1 /////////////////////////////////////////////////////////////////////////////// 2 // 3 /// \file common.c 4 /// \brief Common functions needed in many places in liblzma 5 // 6 // Author: Lasse Collin 7 // 8 // This file has been put into the public domain. 9 // You can do whatever you want with this file. 10 // 11 /////////////////////////////////////////////////////////////////////////////// 12 13 #include "common.h" 14 15 16 ///////////// 17 // Version // 18 ///////////// 19 20 extern LZMA_API(uint32_t) 21 lzma_version_number(void) 22 { 23 return LZMA_VERSION; 24 } 25 26 27 extern LZMA_API(const char *) 28 lzma_version_string(void) 29 { 30 return LZMA_VERSION_STRING; 31 } 32 33 34 /////////////////////// 35 // Memory allocation // 36 /////////////////////// 37 38 extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1) 39 lzma_alloc(size_t size, const lzma_allocator *allocator) 40 { 41 // Some malloc() variants return NULL if called with size == 0. 42 if (size == 0) 43 size = 1; 44 45 void *ptr; 46 47 if (allocator != NULL && allocator->alloc != NULL) 48 ptr = allocator->alloc(allocator->opaque, 1, size); 49 else 50 ptr = malloc(size); 51 52 return ptr; 53 } 54 55 56 extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1) 57 lzma_alloc_zero(size_t size, const lzma_allocator *allocator) 58 { 59 // Some calloc() variants return NULL if called with size == 0. 60 if (size == 0) 61 size = 1; 62 63 void *ptr; 64 65 if (allocator != NULL && allocator->alloc != NULL) { 66 ptr = allocator->alloc(allocator->opaque, 1, size); 67 if (ptr != NULL) 68 memzero(ptr, size); 69 } else { 70 ptr = calloc(1, size); 71 } 72 73 return ptr; 74 } 75 76 77 extern void 78 lzma_free(void *ptr, const lzma_allocator *allocator) 79 { 80 if (allocator != NULL && allocator->free != NULL) 81 allocator->free(allocator->opaque, ptr); 82 else 83 free(ptr); 84 85 return; 86 } 87 88 89 ////////// 90 // Misc // 91 ////////// 92 93 extern size_t 94 lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos, 95 size_t in_size, uint8_t *restrict out, 96 size_t *restrict out_pos, size_t out_size) 97 { 98 const size_t in_avail = in_size - *in_pos; 99 const size_t out_avail = out_size - *out_pos; 100 const size_t copy_size = my_min(in_avail, out_avail); 101 102 // Call memcpy() only if there is something to copy. If there is 103 // nothing to copy, in or out might be NULL and then the memcpy() 104 // call would trigger undefined behavior. 105 if (copy_size > 0) 106 memcpy(out + *out_pos, in + *in_pos, copy_size); 107 108 *in_pos += copy_size; 109 *out_pos += copy_size; 110 111 return copy_size; 112 } 113 114 115 extern lzma_ret 116 lzma_next_filter_init(lzma_next_coder *next, const lzma_allocator *allocator, 117 const lzma_filter_info *filters) 118 { 119 lzma_next_coder_init(filters[0].init, next, allocator); 120 next->id = filters[0].id; 121 return filters[0].init == NULL 122 ? LZMA_OK : filters[0].init(next, allocator, filters); 123 } 124 125 126 extern lzma_ret 127 lzma_next_filter_update(lzma_next_coder *next, const lzma_allocator *allocator, 128 const lzma_filter *reversed_filters) 129 { 130 // Check that the application isn't trying to change the Filter ID. 131 // End of filters is indicated with LZMA_VLI_UNKNOWN in both 132 // reversed_filters[0].id and next->id. 133 if (reversed_filters[0].id != next->id) 134 return LZMA_PROG_ERROR; 135 136 if (reversed_filters[0].id == LZMA_VLI_UNKNOWN) 137 return LZMA_OK; 138 139 assert(next->update != NULL); 140 return next->update(next->coder, allocator, NULL, reversed_filters); 141 } 142 143 144 extern void 145 lzma_next_end(lzma_next_coder *next, const lzma_allocator *allocator) 146 { 147 if (next->init != (uintptr_t)(NULL)) { 148 // To avoid tiny end functions that simply call 149 // lzma_free(coder, allocator), we allow leaving next->end 150 // NULL and call lzma_free() here. 151 if (next->end != NULL) 152 next->end(next->coder, allocator); 153 else 154 lzma_free(next->coder, allocator); 155 156 // Reset the variables so the we don't accidentally think 157 // that it is an already initialized coder. 158 *next = LZMA_NEXT_CODER_INIT; 159 } 160 161 return; 162 } 163 164 165 ////////////////////////////////////// 166 // External to internal API wrapper // 167 ////////////////////////////////////// 168 169 extern lzma_ret 170 lzma_strm_init(lzma_stream *strm) 171 { 172 if (strm == NULL) 173 return LZMA_PROG_ERROR; 174 175 if (strm->internal == NULL) { 176 strm->internal = lzma_alloc(sizeof(lzma_internal), 177 strm->allocator); 178 if (strm->internal == NULL) 179 return LZMA_MEM_ERROR; 180 181 strm->internal->next = LZMA_NEXT_CODER_INIT; 182 } 183 184 memzero(strm->internal->supported_actions, 185 sizeof(strm->internal->supported_actions)); 186 strm->internal->sequence = ISEQ_RUN; 187 strm->internal->allow_buf_error = false; 188 189 strm->total_in = 0; 190 strm->total_out = 0; 191 192 return LZMA_OK; 193 } 194 195 196 extern LZMA_API(lzma_ret) 197 lzma_code(lzma_stream *strm, lzma_action action) 198 { 199 // Sanity checks 200 if ((strm->next_in == NULL && strm->avail_in != 0) 201 || (strm->next_out == NULL && strm->avail_out != 0) 202 || strm->internal == NULL 203 || strm->internal->next.code == NULL 204 || (unsigned int)(action) > LZMA_ACTION_MAX 205 || !strm->internal->supported_actions[action]) 206 return LZMA_PROG_ERROR; 207 208 // Check if unsupported members have been set to non-zero or non-NULL, 209 // which would indicate that some new feature is wanted. 210 if (strm->reserved_ptr1 != NULL 211 || strm->reserved_ptr2 != NULL 212 || strm->reserved_ptr3 != NULL 213 || strm->reserved_ptr4 != NULL 214 || strm->reserved_int1 != 0 215 || strm->reserved_int2 != 0 216 || strm->reserved_int3 != 0 217 || strm->reserved_int4 != 0 218 || strm->reserved_enum1 != LZMA_RESERVED_ENUM 219 || strm->reserved_enum2 != LZMA_RESERVED_ENUM) 220 return LZMA_OPTIONS_ERROR; 221 222 switch (strm->internal->sequence) { 223 case ISEQ_RUN: 224 switch (action) { 225 case LZMA_RUN: 226 break; 227 228 case LZMA_SYNC_FLUSH: 229 strm->internal->sequence = ISEQ_SYNC_FLUSH; 230 break; 231 232 case LZMA_FULL_FLUSH: 233 strm->internal->sequence = ISEQ_FULL_FLUSH; 234 break; 235 236 case LZMA_FINISH: 237 strm->internal->sequence = ISEQ_FINISH; 238 break; 239 240 case LZMA_FULL_BARRIER: 241 strm->internal->sequence = ISEQ_FULL_BARRIER; 242 break; 243 } 244 245 break; 246 247 case ISEQ_SYNC_FLUSH: 248 // The same action must be used until we return 249 // LZMA_STREAM_END, and the amount of input must not change. 250 if (action != LZMA_SYNC_FLUSH 251 || strm->internal->avail_in != strm->avail_in) 252 return LZMA_PROG_ERROR; 253 254 break; 255 256 case ISEQ_FULL_FLUSH: 257 if (action != LZMA_FULL_FLUSH 258 || strm->internal->avail_in != strm->avail_in) 259 return LZMA_PROG_ERROR; 260 261 break; 262 263 case ISEQ_FINISH: 264 if (action != LZMA_FINISH 265 || strm->internal->avail_in != strm->avail_in) 266 return LZMA_PROG_ERROR; 267 268 break; 269 270 case ISEQ_FULL_BARRIER: 271 if (action != LZMA_FULL_BARRIER 272 || strm->internal->avail_in != strm->avail_in) 273 return LZMA_PROG_ERROR; 274 275 break; 276 277 case ISEQ_END: 278 return LZMA_STREAM_END; 279 280 case ISEQ_ERROR: 281 default: 282 return LZMA_PROG_ERROR; 283 } 284 285 size_t in_pos = 0; 286 size_t out_pos = 0; 287 lzma_ret ret = strm->internal->next.code( 288 strm->internal->next.coder, strm->allocator, 289 strm->next_in, &in_pos, strm->avail_in, 290 strm->next_out, &out_pos, strm->avail_out, action); 291 292 strm->next_in += in_pos; 293 strm->avail_in -= in_pos; 294 strm->total_in += in_pos; 295 296 strm->next_out += out_pos; 297 strm->avail_out -= out_pos; 298 strm->total_out += out_pos; 299 300 strm->internal->avail_in = strm->avail_in; 301 302 // Cast is needed to silence a warning about LZMA_TIMED_OUT, which 303 // isn't part of lzma_ret enumeration. 304 switch ((unsigned int)(ret)) { 305 case LZMA_OK: 306 // Don't return LZMA_BUF_ERROR when it happens the first time. 307 // This is to avoid returning LZMA_BUF_ERROR when avail_out 308 // was zero but still there was no more data left to written 309 // to next_out. 310 if (out_pos == 0 && in_pos == 0) { 311 if (strm->internal->allow_buf_error) 312 ret = LZMA_BUF_ERROR; 313 else 314 strm->internal->allow_buf_error = true; 315 } else { 316 strm->internal->allow_buf_error = false; 317 } 318 break; 319 320 case LZMA_TIMED_OUT: 321 strm->internal->allow_buf_error = false; 322 ret = LZMA_OK; 323 break; 324 325 case LZMA_STREAM_END: 326 if (strm->internal->sequence == ISEQ_SYNC_FLUSH 327 || strm->internal->sequence == ISEQ_FULL_FLUSH 328 || strm->internal->sequence 329 == ISEQ_FULL_BARRIER) 330 strm->internal->sequence = ISEQ_RUN; 331 else 332 strm->internal->sequence = ISEQ_END; 333 334 // Fall through 335 336 case LZMA_NO_CHECK: 337 case LZMA_UNSUPPORTED_CHECK: 338 case LZMA_GET_CHECK: 339 case LZMA_MEMLIMIT_ERROR: 340 // Something else than LZMA_OK, but not a fatal error, 341 // that is, coding may be continued (except if ISEQ_END). 342 strm->internal->allow_buf_error = false; 343 break; 344 345 default: 346 // All the other errors are fatal; coding cannot be continued. 347 assert(ret != LZMA_BUF_ERROR); 348 strm->internal->sequence = ISEQ_ERROR; 349 break; 350 } 351 352 return ret; 353 } 354 355 356 extern LZMA_API(void) 357 lzma_end(lzma_stream *strm) 358 { 359 if (strm != NULL && strm->internal != NULL) { 360 lzma_next_end(&strm->internal->next, strm->allocator); 361 lzma_free(strm->internal, strm->allocator); 362 strm->internal = NULL; 363 } 364 365 return; 366 } 367 368 369 extern LZMA_API(void) 370 lzma_get_progress(lzma_stream *strm, 371 uint64_t *progress_in, uint64_t *progress_out) 372 { 373 if (strm->internal->next.get_progress != NULL) { 374 strm->internal->next.get_progress(strm->internal->next.coder, 375 progress_in, progress_out); 376 } else { 377 *progress_in = strm->total_in; 378 *progress_out = strm->total_out; 379 } 380 381 return; 382 } 383 384 385 extern LZMA_API(lzma_check) 386 lzma_get_check(const lzma_stream *strm) 387 { 388 // Return LZMA_CHECK_NONE if we cannot know the check type. 389 // It's a bug in the application if this happens. 390 if (strm->internal->next.get_check == NULL) 391 return LZMA_CHECK_NONE; 392 393 return strm->internal->next.get_check(strm->internal->next.coder); 394 } 395 396 397 extern LZMA_API(uint64_t) 398 lzma_memusage(const lzma_stream *strm) 399 { 400 uint64_t memusage; 401 uint64_t old_memlimit; 402 403 if (strm == NULL || strm->internal == NULL 404 || strm->internal->next.memconfig == NULL 405 || strm->internal->next.memconfig( 406 strm->internal->next.coder, 407 &memusage, &old_memlimit, 0) != LZMA_OK) 408 return 0; 409 410 return memusage; 411 } 412 413 414 extern LZMA_API(uint64_t) 415 lzma_memlimit_get(const lzma_stream *strm) 416 { 417 uint64_t old_memlimit; 418 uint64_t memusage; 419 420 if (strm == NULL || strm->internal == NULL 421 || strm->internal->next.memconfig == NULL 422 || strm->internal->next.memconfig( 423 strm->internal->next.coder, 424 &memusage, &old_memlimit, 0) != LZMA_OK) 425 return 0; 426 427 return old_memlimit; 428 } 429 430 431 extern LZMA_API(lzma_ret) 432 lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit) 433 { 434 // Dummy variables to simplify memconfig functions 435 uint64_t old_memlimit; 436 uint64_t memusage; 437 438 if (strm == NULL || strm->internal == NULL 439 || strm->internal->next.memconfig == NULL) 440 return LZMA_PROG_ERROR; 441 442 // Zero is a special value that cannot be used as an actual limit. 443 // If 0 was specified, use 1 instead. 444 if (new_memlimit == 0) 445 new_memlimit = 1; 446 447 return strm->internal->next.memconfig(strm->internal->next.coder, 448 &memusage, &old_memlimit, new_memlimit); 449 } 450