams that have
1163 			// no Blocks.
1164 			while (stream->groups.leftmost == NULL) {
1165 				stream = index_tree_next(&stream->node);
1166 				if (stream == NULL)
1167 					return true;
1168 			}
1169 		}
1170 
1171 		// Start from the first Record in the Stream.
1172 		group = (const index_group *)(stream->groups.leftmost);
1173 		record = 0;
1174 
1175 	} else if (group != NULL && record < group->last) {
1176 		// The next Record is in the same group.
1177 		++record;
1178 
1179 	} else {
1180 		// This group has no more Records or this Stream has
1181 		// no Blocks at all.
1182 		record = 0;
1183 
1184 		// If group is not NULL, this Stream has at least one Block
1185 		// and thus at least one group. Find the next group.
1186 		if (group != NULL)
1187 			group = index_tree_next(&group->node);
1188 
1189 		if (group == NULL) {
1190 			// This Stream has no more Records. Find the next
1191 			// Stream. If we are being asked to return information
1192 			// about a Block, we skip empty Streams.
1193 			do {
1194 				stream = index_tree_next(&stream->node);
1195 				if (stream == NULL)
1196 					return true;
1197 			} while (mode >= LZMA_INDEX_ITER_BLOCK
1198 					&& stream->groups.leftmost == NULL);
1199 
1200 			group = (const index_group *)(
1201 					stream->groups.leftmost);
1202 		}
1203 	}
1204 
1205 	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1206 		// We need to look for the next Block again if this Block
1207 		// is empty.
1208 		if (record == 0) {
1209 			if (group->node.uncompressed_base
1210 					== group->records[0].uncompressed_sum)
1211 				goto again;
1212 		} else if (group->records[record - 1].uncompressed_sum
1213 				== group->records[record].uncompressed_sum) {
1214 			goto again;
1215 		}
1216 	}
1217 
1218 	iter->internal[ITER_STREAM].p = stream;
1219 	iter->internal[ITER_GROUP].p = group;
1220 	iter->internal[ITER_RECORD].s = record;
1221 
1222 	iter_set_info(iter);
1223 
1224 	return false;
1225 }
1226 
1227 
1228 extern LZMA_API(lzma_bool)
1229 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1230 {
1231 	const lzma_index *i = iter->internal[ITER_INDEX].p;
1232 
1233 	// If the target is past the end of the file, return immediately.
1234 	if (i->uncompressed_size <= target)
1235 		return true;
1236 
1237 	// Locate the Stream containing the target offset.
1238 	const index_stream *stream = index_tree_locate(&i->streams, target);
1239 	assert(stream != NULL);
1240 	target -= stream->node.uncompressed_base;
1241 
1242 	// Locate the group containing the target offset.
1243 	const index_group *group = index_tree_locate(&stream->groups, target);
1244 	assert(group != NULL);
1245 
1246 	// Use binary search to locate the exact Record. It is the first
1247 	// Record whose uncompressed_sum is greater than target.
1248 	// This is because we want the rightmost Record that fulfills the
1249 	// search criterion. It is possible that there are empty Blocks;
1250 	// we don't want to return them.
1251 	size_t left = 0;
1252 	size_t right = group->last;
1253 
1254 	while (left < right) {
1255 		const size_t pos = left + (right - left) / 2;
1256 		if (group->records[pos].uncompressed_sum <= target)
1257 			left = pos + 1;
1258 		else
1259 			right = pos;
1260 	}
1261 
1262 	iter->internal[ITER_STREAM].p = stream;
1263 	iter->internal[ITER_GROUP].p = group;
1264 	iter->internal[ITER_RECORD].s = left;
1265 
1266 	iter_set_info(iter);
1267 
1268 	return false;
1269 }
1270