xref: /freebsd/contrib/xz/src/liblzma/common/block_buffer_encoder.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       block_buffer_encoder.c
4 /// \brief      Single-call .xz Block encoder
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "block_encoder.h"
14 #include "filter_encoder.h"
15 #include "lzma2_encoder.h"
16 #include "check.h"
17 
18 
19 /// Estimate the maximum size of the Block Header and Check fields for
20 /// a Block that uses LZMA2 uncompressed chunks. We could use
21 /// lzma_block_header_size() but this is simpler.
22 ///
23 /// Block Header Size + Block Flags + Compressed Size
24 /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25 /// and round up to the next multiple of four to take Header Padding
26 /// into account.
27 #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28 		+ LZMA_CHECK_SIZE_MAX + 3) & ~3)
29 
30 
31 static lzma_vli
32 lzma2_bound(lzma_vli uncompressed_size)
33 {
34 	// Prevent integer overflow in overhead calculation.
35 	if (uncompressed_size > COMPRESSED_SIZE_MAX)
36 		return 0;
37 
38 	// Calculate the exact overhead of the LZMA2 headers: Round
39 	// uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40 	// multiply by the size of per-chunk header, and add one byte for
41 	// the end marker.
42 	const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
43 				/ LZMA2_CHUNK_MAX)
44 			* LZMA2_HEADER_UNCOMPRESSED + 1;
45 
46 	// Catch the possible integer overflow.
47 	if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
48 		return 0;
49 
50 	return uncompressed_size + overhead;
51 }
52 
53 
54 extern LZMA_API(size_t)
55 lzma_block_buffer_bound(size_t uncompressed_size)
56 {
57 	// For now, if the data doesn't compress, we always use uncompressed
58 	// chunks of LZMA2. In future we may use Subblock filter too, but
59 	// but for simplicity we probably will still use the same bound
60 	// calculation even though Subblock filter would have slightly less
61 	// overhead.
62 	lzma_vli lzma2_size = lzma2_bound(uncompressed_size);
63 	if (lzma2_size == 0)
64 		return 0;
65 
66 	// Take Block Padding into account.
67 	lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3);
68 
69 #if SIZE_MAX < LZMA_VLI_MAX
70 	// Catch the possible integer overflow on 32-bit systems. There's no
71 	// overflow on 64-bit systems, because lzma2_bound() already takes
72 	// into account the size of the headers in the Block.
73 	if (SIZE_MAX - HEADERS_BOUND < lzma2_size)
74 		return 0;
75 #endif
76 
77 	return HEADERS_BOUND + lzma2_size;
78 }
79 
80 
81 static lzma_ret
82 block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
83 		uint8_t *out, size_t *out_pos, size_t out_size)
84 {
85 	// TODO: Figure out if the last filter is LZMA2 or Subblock and use
86 	// that filter to encode the uncompressed chunks.
87 
88 	// Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
89 	// all, but LZMA2 always requires a dictionary, so use the minimum
90 	// value to minimize memory usage of the decoder.
91 	lzma_options_lzma lzma2 = {
92 		.dict_size = LZMA_DICT_SIZE_MIN,
93 	};
94 
95 	lzma_filter filters[2];
96 	filters[0].id = LZMA_FILTER_LZMA2;
97 	filters[0].options = &lzma2;
98 	filters[1].id = LZMA_VLI_UNKNOWN;
99 
100 	// Set the above filter options to *block temporarily so that we can
101 	// encode the Block Header.
102 	lzma_filter *filters_orig = block->filters;
103 	block->filters = filters;
104 
105 	if (lzma_block_header_size(block) != LZMA_OK) {
106 		block->filters = filters_orig;
107 		return LZMA_PROG_ERROR;
108 	}
109 
110 	// Check that there's enough output space. The caller has already
111 	// set block->compressed_size to what lzma2_bound() has returned,
112 	// so we can reuse that value. We know that compressed_size is a
113 	// known valid VLI and header_size is a small value so their sum
114 	// will never overflow.
115 	assert(block->compressed_size == lzma2_bound(in_size));
116 	if (out_size - *out_pos
117 			< block->header_size + block->compressed_size) {
118 		block->filters = filters_orig;
119 		return LZMA_BUF_ERROR;
120 	}
121 
122 	if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
123 		block->filters = filters_orig;
124 		return LZMA_PROG_ERROR;
125 	}
126 
127 	block->filters = filters_orig;
128 	*out_pos += block->header_size;
129 
130 	// Encode the data using LZMA2 uncompressed chunks.
131 	size_t in_pos = 0;
132 	uint8_t control = 0x01; // Dictionary reset
133 
134 	while (in_pos < in_size) {
135 		// Control byte: Indicate uncompressed chunk, of which
136 		// the first resets the dictionary.
137 		out[(*out_pos)++] = control;
138 		control = 0x02; // No dictionary reset
139 
140 		// Size of the uncompressed chunk
141 		const size_t copy_size
142 				= my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
143 		out[(*out_pos)++] = (copy_size - 1) >> 8;
144 		out[(*out_pos)++] = (copy_size - 1) & 0xFF;
145 
146 		// The actual data
147 		assert(*out_pos + copy_size <= out_size);
148 		memcpy(out + *out_pos, in + in_pos, copy_size);
149 
150 		in_pos += copy_size;
151 		*out_pos += copy_size;
152 	}
153 
154 	// End marker
155 	out[(*out_pos)++] = 0x00;
156 	assert(*out_pos <= out_size);
157 
158 	return LZMA_OK;
159 }
160 
161 
162 static lzma_ret
163 block_encode_normal(lzma_block *block, lzma_allocator *allocator,
164 		const uint8_t *in, size_t in_size,
165 		uint8_t *out, size_t *out_pos, size_t out_size)
166 {
167 	// Find out the size of the Block Header.
168 	block->compressed_size = lzma2_bound(in_size);
169 	if (block->compressed_size == 0)
170 		return LZMA_DATA_ERROR;
171 
172 	block->uncompressed_size = in_size;
173 	return_if_error(lzma_block_header_size(block));
174 
175 	// Reserve space for the Block Header and skip it for now.
176 	if (out_size - *out_pos <= block->header_size)
177 		return LZMA_BUF_ERROR;
178 
179 	const size_t out_start = *out_pos;
180 	*out_pos += block->header_size;
181 
182 	// Limit out_size so that we stop encoding if the output would grow
183 	// bigger than what uncompressed Block would be.
184 	if (out_size - *out_pos > block->compressed_size)
185 		out_size = *out_pos + block->compressed_size;
186 
187 	// TODO: In many common cases this could be optimized to use
188 	// significantly less memory.
189 	lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
190 	lzma_ret ret = lzma_raw_encoder_init(
191 			&raw_encoder, allocator, block->filters);
192 
193 	if (ret == LZMA_OK) {
194 		size_t in_pos = 0;
195 		ret = raw_encoder.code(raw_encoder.coder, allocator,
196 				in, &in_pos, in_size, out, out_pos, out_size,
197 				LZMA_FINISH);
198 	}
199 
200 	// NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
201 	lzma_next_end(&raw_encoder, allocator);
202 
203 	if (ret == LZMA_STREAM_END) {
204 		// Compression was successful. Write the Block Header.
205 		block->compressed_size
206 				= *out_pos - (out_start + block->header_size);
207 		ret = lzma_block_header_encode(block, out + out_start);
208 		if (ret != LZMA_OK)
209 			ret = LZMA_PROG_ERROR;
210 
211 	} else if (ret == LZMA_OK) {
212 		// Output buffer became full.
213 		ret = LZMA_BUF_ERROR;
214 	}
215 
216 	// Reset *out_pos if something went wrong.
217 	if (ret != LZMA_OK)
218 		*out_pos = out_start;
219 
220 	return ret;
221 }
222 
223 
224 extern LZMA_API(lzma_ret)
225 lzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator,
226 		const uint8_t *in, size_t in_size,
227 		uint8_t *out, size_t *out_pos, size_t out_size)
228 {
229 	// Sanity checks
230 	if (block == NULL || block->filters == NULL
231 			|| (in == NULL && in_size != 0) || out == NULL
232 			|| out_pos == NULL || *out_pos > out_size)
233 		return LZMA_PROG_ERROR;
234 
235 	// Check the version field.
236 	if (block->version != 0)
237 		return LZMA_OPTIONS_ERROR;
238 
239 	// Size of a Block has to be a multiple of four, so limit the size
240 	// here already. This way we don't need to check it again when adding
241 	// Block Padding.
242 	out_size -= (out_size - *out_pos) & 3;
243 
244 	// Get the size of the Check field.
245 	const size_t check_size = lzma_check_size(block->check);
246 	if (check_size == UINT32_MAX)
247 		return LZMA_PROG_ERROR;
248 
249 	// Reserve space for the Check field.
250 	if (out_size - *out_pos <= check_size)
251 		return LZMA_BUF_ERROR;
252 
253 	out_size -= check_size;
254 
255 	// Do the actual compression.
256 	const lzma_ret ret = block_encode_normal(block, allocator,
257 			in, in_size, out, out_pos, out_size);
258 	if (ret != LZMA_OK) {
259 		// If the error was something else than output buffer
260 		// becoming full, return the error now.
261 		if (ret != LZMA_BUF_ERROR)
262 			return ret;
263 
264 		// The data was uncompressible (at least with the options
265 		// given to us) or the output buffer was too small. Use the
266 		// uncompressed chunks of LZMA2 to wrap the data into a valid
267 		// Block. If we haven't been given enough output space, even
268 		// this may fail.
269 		return_if_error(block_encode_uncompressed(block, in, in_size,
270 				out, out_pos, out_size));
271 	}
272 
273 	assert(*out_pos <= out_size);
274 
275 	// Block Padding. No buffer overflow here, because we already adjusted
276 	// out_size so that (out_size - out_start) is a multiple of four.
277 	// Thus, if the buffer is full, the loop body can never run.
278 	for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
279 		assert(*out_pos < out_size);
280 		out[(*out_pos)++] = 0x00;
281 	}
282 
283 	// If there's no Check field, we are done now.
284 	if (check_size > 0) {
285 		// Calculate the integrity check. We reserved space for
286 		// the Check field earlier so we don't need to check for
287 		// available output space here.
288 		lzma_check_state check;
289 		lzma_check_init(&check, block->check);
290 		lzma_check_update(&check, block->check, in, in_size);
291 		lzma_check_finish(&check, block->check);
292 
293 		memcpy(block->raw_check, check.buffer.u8, check_size);
294 		memcpy(out + *out_pos, check.buffer.u8, check_size);
295 		*out_pos += check_size;
296 	}
297 
298 	return LZMA_OK;
299 }
300