xref: /freebsd/contrib/xz/src/liblzma/common/common.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       common.h
4 /// \brief      Common functions needed in many places in liblzma
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "common.h"
14 
15 
16 /////////////
17 // Version //
18 /////////////
19 
20 extern LZMA_API(uint32_t)
21 lzma_version_number(void)
22 {
23 	return LZMA_VERSION;
24 }
25 
26 
27 extern LZMA_API(const char *)
28 lzma_version_string(void)
29 {
30 	return LZMA_VERSION_STRING;
31 }
32 
33 
34 ///////////////////////
35 // Memory allocation //
36 ///////////////////////
37 
38 extern void * lzma_attribute((malloc))
39 lzma_alloc(size_t size, lzma_allocator *allocator)
40 {
41 	// Some malloc() variants return NULL if called with size == 0.
42 	if (size == 0)
43 		size = 1;
44 
45 	void *ptr;
46 
47 	if (allocator != NULL && allocator->alloc != NULL)
48 		ptr = allocator->alloc(allocator->opaque, 1, size);
49 	else
50 		ptr = malloc(size);
51 
52 	return ptr;
53 }
54 
55 
56 extern void
57 lzma_free(void *ptr, lzma_allocator *allocator)
58 {
59 	if (allocator != NULL && allocator->free != NULL)
60 		allocator->free(allocator->opaque, ptr);
61 	else
62 		free(ptr);
63 
64 	return;
65 }
66 
67 
68 //////////
69 // Misc //
70 //////////
71 
72 extern size_t
73 lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
74 		size_t in_size, uint8_t *restrict out,
75 		size_t *restrict out_pos, size_t out_size)
76 {
77 	const size_t in_avail = in_size - *in_pos;
78 	const size_t out_avail = out_size - *out_pos;
79 	const size_t copy_size = MIN(in_avail, out_avail);
80 
81 	memcpy(out + *out_pos, in + *in_pos, copy_size);
82 
83 	*in_pos += copy_size;
84 	*out_pos += copy_size;
85 
86 	return copy_size;
87 }
88 
89 
90 extern lzma_ret
91 lzma_next_filter_init(lzma_next_coder *next, lzma_allocator *allocator,
92 		const lzma_filter_info *filters)
93 {
94 	lzma_next_coder_init(filters[0].init, next, allocator);
95 	next->id = filters[0].id;
96 	return filters[0].init == NULL
97 			? LZMA_OK : filters[0].init(next, allocator, filters);
98 }
99 
100 
101 extern lzma_ret
102 lzma_next_filter_update(lzma_next_coder *next, lzma_allocator *allocator,
103 		const lzma_filter *reversed_filters)
104 {
105 	// Check that the application isn't trying to change the Filter ID.
106 	// End of filters is indicated with LZMA_VLI_UNKNOWN in both
107 	// reversed_filters[0].id and next->id.
108 	if (reversed_filters[0].id != next->id)
109 		return LZMA_PROG_ERROR;
110 
111 	if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
112 		return LZMA_OK;
113 
114 	assert(next->update != NULL);
115 	return next->update(next->coder, allocator, NULL, reversed_filters);
116 }
117 
118 
119 extern void
120 lzma_next_end(lzma_next_coder *next, lzma_allocator *allocator)
121 {
122 	if (next->init != (uintptr_t)(NULL)) {
123 		// To avoid tiny end functions that simply call
124 		// lzma_free(coder, allocator), we allow leaving next->end
125 		// NULL and call lzma_free() here.
126 		if (next->end != NULL)
127 			next->end(next->coder, allocator);
128 		else
129 			lzma_free(next->coder, allocator);
130 
131 		// Reset the variables so the we don't accidentally think
132 		// that it is an already initialized coder.
133 		*next = LZMA_NEXT_CODER_INIT;
134 	}
135 
136 	return;
137 }
138 
139 
140 //////////////////////////////////////
141 // External to internal API wrapper //
142 //////////////////////////////////////
143 
144 extern lzma_ret
145 lzma_strm_init(lzma_stream *strm)
146 {
147 	if (strm == NULL)
148 		return LZMA_PROG_ERROR;
149 
150 	if (strm->internal == NULL) {
151 		strm->internal = lzma_alloc(sizeof(lzma_internal),
152 				strm->allocator);
153 		if (strm->internal == NULL)
154 			return LZMA_MEM_ERROR;
155 
156 		strm->internal->next = LZMA_NEXT_CODER_INIT;
157 	}
158 
159 	strm->internal->supported_actions[LZMA_RUN] = false;
160 	strm->internal->supported_actions[LZMA_SYNC_FLUSH] = false;
161 	strm->internal->supported_actions[LZMA_FULL_FLUSH] = false;
162 	strm->internal->supported_actions[LZMA_FINISH] = false;
163 	strm->internal->sequence = ISEQ_RUN;
164 	strm->internal->allow_buf_error = false;
165 
166 	strm->total_in = 0;
167 	strm->total_out = 0;
168 
169 	return LZMA_OK;
170 }
171 
172 
173 extern LZMA_API(lzma_ret)
174 lzma_code(lzma_stream *strm, lzma_action action)
175 {
176 	// Sanity checks
177 	if ((strm->next_in == NULL && strm->avail_in != 0)
178 			|| (strm->next_out == NULL && strm->avail_out != 0)
179 			|| strm->internal == NULL
180 			|| strm->internal->next.code == NULL
181 			|| (unsigned int)(action) > LZMA_FINISH
182 			|| !strm->internal->supported_actions[action])
183 		return LZMA_PROG_ERROR;
184 
185 	switch (strm->internal->sequence) {
186 	case ISEQ_RUN:
187 		switch (action) {
188 		case LZMA_RUN:
189 			break;
190 
191 		case LZMA_SYNC_FLUSH:
192 			strm->internal->sequence = ISEQ_SYNC_FLUSH;
193 			break;
194 
195 		case LZMA_FULL_FLUSH:
196 			strm->internal->sequence = ISEQ_FULL_FLUSH;
197 			break;
198 
199 		case LZMA_FINISH:
200 			strm->internal->sequence = ISEQ_FINISH;
201 			break;
202 		}
203 
204 		break;
205 
206 	case ISEQ_SYNC_FLUSH:
207 		// The same action must be used until we return
208 		// LZMA_STREAM_END, and the amount of input must not change.
209 		if (action != LZMA_SYNC_FLUSH
210 				|| strm->internal->avail_in != strm->avail_in)
211 			return LZMA_PROG_ERROR;
212 
213 		break;
214 
215 	case ISEQ_FULL_FLUSH:
216 		if (action != LZMA_FULL_FLUSH
217 				|| strm->internal->avail_in != strm->avail_in)
218 			return LZMA_PROG_ERROR;
219 
220 		break;
221 
222 	case ISEQ_FINISH:
223 		if (action != LZMA_FINISH
224 				|| strm->internal->avail_in != strm->avail_in)
225 			return LZMA_PROG_ERROR;
226 
227 		break;
228 
229 	case ISEQ_END:
230 		return LZMA_STREAM_END;
231 
232 	case ISEQ_ERROR:
233 	default:
234 		return LZMA_PROG_ERROR;
235 	}
236 
237 	size_t in_pos = 0;
238 	size_t out_pos = 0;
239 	lzma_ret ret = strm->internal->next.code(
240 			strm->internal->next.coder, strm->allocator,
241 			strm->next_in, &in_pos, strm->avail_in,
242 			strm->next_out, &out_pos, strm->avail_out, action);
243 
244 	strm->next_in += in_pos;
245 	strm->avail_in -= in_pos;
246 	strm->total_in += in_pos;
247 
248 	strm->next_out += out_pos;
249 	strm->avail_out -= out_pos;
250 	strm->total_out += out_pos;
251 
252 	strm->internal->avail_in = strm->avail_in;
253 
254 	switch (ret) {
255 	case LZMA_OK:
256 		// Don't return LZMA_BUF_ERROR when it happens the first time.
257 		// This is to avoid returning LZMA_BUF_ERROR when avail_out
258 		// was zero but still there was no more data left to written
259 		// to next_out.
260 		if (out_pos == 0 && in_pos == 0) {
261 			if (strm->internal->allow_buf_error)
262 				ret = LZMA_BUF_ERROR;
263 			else
264 				strm->internal->allow_buf_error = true;
265 		} else {
266 			strm->internal->allow_buf_error = false;
267 		}
268 		break;
269 
270 	case LZMA_STREAM_END:
271 		if (strm->internal->sequence == ISEQ_SYNC_FLUSH
272 				|| strm->internal->sequence == ISEQ_FULL_FLUSH)
273 			strm->internal->sequence = ISEQ_RUN;
274 		else
275 			strm->internal->sequence = ISEQ_END;
276 
277 	// Fall through
278 
279 	case LZMA_NO_CHECK:
280 	case LZMA_UNSUPPORTED_CHECK:
281 	case LZMA_GET_CHECK:
282 	case LZMA_MEMLIMIT_ERROR:
283 		// Something else than LZMA_OK, but not a fatal error,
284 		// that is, coding may be continued (except if ISEQ_END).
285 		strm->internal->allow_buf_error = false;
286 		break;
287 
288 	default:
289 		// All the other errors are fatal; coding cannot be continued.
290 		assert(ret != LZMA_BUF_ERROR);
291 		strm->internal->sequence = ISEQ_ERROR;
292 		break;
293 	}
294 
295 	return ret;
296 }
297 
298 
299 extern LZMA_API(void)
300 lzma_end(lzma_stream *strm)
301 {
302 	if (strm != NULL && strm->internal != NULL) {
303 		lzma_next_end(&strm->internal->next, strm->allocator);
304 		lzma_free(strm->internal, strm->allocator);
305 		strm->internal = NULL;
306 	}
307 
308 	return;
309 }
310 
311 
312 extern LZMA_API(lzma_check)
313 lzma_get_check(const lzma_stream *strm)
314 {
315 	// Return LZMA_CHECK_NONE if we cannot know the check type.
316 	// It's a bug in the application if this happens.
317 	if (strm->internal->next.get_check == NULL)
318 		return LZMA_CHECK_NONE;
319 
320 	return strm->internal->next.get_check(strm->internal->next.coder);
321 }
322 
323 
324 extern LZMA_API(uint64_t)
325 lzma_memusage(const lzma_stream *strm)
326 {
327 	uint64_t memusage;
328 	uint64_t old_memlimit;
329 
330 	if (strm == NULL || strm->internal == NULL
331 			|| strm->internal->next.memconfig == NULL
332 			|| strm->internal->next.memconfig(
333 				strm->internal->next.coder,
334 				&memusage, &old_memlimit, 0) != LZMA_OK)
335 		return 0;
336 
337 	return memusage;
338 }
339 
340 
341 extern LZMA_API(uint64_t)
342 lzma_memlimit_get(const lzma_stream *strm)
343 {
344 	uint64_t old_memlimit;
345 	uint64_t memusage;
346 
347 	if (strm == NULL || strm->internal == NULL
348 			|| strm->internal->next.memconfig == NULL
349 			|| strm->internal->next.memconfig(
350 				strm->internal->next.coder,
351 				&memusage, &old_memlimit, 0) != LZMA_OK)
352 		return 0;
353 
354 	return old_memlimit;
355 }
356 
357 
358 extern LZMA_API(lzma_ret)
359 lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
360 {
361 	// Dummy variables to simplify memconfig functions
362 	uint64_t old_memlimit;
363 	uint64_t memusage;
364 
365 	if (strm == NULL || strm->internal == NULL
366 			|| strm->internal->next.memconfig == NULL)
367 		return LZMA_PROG_ERROR;
368 
369 	if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE)
370 		return LZMA_MEMLIMIT_ERROR;
371 
372 	return strm->internal->next.memconfig(strm->internal->next.coder,
373 			&memusage, &old_memlimit, new_memlimit);
374 }
375