xref: /freebsd/contrib/xz/src/liblzma/common/common.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       common.h
4 /// \brief      Common functions needed in many places in liblzma
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "common.h"
14 
15 
16 /////////////
17 // Version //
18 /////////////
19 
20 extern LZMA_API(uint32_t)
21 lzma_version_number(void)
22 {
23 	return LZMA_VERSION;
24 }
25 
26 
27 extern LZMA_API(const char *)
28 lzma_version_string(void)
29 {
30 	return LZMA_VERSION_STRING;
31 }
32 
33 
34 ///////////////////////
35 // Memory allocation //
36 ///////////////////////
37 
38 extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
39 lzma_alloc(size_t size, const lzma_allocator *allocator)
40 {
41 	// Some malloc() variants return NULL if called with size == 0.
42 	if (size == 0)
43 		size = 1;
44 
45 	void *ptr;
46 
47 	if (allocator != NULL && allocator->alloc != NULL)
48 		ptr = allocator->alloc(allocator->opaque, 1, size);
49 	else
50 		ptr = malloc(size);
51 
52 	return ptr;
53 }
54 
55 
56 extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
57 lzma_alloc_zero(size_t size, const lzma_allocator *allocator)
58 {
59 	// Some calloc() variants return NULL if called with size == 0.
60 	if (size == 0)
61 		size = 1;
62 
63 	void *ptr;
64 
65 	if (allocator != NULL && allocator->alloc != NULL) {
66 		ptr = allocator->alloc(allocator->opaque, 1, size);
67 		if (ptr != NULL)
68 			memzero(ptr, size);
69 	} else {
70 		ptr = calloc(1, size);
71 	}
72 
73 	return ptr;
74 }
75 
76 
77 extern void
78 lzma_free(void *ptr, const lzma_allocator *allocator)
79 {
80 	if (allocator != NULL && allocator->free != NULL)
81 		allocator->free(allocator->opaque, ptr);
82 	else
83 		free(ptr);
84 
85 	return;
86 }
87 
88 
89 //////////
90 // Misc //
91 //////////
92 
93 extern size_t
94 lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
95 		size_t in_size, uint8_t *restrict out,
96 		size_t *restrict out_pos, size_t out_size)
97 {
98 	const size_t in_avail = in_size - *in_pos;
99 	const size_t out_avail = out_size - *out_pos;
100 	const size_t copy_size = my_min(in_avail, out_avail);
101 
102 	memcpy(out + *out_pos, in + *in_pos, copy_size);
103 
104 	*in_pos += copy_size;
105 	*out_pos += copy_size;
106 
107 	return copy_size;
108 }
109 
110 
111 extern lzma_ret
112 lzma_next_filter_init(lzma_next_coder *next, const lzma_allocator *allocator,
113 		const lzma_filter_info *filters)
114 {
115 	lzma_next_coder_init(filters[0].init, next, allocator);
116 	next->id = filters[0].id;
117 	return filters[0].init == NULL
118 			? LZMA_OK : filters[0].init(next, allocator, filters);
119 }
120 
121 
122 extern lzma_ret
123 lzma_next_filter_update(lzma_next_coder *next, const lzma_allocator *allocator,
124 		const lzma_filter *reversed_filters)
125 {
126 	// Check that the application isn't trying to change the Filter ID.
127 	// End of filters is indicated with LZMA_VLI_UNKNOWN in both
128 	// reversed_filters[0].id and next->id.
129 	if (reversed_filters[0].id != next->id)
130 		return LZMA_PROG_ERROR;
131 
132 	if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
133 		return LZMA_OK;
134 
135 	assert(next->update != NULL);
136 	return next->update(next->coder, allocator, NULL, reversed_filters);
137 }
138 
139 
140 extern void
141 lzma_next_end(lzma_next_coder *next, const lzma_allocator *allocator)
142 {
143 	if (next->init != (uintptr_t)(NULL)) {
144 		// To avoid tiny end functions that simply call
145 		// lzma_free(coder, allocator), we allow leaving next->end
146 		// NULL and call lzma_free() here.
147 		if (next->end != NULL)
148 			next->end(next->coder, allocator);
149 		else
150 			lzma_free(next->coder, allocator);
151 
152 		// Reset the variables so the we don't accidentally think
153 		// that it is an already initialized coder.
154 		*next = LZMA_NEXT_CODER_INIT;
155 	}
156 
157 	return;
158 }
159 
160 
161 //////////////////////////////////////
162 // External to internal API wrapper //
163 //////////////////////////////////////
164 
165 extern lzma_ret
166 lzma_strm_init(lzma_stream *strm)
167 {
168 	if (strm == NULL)
169 		return LZMA_PROG_ERROR;
170 
171 	if (strm->internal == NULL) {
172 		strm->internal = lzma_alloc(sizeof(lzma_internal),
173 				strm->allocator);
174 		if (strm->internal == NULL)
175 			return LZMA_MEM_ERROR;
176 
177 		strm->internal->next = LZMA_NEXT_CODER_INIT;
178 	}
179 
180 	memzero(strm->internal->supported_actions,
181 			sizeof(strm->internal->supported_actions));
182 	strm->internal->sequence = ISEQ_RUN;
183 	strm->internal->allow_buf_error = false;
184 
185 	strm->total_in = 0;
186 	strm->total_out = 0;
187 
188 	return LZMA_OK;
189 }
190 
191 
192 extern LZMA_API(lzma_ret)
193 lzma_code(lzma_stream *strm, lzma_action action)
194 {
195 	// Sanity checks
196 	if ((strm->next_in == NULL && strm->avail_in != 0)
197 			|| (strm->next_out == NULL && strm->avail_out != 0)
198 			|| strm->internal == NULL
199 			|| strm->internal->next.code == NULL
200 			|| (unsigned int)(action) > LZMA_ACTION_MAX
201 			|| !strm->internal->supported_actions[action])
202 		return LZMA_PROG_ERROR;
203 
204 	// Check if unsupported members have been set to non-zero or non-NULL,
205 	// which would indicate that some new feature is wanted.
206 	if (strm->reserved_ptr1 != NULL
207 			|| strm->reserved_ptr2 != NULL
208 			|| strm->reserved_ptr3 != NULL
209 			|| strm->reserved_ptr4 != NULL
210 			|| strm->reserved_int1 != 0
211 			|| strm->reserved_int2 != 0
212 			|| strm->reserved_int3 != 0
213 			|| strm->reserved_int4 != 0
214 			|| strm->reserved_enum1 != LZMA_RESERVED_ENUM
215 			|| strm->reserved_enum2 != LZMA_RESERVED_ENUM)
216 		return LZMA_OPTIONS_ERROR;
217 
218 	switch (strm->internal->sequence) {
219 	case ISEQ_RUN:
220 		switch (action) {
221 		case LZMA_RUN:
222 			break;
223 
224 		case LZMA_SYNC_FLUSH:
225 			strm->internal->sequence = ISEQ_SYNC_FLUSH;
226 			break;
227 
228 		case LZMA_FULL_FLUSH:
229 			strm->internal->sequence = ISEQ_FULL_FLUSH;
230 			break;
231 
232 		case LZMA_FINISH:
233 			strm->internal->sequence = ISEQ_FINISH;
234 			break;
235 
236 		case LZMA_FULL_BARRIER:
237 			strm->internal->sequence = ISEQ_FULL_BARRIER;
238 			break;
239 		}
240 
241 		break;
242 
243 	case ISEQ_SYNC_FLUSH:
244 		// The same action must be used until we return
245 		// LZMA_STREAM_END, and the amount of input must not change.
246 		if (action != LZMA_SYNC_FLUSH
247 				|| strm->internal->avail_in != strm->avail_in)
248 			return LZMA_PROG_ERROR;
249 
250 		break;
251 
252 	case ISEQ_FULL_FLUSH:
253 		if (action != LZMA_FULL_FLUSH
254 				|| strm->internal->avail_in != strm->avail_in)
255 			return LZMA_PROG_ERROR;
256 
257 		break;
258 
259 	case ISEQ_FINISH:
260 		if (action != LZMA_FINISH
261 				|| strm->internal->avail_in != strm->avail_in)
262 			return LZMA_PROG_ERROR;
263 
264 		break;
265 
266 	case ISEQ_FULL_BARRIER:
267 		if (action != LZMA_FULL_BARRIER
268 				|| strm->internal->avail_in != strm->avail_in)
269 			return LZMA_PROG_ERROR;
270 
271 		break;
272 
273 	case ISEQ_END:
274 		return LZMA_STREAM_END;
275 
276 	case ISEQ_ERROR:
277 	default:
278 		return LZMA_PROG_ERROR;
279 	}
280 
281 	size_t in_pos = 0;
282 	size_t out_pos = 0;
283 	lzma_ret ret = strm->internal->next.code(
284 			strm->internal->next.coder, strm->allocator,
285 			strm->next_in, &in_pos, strm->avail_in,
286 			strm->next_out, &out_pos, strm->avail_out, action);
287 
288 	strm->next_in += in_pos;
289 	strm->avail_in -= in_pos;
290 	strm->total_in += in_pos;
291 
292 	strm->next_out += out_pos;
293 	strm->avail_out -= out_pos;
294 	strm->total_out += out_pos;
295 
296 	strm->internal->avail_in = strm->avail_in;
297 
298 	// Cast is needed to silence a warning about LZMA_TIMED_OUT, which
299 	// isn't part of lzma_ret enumeration.
300 	switch ((unsigned int)(ret)) {
301 	case LZMA_OK:
302 		// Don't return LZMA_BUF_ERROR when it happens the first time.
303 		// This is to avoid returning LZMA_BUF_ERROR when avail_out
304 		// was zero but still there was no more data left to written
305 		// to next_out.
306 		if (out_pos == 0 && in_pos == 0) {
307 			if (strm->internal->allow_buf_error)
308 				ret = LZMA_BUF_ERROR;
309 			else
310 				strm->internal->allow_buf_error = true;
311 		} else {
312 			strm->internal->allow_buf_error = false;
313 		}
314 		break;
315 
316 	case LZMA_TIMED_OUT:
317 		strm->internal->allow_buf_error = false;
318 		ret = LZMA_OK;
319 		break;
320 
321 	case LZMA_STREAM_END:
322 		if (strm->internal->sequence == ISEQ_SYNC_FLUSH
323 				|| strm->internal->sequence == ISEQ_FULL_FLUSH
324 				|| strm->internal->sequence
325 					== ISEQ_FULL_BARRIER)
326 			strm->internal->sequence = ISEQ_RUN;
327 		else
328 			strm->internal->sequence = ISEQ_END;
329 
330 	// Fall through
331 
332 	case LZMA_NO_CHECK:
333 	case LZMA_UNSUPPORTED_CHECK:
334 	case LZMA_GET_CHECK:
335 	case LZMA_MEMLIMIT_ERROR:
336 		// Something else than LZMA_OK, but not a fatal error,
337 		// that is, coding may be continued (except if ISEQ_END).
338 		strm->internal->allow_buf_error = false;
339 		break;
340 
341 	default:
342 		// All the other errors are fatal; coding cannot be continued.
343 		assert(ret != LZMA_BUF_ERROR);
344 		strm->internal->sequence = ISEQ_ERROR;
345 		break;
346 	}
347 
348 	return ret;
349 }
350 
351 
352 extern LZMA_API(void)
353 lzma_end(lzma_stream *strm)
354 {
355 	if (strm != NULL && strm->internal != NULL) {
356 		lzma_next_end(&strm->internal->next, strm->allocator);
357 		lzma_free(strm->internal, strm->allocator);
358 		strm->internal = NULL;
359 	}
360 
361 	return;
362 }
363 
364 
365 extern LZMA_API(void)
366 lzma_get_progress(lzma_stream *strm,
367 		uint64_t *progress_in, uint64_t *progress_out)
368 {
369 	if (strm->internal->next.get_progress != NULL) {
370 		strm->internal->next.get_progress(strm->internal->next.coder,
371 				progress_in, progress_out);
372 	} else {
373 		*progress_in = strm->total_in;
374 		*progress_out = strm->total_out;
375 	}
376 
377 	return;
378 }
379 
380 
381 extern LZMA_API(lzma_check)
382 lzma_get_check(const lzma_stream *strm)
383 {
384 	// Return LZMA_CHECK_NONE if we cannot know the check type.
385 	// It's a bug in the application if this happens.
386 	if (strm->internal->next.get_check == NULL)
387 		return LZMA_CHECK_NONE;
388 
389 	return strm->internal->next.get_check(strm->internal->next.coder);
390 }
391 
392 
393 extern LZMA_API(uint64_t)
394 lzma_memusage(const lzma_stream *strm)
395 {
396 	uint64_t memusage;
397 	uint64_t old_memlimit;
398 
399 	if (strm == NULL || strm->internal == NULL
400 			|| strm->internal->next.memconfig == NULL
401 			|| strm->internal->next.memconfig(
402 				strm->internal->next.coder,
403 				&memusage, &old_memlimit, 0) != LZMA_OK)
404 		return 0;
405 
406 	return memusage;
407 }
408 
409 
410 extern LZMA_API(uint64_t)
411 lzma_memlimit_get(const lzma_stream *strm)
412 {
413 	uint64_t old_memlimit;
414 	uint64_t memusage;
415 
416 	if (strm == NULL || strm->internal == NULL
417 			|| strm->internal->next.memconfig == NULL
418 			|| strm->internal->next.memconfig(
419 				strm->internal->next.coder,
420 				&memusage, &old_memlimit, 0) != LZMA_OK)
421 		return 0;
422 
423 	return old_memlimit;
424 }
425 
426 
427 extern LZMA_API(lzma_ret)
428 lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
429 {
430 	// Dummy variables to simplify memconfig functions
431 	uint64_t old_memlimit;
432 	uint64_t memusage;
433 
434 	if (strm == NULL || strm->internal == NULL
435 			|| strm->internal->next.memconfig == NULL)
436 		return LZMA_PROG_ERROR;
437 
438 	// Zero is a special value that cannot be used as an actual limit.
439 	// If 0 was specified, use 1 instead.
440 	if (new_memlimit == 0)
441 		new_memlimit = 1;
442 
443 	return strm->internal->next.memconfig(strm->internal->next.coder,
444 			&memusage, &old_memlimit, new_memlimit);
445 }
446