xref: /freebsd/contrib/xz/src/liblzma/common/common.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       common.h
4 /// \brief      Common functions needed in many places in liblzma
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "common.h"
14 
15 
16 /////////////
17 // Version //
18 /////////////
19 
20 extern LZMA_API(uint32_t)
21 lzma_version_number(void)
22 {
23 	return LZMA_VERSION;
24 }
25 
26 
27 extern LZMA_API(const char *)
28 lzma_version_string(void)
29 {
30 	return LZMA_VERSION_STRING;
31 }
32 
33 
34 ///////////////////////
35 // Memory allocation //
36 ///////////////////////
37 
38 extern void * lzma_attribute((malloc))
39 lzma_alloc(size_t size, lzma_allocator *allocator)
40 {
41 	// Some malloc() variants return NULL if called with size == 0.
42 	if (size == 0)
43 		size = 1;
44 
45 	void *ptr;
46 
47 	if (allocator != NULL && allocator->alloc != NULL)
48 		ptr = allocator->alloc(allocator->opaque, 1, size);
49 	else
50 		ptr = malloc(size);
51 
52 	return ptr;
53 }
54 
55 
56 extern void
57 lzma_free(void *ptr, lzma_allocator *allocator)
58 {
59 	if (allocator != NULL && allocator->free != NULL)
60 		allocator->free(allocator->opaque, ptr);
61 	else
62 		free(ptr);
63 
64 	return;
65 }
66 
67 
68 //////////
69 // Misc //
70 //////////
71 
72 extern size_t
73 lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
74 		size_t in_size, uint8_t *restrict out,
75 		size_t *restrict out_pos, size_t out_size)
76 {
77 	const size_t in_avail = in_size - *in_pos;
78 	const size_t out_avail = out_size - *out_pos;
79 	const size_t copy_size = my_min(in_avail, out_avail);
80 
81 	memcpy(out + *out_pos, in + *in_pos, copy_size);
82 
83 	*in_pos += copy_size;
84 	*out_pos += copy_size;
85 
86 	return copy_size;
87 }
88 
89 
90 extern lzma_ret
91 lzma_next_filter_init(lzma_next_coder *next, lzma_allocator *allocator,
92 		const lzma_filter_info *filters)
93 {
94 	lzma_next_coder_init(filters[0].init, next, allocator);
95 	next->id = filters[0].id;
96 	return filters[0].init == NULL
97 			? LZMA_OK : filters[0].init(next, allocator, filters);
98 }
99 
100 
101 extern lzma_ret
102 lzma_next_filter_update(lzma_next_coder *next, lzma_allocator *allocator,
103 		const lzma_filter *reversed_filters)
104 {
105 	// Check that the application isn't trying to change the Filter ID.
106 	// End of filters is indicated with LZMA_VLI_UNKNOWN in both
107 	// reversed_filters[0].id and next->id.
108 	if (reversed_filters[0].id != next->id)
109 		return LZMA_PROG_ERROR;
110 
111 	if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
112 		return LZMA_OK;
113 
114 	assert(next->update != NULL);
115 	return next->update(next->coder, allocator, NULL, reversed_filters);
116 }
117 
118 
119 extern void
120 lzma_next_end(lzma_next_coder *next, lzma_allocator *allocator)
121 {
122 	if (next->init != (uintptr_t)(NULL)) {
123 		// To avoid tiny end functions that simply call
124 		// lzma_free(coder, allocator), we allow leaving next->end
125 		// NULL and call lzma_free() here.
126 		if (next->end != NULL)
127 			next->end(next->coder, allocator);
128 		else
129 			lzma_free(next->coder, allocator);
130 
131 		// Reset the variables so the we don't accidentally think
132 		// that it is an already initialized coder.
133 		*next = LZMA_NEXT_CODER_INIT;
134 	}
135 
136 	return;
137 }
138 
139 
140 //////////////////////////////////////
141 // External to internal API wrapper //
142 //////////////////////////////////////
143 
144 extern lzma_ret
145 lzma_strm_init(lzma_stream *strm)
146 {
147 	if (strm == NULL)
148 		return LZMA_PROG_ERROR;
149 
150 	if (strm->internal == NULL) {
151 		strm->internal = lzma_alloc(sizeof(lzma_internal),
152 				strm->allocator);
153 		if (strm->internal == NULL)
154 			return LZMA_MEM_ERROR;
155 
156 		strm->internal->next = LZMA_NEXT_CODER_INIT;
157 	}
158 
159 	strm->internal->supported_actions[LZMA_RUN] = false;
160 	strm->internal->supported_actions[LZMA_SYNC_FLUSH] = false;
161 	strm->internal->supported_actions[LZMA_FULL_FLUSH] = false;
162 	strm->internal->supported_actions[LZMA_FINISH] = false;
163 	strm->internal->sequence = ISEQ_RUN;
164 	strm->internal->allow_buf_error = false;
165 
166 	strm->total_in = 0;
167 	strm->total_out = 0;
168 
169 	return LZMA_OK;
170 }
171 
172 
173 extern LZMA_API(lzma_ret)
174 lzma_code(lzma_stream *strm, lzma_action action)
175 {
176 	// Sanity checks
177 	if ((strm->next_in == NULL && strm->avail_in != 0)
178 			|| (strm->next_out == NULL && strm->avail_out != 0)
179 			|| strm->internal == NULL
180 			|| strm->internal->next.code == NULL
181 			|| (unsigned int)(action) > LZMA_FINISH
182 			|| !strm->internal->supported_actions[action])
183 		return LZMA_PROG_ERROR;
184 
185 	// Check if unsupported members have been set to non-zero or non-NULL,
186 	// which would indicate that some new feature is wanted.
187 	if (strm->reserved_ptr1 != NULL
188 			|| strm->reserved_ptr2 != NULL
189 			|| strm->reserved_ptr3 != NULL
190 			|| strm->reserved_ptr4 != NULL
191 			|| strm->reserved_int1 != 0
192 			|| strm->reserved_int2 != 0
193 			|| strm->reserved_int3 != 0
194 			|| strm->reserved_int4 != 0
195 			|| strm->reserved_enum1 != LZMA_RESERVED_ENUM
196 			|| strm->reserved_enum2 != LZMA_RESERVED_ENUM)
197 		return LZMA_OPTIONS_ERROR;
198 
199 	switch (strm->internal->sequence) {
200 	case ISEQ_RUN:
201 		switch (action) {
202 		case LZMA_RUN:
203 			break;
204 
205 		case LZMA_SYNC_FLUSH:
206 			strm->internal->sequence = ISEQ_SYNC_FLUSH;
207 			break;
208 
209 		case LZMA_FULL_FLUSH:
210 			strm->internal->sequence = ISEQ_FULL_FLUSH;
211 			break;
212 
213 		case LZMA_FINISH:
214 			strm->internal->sequence = ISEQ_FINISH;
215 			break;
216 		}
217 
218 		break;
219 
220 	case ISEQ_SYNC_FLUSH:
221 		// The same action must be used until we return
222 		// LZMA_STREAM_END, and the amount of input must not change.
223 		if (action != LZMA_SYNC_FLUSH
224 				|| strm->internal->avail_in != strm->avail_in)
225 			return LZMA_PROG_ERROR;
226 
227 		break;
228 
229 	case ISEQ_FULL_FLUSH:
230 		if (action != LZMA_FULL_FLUSH
231 				|| strm->internal->avail_in != strm->avail_in)
232 			return LZMA_PROG_ERROR;
233 
234 		break;
235 
236 	case ISEQ_FINISH:
237 		if (action != LZMA_FINISH
238 				|| strm->internal->avail_in != strm->avail_in)
239 			return LZMA_PROG_ERROR;
240 
241 		break;
242 
243 	case ISEQ_END:
244 		return LZMA_STREAM_END;
245 
246 	case ISEQ_ERROR:
247 	default:
248 		return LZMA_PROG_ERROR;
249 	}
250 
251 	size_t in_pos = 0;
252 	size_t out_pos = 0;
253 	lzma_ret ret = strm->internal->next.code(
254 			strm->internal->next.coder, strm->allocator,
255 			strm->next_in, &in_pos, strm->avail_in,
256 			strm->next_out, &out_pos, strm->avail_out, action);
257 
258 	strm->next_in += in_pos;
259 	strm->avail_in -= in_pos;
260 	strm->total_in += in_pos;
261 
262 	strm->next_out += out_pos;
263 	strm->avail_out -= out_pos;
264 	strm->total_out += out_pos;
265 
266 	strm->internal->avail_in = strm->avail_in;
267 
268 	switch (ret) {
269 	case LZMA_OK:
270 		// Don't return LZMA_BUF_ERROR when it happens the first time.
271 		// This is to avoid returning LZMA_BUF_ERROR when avail_out
272 		// was zero but still there was no more data left to written
273 		// to next_out.
274 		if (out_pos == 0 && in_pos == 0) {
275 			if (strm->internal->allow_buf_error)
276 				ret = LZMA_BUF_ERROR;
277 			else
278 				strm->internal->allow_buf_error = true;
279 		} else {
280 			strm->internal->allow_buf_error = false;
281 		}
282 		break;
283 
284 	case LZMA_STREAM_END:
285 		if (strm->internal->sequence == ISEQ_SYNC_FLUSH
286 				|| strm->internal->sequence == ISEQ_FULL_FLUSH)
287 			strm->internal->sequence = ISEQ_RUN;
288 		else
289 			strm->internal->sequence = ISEQ_END;
290 
291 	// Fall through
292 
293 	case LZMA_NO_CHECK:
294 	case LZMA_UNSUPPORTED_CHECK:
295 	case LZMA_GET_CHECK:
296 	case LZMA_MEMLIMIT_ERROR:
297 		// Something else than LZMA_OK, but not a fatal error,
298 		// that is, coding may be continued (except if ISEQ_END).
299 		strm->internal->allow_buf_error = false;
300 		break;
301 
302 	default:
303 		// All the other errors are fatal; coding cannot be continued.
304 		assert(ret != LZMA_BUF_ERROR);
305 		strm->internal->sequence = ISEQ_ERROR;
306 		break;
307 	}
308 
309 	return ret;
310 }
311 
312 
313 extern LZMA_API(void)
314 lzma_end(lzma_stream *strm)
315 {
316 	if (strm != NULL && strm->internal != NULL) {
317 		lzma_next_end(&strm->internal->next, strm->allocator);
318 		lzma_free(strm->internal, strm->allocator);
319 		strm->internal = NULL;
320 	}
321 
322 	return;
323 }
324 
325 
326 extern LZMA_API(lzma_check)
327 lzma_get_check(const lzma_stream *strm)
328 {
329 	// Return LZMA_CHECK_NONE if we cannot know the check type.
330 	// It's a bug in the application if this happens.
331 	if (strm->internal->next.get_check == NULL)
332 		return LZMA_CHECK_NONE;
333 
334 	return strm->internal->next.get_check(strm->internal->next.coder);
335 }
336 
337 
338 extern LZMA_API(uint64_t)
339 lzma_memusage(const lzma_stream *strm)
340 {
341 	uint64_t memusage;
342 	uint64_t old_memlimit;
343 
344 	if (strm == NULL || strm->internal == NULL
345 			|| strm->internal->next.memconfig == NULL
346 			|| strm->internal->next.memconfig(
347 				strm->internal->next.coder,
348 				&memusage, &old_memlimit, 0) != LZMA_OK)
349 		return 0;
350 
351 	return memusage;
352 }
353 
354 
355 extern LZMA_API(uint64_t)
356 lzma_memlimit_get(const lzma_stream *strm)
357 {
358 	uint64_t old_memlimit;
359 	uint64_t memusage;
360 
361 	if (strm == NULL || strm->internal == NULL
362 			|| strm->internal->next.memconfig == NULL
363 			|| strm->internal->next.memconfig(
364 				strm->internal->next.coder,
365 				&memusage, &old_memlimit, 0) != LZMA_OK)
366 		return 0;
367 
368 	return old_memlimit;
369 }
370 
371 
372 extern LZMA_API(lzma_ret)
373 lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
374 {
375 	// Dummy variables to simplify memconfig functions
376 	uint64_t old_memlimit;
377 	uint64_t memusage;
378 
379 	if (strm == NULL || strm->internal == NULL
380 			|| strm->internal->next.memconfig == NULL)
381 		return LZMA_PROG_ERROR;
382 
383 	if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE)
384 		return LZMA_MEMLIMIT_ERROR;
385 
386 	return strm->internal->next.memconfig(strm->internal->next.coder,
387 			&memusage, &old_memlimit, new_memlimit);
388 }
389