1 /////////////////////////////////////////////////////////////////////////////// 2 // 3 /// \file common.h 4 /// \brief Common functions needed in many places in liblzma 5 // 6 // Author: Lasse Collin 7 // 8 // This file has been put into the public domain. 9 // You can do whatever you want with this file. 10 // 11 /////////////////////////////////////////////////////////////////////////////// 12 13 #include "common.h" 14 15 16 ///////////// 17 // Version // 18 ///////////// 19 20 extern LZMA_API(uint32_t) 21 lzma_version_number(void) 22 { 23 return LZMA_VERSION; 24 } 25 26 27 extern LZMA_API(const char *) 28 lzma_version_string(void) 29 { 30 return LZMA_VERSION_STRING; 31 } 32 33 34 /////////////////////// 35 // Memory allocation // 36 /////////////////////// 37 38 extern void * lzma_attribute((malloc)) 39 lzma_alloc(size_t size, lzma_allocator *allocator) 40 { 41 // Some malloc() variants return NULL if called with size == 0. 42 if (size == 0) 43 size = 1; 44 45 void *ptr; 46 47 if (allocator != NULL && allocator->alloc != NULL) 48 ptr = allocator->alloc(allocator->opaque, 1, size); 49 else 50 ptr = malloc(size); 51 52 return ptr; 53 } 54 55 56 extern void 57 lzma_free(void *ptr, lzma_allocator *allocator) 58 { 59 if (allocator != NULL && allocator->free != NULL) 60 allocator->free(allocator->opaque, ptr); 61 else 62 free(ptr); 63 64 return; 65 } 66 67 68 ////////// 69 // Misc // 70 ////////// 71 72 extern size_t 73 lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos, 74 size_t in_size, uint8_t *restrict out, 75 size_t *restrict out_pos, size_t out_size) 76 { 77 const size_t in_avail = in_size - *in_pos; 78 const size_t out_avail = out_size - *out_pos; 79 const size_t copy_size = MIN(in_avail, out_avail); 80 81 memcpy(out + *out_pos, in + *in_pos, copy_size); 82 83 *in_pos += copy_size; 84 *out_pos += copy_size; 85 86 return copy_size; 87 } 88 89 90 extern lzma_ret 91 lzma_next_filter_init(lzma_next_coder *next, lzma_allocator *allocator, 92 const lzma_filter_info *filters) 93 { 94 lzma_next_coder_init(filters[0].init, next, allocator); 95 next->id = filters[0].id; 96 return filters[0].init == NULL 97 ? LZMA_OK : filters[0].init(next, allocator, filters); 98 } 99 100 101 extern lzma_ret 102 lzma_next_filter_update(lzma_next_coder *next, lzma_allocator *allocator, 103 const lzma_filter *reversed_filters) 104 { 105 // Check that the application isn't trying to change the Filter ID. 106 // End of filters is indicated with LZMA_VLI_UNKNOWN in both 107 // reversed_filters[0].id and next->id. 108 if (reversed_filters[0].id != next->id) 109 return LZMA_PROG_ERROR; 110 111 if (reversed_filters[0].id == LZMA_VLI_UNKNOWN) 112 return LZMA_OK; 113 114 assert(next->update != NULL); 115 return next->update(next->coder, allocator, NULL, reversed_filters); 116 } 117 118 119 extern void 120 lzma_next_end(lzma_next_coder *next, lzma_allocator *allocator) 121 { 122 if (next->init != (uintptr_t)(NULL)) { 123 // To avoid tiny end functions that simply call 124 // lzma_free(coder, allocator), we allow leaving next->end 125 // NULL and call lzma_free() here. 126 if (next->end != NULL) 127 next->end(next->coder, allocator); 128 else 129 lzma_free(next->coder, allocator); 130 131 // Reset the variables so the we don't accidentally think 132 // that it is an already initialized coder. 133 *next = LZMA_NEXT_CODER_INIT; 134 } 135 136 return; 137 } 138 139 140 ////////////////////////////////////// 141 // External to internal API wrapper // 142 ////////////////////////////////////// 143 144 extern lzma_ret 145 lzma_strm_init(lzma_stream *strm) 146 { 147 if (strm == NULL) 148 return LZMA_PROG_ERROR; 149 150 if (strm->internal == NULL) { 151 strm->internal = lzma_alloc(sizeof(lzma_internal), 152 strm->allocator); 153 if (strm->internal == NULL) 154 return LZMA_MEM_ERROR; 155 156 strm->internal->next = LZMA_NEXT_CODER_INIT; 157 } 158 159 strm->internal->supported_actions[LZMA_RUN] = false; 160 strm->internal->supported_actions[LZMA_SYNC_FLUSH] = false; 161 strm->internal->supported_actions[LZMA_FULL_FLUSH] = false; 162 strm->internal->supported_actions[LZMA_FINISH] = false; 163 strm->internal->sequence = ISEQ_RUN; 164 strm->internal->allow_buf_error = false; 165 166 strm->total_in = 0; 167 strm->total_out = 0; 168 169 return LZMA_OK; 170 } 171 172 173 extern LZMA_API(lzma_ret) 174 lzma_code(lzma_stream *strm, lzma_action action) 175 { 176 // Sanity checks 177 if ((strm->next_in == NULL && strm->avail_in != 0) 178 || (strm->next_out == NULL && strm->avail_out != 0) 179 || strm->internal == NULL 180 || strm->internal->next.code == NULL 181 || (unsigned int)(action) > LZMA_FINISH 182 || !strm->internal->supported_actions[action]) 183 return LZMA_PROG_ERROR; 184 185 switch (strm->internal->sequence) { 186 case ISEQ_RUN: 187 switch (action) { 188 case LZMA_RUN: 189 break; 190 191 case LZMA_SYNC_FLUSH: 192 strm->internal->sequence = ISEQ_SYNC_FLUSH; 193 break; 194 195 case LZMA_FULL_FLUSH: 196 strm->internal->sequence = ISEQ_FULL_FLUSH; 197 break; 198 199 case LZMA_FINISH: 200 strm->internal->sequence = ISEQ_FINISH; 201 break; 202 } 203 204 break; 205 206 case ISEQ_SYNC_FLUSH: 207 // The same action must be used until we return 208 // LZMA_STREAM_END, and the amount of input must not change. 209 if (action != LZMA_SYNC_FLUSH 210 || strm->internal->avail_in != strm->avail_in) 211 return LZMA_PROG_ERROR; 212 213 break; 214 215 case ISEQ_FULL_FLUSH: 216 if (action != LZMA_FULL_FLUSH 217 || strm->internal->avail_in != strm->avail_in) 218 return LZMA_PROG_ERROR; 219 220 break; 221 222 case ISEQ_FINISH: 223 if (action != LZMA_FINISH 224 || strm->internal->avail_in != strm->avail_in) 225 return LZMA_PROG_ERROR; 226 227 break; 228 229 case ISEQ_END: 230 return LZMA_STREAM_END; 231 232 case ISEQ_ERROR: 233 default: 234 return LZMA_PROG_ERROR; 235 } 236 237 size_t in_pos = 0; 238 size_t out_pos = 0; 239 lzma_ret ret = strm->internal->next.code( 240 strm->internal->next.coder, strm->allocator, 241 strm->next_in, &in_pos, strm->avail_in, 242 strm->next_out, &out_pos, strm->avail_out, action); 243 244 strm->next_in += in_pos; 245 strm->avail_in -= in_pos; 246 strm->total_in += in_pos; 247 248 strm->next_out += out_pos; 249 strm->avail_out -= out_pos; 250 strm->total_out += out_pos; 251 252 strm->internal->avail_in = strm->avail_in; 253 254 switch (ret) { 255 case LZMA_OK: 256 // Don't return LZMA_BUF_ERROR when it happens the first time. 257 // This is to avoid returning LZMA_BUF_ERROR when avail_out 258 // was zero but still there was no more data left to written 259 // to next_out. 260 if (out_pos == 0 && in_pos == 0) { 261 if (strm->internal->allow_buf_error) 262 ret = LZMA_BUF_ERROR; 263 else 264 strm->internal->allow_buf_error = true; 265 } else { 266 strm->internal->allow_buf_error = false; 267 } 268 break; 269 270 case LZMA_STREAM_END: 271 if (strm->internal->sequence == ISEQ_SYNC_FLUSH 272 || strm->internal->sequence == ISEQ_FULL_FLUSH) 273 strm->internal->sequence = ISEQ_RUN; 274 else 275 strm->internal->sequence = ISEQ_END; 276 277 // Fall through 278 279 case LZMA_NO_CHECK: 280 case LZMA_UNSUPPORTED_CHECK: 281 case LZMA_GET_CHECK: 282 case LZMA_MEMLIMIT_ERROR: 283 // Something else than LZMA_OK, but not a fatal error, 284 // that is, coding may be continued (except if ISEQ_END). 285 strm->internal->allow_buf_error = false; 286 break; 287 288 default: 289 // All the other errors are fatal; coding cannot be continued. 290 assert(ret != LZMA_BUF_ERROR); 291 strm->internal->sequence = ISEQ_ERROR; 292 break; 293 } 294 295 return ret; 296 } 297 298 299 extern LZMA_API(void) 300 lzma_end(lzma_stream *strm) 301 { 302 if (strm != NULL && strm->internal != NULL) { 303 lzma_next_end(&strm->internal->next, strm->allocator); 304 lzma_free(strm->internal, strm->allocator); 305 strm->internal = NULL; 306 } 307 308 return; 309 } 310 311 312 extern LZMA_API(lzma_check) 313 lzma_get_check(const lzma_stream *strm) 314 { 315 // Return LZMA_CHECK_NONE if we cannot know the check type. 316 // It's a bug in the application if this happens. 317 if (strm->internal->next.get_check == NULL) 318 return LZMA_CHECK_NONE; 319 320 return strm->internal->next.get_check(strm->internal->next.coder); 321 } 322 323 324 extern LZMA_API(uint64_t) 325 lzma_memusage(const lzma_stream *strm) 326 { 327 uint64_t memusage; 328 uint64_t old_memlimit; 329 330 if (strm == NULL || strm->internal == NULL 331 || strm->internal->next.memconfig == NULL 332 || strm->internal->next.memconfig( 333 strm->internal->next.coder, 334 &memusage, &old_memlimit, 0) != LZMA_OK) 335 return 0; 336 337 return memusage; 338 } 339 340 341 extern LZMA_API(uint64_t) 342 lzma_memlimit_get(const lzma_stream *strm) 343 { 344 uint64_t old_memlimit; 345 uint64_t memusage; 346 347 if (strm == NULL || strm->internal == NULL 348 || strm->internal->next.memconfig == NULL 349 || strm->internal->next.memconfig( 350 strm->internal->next.coder, 351 &memusage, &old_memlimit, 0) != LZMA_OK) 352 return 0; 353 354 return old_memlimit; 355 } 356 357 358 extern LZMA_API(lzma_ret) 359 lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit) 360 { 361 // Dummy variables to simplify memconfig functions 362 uint64_t old_memlimit; 363 uint64_t memusage; 364 365 if (strm == NULL || strm->internal == NULL 366 || strm->internal->next.memconfig == NULL) 367 return LZMA_PROG_ERROR; 368 369 if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE) 370 return LZMA_MEMLIMIT_ERROR; 371 372 return strm->internal->next.memconfig(strm->internal->next.coder, 373 &memusage, &old_memlimit, new_memlimit); 374 } 375