xref: /freebsd/contrib/xz/src/liblzma/check/crc_x86_clmul.h (revision 9cbf1de7e34a6fced041388fad5d9180cb7705fe)
1 // SPDX-License-Identifier: 0BSD
2 
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file       crc_x86_clmul.h
6 /// \brief      CRC32 and CRC64 implementations using CLMUL instructions.
7 ///
8 /// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and
9 /// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too.
10 ///
11 /// They were derived from
12 /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation
13 /// and the public domain code from https://github.com/rawrunprotected/crc
14 /// (URLs were checked on 2023-10-14).
15 ///
16 /// While this file has both CRC32 and CRC64 implementations, only one
17 /// should be built at a time to ensure that crc_simd_body() is inlined
18 /// even with compilers with which lzma_always_inline expands to plain inline.
19 /// The version to build is selected by defining BUILDING_CRC32_CLMUL or
20 /// BUILDING_CRC64_CLMUL before including this file.
21 ///
22 /// FIXME: Builds for 32-bit x86 use the assembly .S files by default
23 /// unless configured with --disable-assembler. Even then the lookup table
24 /// isn't omitted in crc64_table.c since it doesn't know that assembly
25 /// code has been disabled.
26 //
27 //  Authors:    Ilya Kurdyukov
28 //              Hans Jansen
29 //              Lasse Collin
30 //              Jia Tan
31 //
32 ///////////////////////////////////////////////////////////////////////////////
33 
34 // This file must not be included more than once.
35 #ifdef LZMA_CRC_X86_CLMUL_H
36 #	error crc_x86_clmul.h was included twice.
37 #endif
38 #define LZMA_CRC_X86_CLMUL_H
39 
40 #include <immintrin.h>
41 
42 #if defined(_MSC_VER)
43 #	include <intrin.h>
44 #elif defined(HAVE_CPUID_H)
45 #	include <cpuid.h>
46 #endif
47 
48 
49 // EDG-based compilers (Intel's classic compiler and compiler for E2K) can
50 // define __GNUC__ but the attribute must not be used with them.
51 // The new Clang-based ICX needs the attribute.
52 //
53 // NOTE: Build systems check for this too, keep them in sync with this.
54 #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
55 #	define crc_attr_target \
56 		__attribute__((__target__("ssse3,sse4.1,pclmul")))
57 #else
58 #	define crc_attr_target
59 #endif
60 
61 
62 #define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask)
63 
64 #define MASK_H(in, mask, r) \
65 	r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
66 
67 #define MASK_LH(in, mask, low, high) \
68 	MASK_L(in, mask, low); \
69 	MASK_H(in, mask, high)
70 
71 
72 crc_attr_target
73 crc_attr_no_sanitize_address
74 static lzma_always_inline void
75 crc_simd_body(const uint8_t *buf, const size_t size, __m128i *v0, __m128i *v1,
76 		const __m128i vfold16, const __m128i initial_crc)
77 {
78 	// Create a vector with 8-bit values 0 to 15. This is used to
79 	// construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
80 	const __m128i vramp = _mm_setr_epi32(
81 			0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
82 
83 	// This is used to inverse the control mask of _mm_shuffle_epi8
84 	// so that bytes that wouldn't be picked with the original mask
85 	// will be picked and vice versa.
86 	const __m128i vsign = _mm_set1_epi8(-0x80);
87 
88 	// Memory addresses A to D and the distances between them:
89 	//
90 	//     A           B     C         D
91 	//     [skip_start][size][skip_end]
92 	//     [     size2      ]
93 	//
94 	// A and D are 16-byte aligned. B and C are 1-byte aligned.
95 	// skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
96 	//
97 	// A = aligned_buf will initially point to this address.
98 	// B = The address pointed by the caller-supplied buf.
99 	// C = buf + size == aligned_buf + size2
100 	// D = buf + size + skip_end == aligned_buf + size2 + skip_end
101 	const size_t skip_start = (size_t)((uintptr_t)buf & 15);
102 	const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15);
103 	const __m128i *aligned_buf = (const __m128i *)(
104 			(uintptr_t)buf & ~(uintptr_t)15);
105 
106 	// If size2 <= 16 then the whole input fits into a single 16-byte
107 	// vector. If size2 > 16 then at least two 16-byte vectors must
108 	// be processed. If size2 > 16 && size <= 16 then there is only
109 	// one 16-byte vector's worth of input but it is unaligned in memory.
110 	//
111 	// NOTE: There is no integer overflow here if the arguments
112 	// are valid. If this overflowed, buf + size would too.
113 	const size_t size2 = skip_start + size;
114 
115 	// Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
116 	// The first skip_start or skip_end bytes in the vectors will have
117 	// the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
118 	// will produce zeros for these positions. (Bitwise-xor of these
119 	// masks with vsign will produce the opposite behavior.)
120 	const __m128i mask_start
121 			= _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_start));
122 	const __m128i mask_end
123 			= _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_end));
124 
125 	// Get the first 1-16 bytes into data0. If loading less than 16
126 	// bytes, the bytes are loaded to the high bits of the vector and
127 	// the least significant positions are filled with zeros.
128 	const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
129 			_mm_setzero_si128(), mask_start);
130 	aligned_buf++;
131 
132 	__m128i v2, v3;
133 
134 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
135 	if (size <= 16) {
136 		// Right-shift initial_crc by 1-16 bytes based on "size"
137 		// and store the result in v1 (high bytes) and v0 (low bytes).
138 		//
139 		// NOTE: The highest 8 bytes of initial_crc are zeros so
140 		// v1 will be filled with zeros if size >= 8. The highest
141 		// 8 bytes of v1 will always become zeros.
142 		//
143 		// [      v1      ][      v0      ]
144 		//  [ initial_crc  ]                  size == 1
145 		//   [ initial_crc  ]                 size == 2
146 		//                [ initial_crc  ]    size == 15
147 		//                 [ initial_crc  ]   size == 16 (all in v0)
148 		const __m128i mask_low = _mm_add_epi8(
149 				vramp, _mm_set1_epi8((char)(size - 16)));
150 		MASK_LH(initial_crc, mask_low, *v0, *v1);
151 
152 		if (size2 <= 16) {
153 			// There are 1-16 bytes of input and it is all
154 			// in data0. Copy the input bytes to v3. If there
155 			// are fewer than 16 bytes, the low bytes in v3
156 			// will be filled with zeros. That is, the input
157 			// bytes are stored to the same position as
158 			// (part of) initial_crc is in v0.
159 			MASK_L(data0, mask_end, v3);
160 		} else {
161 			// There are 2-16 bytes of input but not all bytes
162 			// are in data0.
163 			const __m128i data1 = _mm_load_si128(aligned_buf);
164 
165 			// Collect the 2-16 input bytes from data0 and data1
166 			// to v2 and v3, and bitwise-xor them with the
167 			// low bits of initial_crc in v0. Note that the
168 			// the second xor is below this else-block as it
169 			// is shared with the other branch.
170 			MASK_H(data0, mask_end, v2);
171 			MASK_L(data1, mask_end, v3);
172 			*v0 = _mm_xor_si128(*v0, v2);
173 		}
174 
175 		*v0 = _mm_xor_si128(*v0, v3);
176 		*v1 = _mm_alignr_epi8(*v1, *v0, 8);
177 	} else
178 #endif
179 	{
180 		// There is more than 16 bytes of input.
181 		const __m128i data1 = _mm_load_si128(aligned_buf);
182 		const __m128i *end = (const __m128i*)(
183 				(const char *)aligned_buf - 16 + size2);
184 		aligned_buf++;
185 
186 		MASK_LH(initial_crc, mask_start, *v0, *v1);
187 		*v0 = _mm_xor_si128(*v0, data0);
188 		*v1 = _mm_xor_si128(*v1, data1);
189 
190 		while (aligned_buf < end) {
191 			*v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
192 					*v0, vfold16, 0x00));
193 			*v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
194 					*v0, vfold16, 0x11));
195 			*v1 = _mm_load_si128(aligned_buf++);
196 		}
197 
198 		if (aligned_buf != end) {
199 			MASK_H(*v0, mask_end, v2);
200 			MASK_L(*v0, mask_end, *v0);
201 			MASK_L(*v1, mask_end, v3);
202 			*v1 = _mm_or_si128(v2, v3);
203 		}
204 
205 		*v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
206 				*v0, vfold16, 0x00));
207 		*v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
208 				*v0, vfold16, 0x11));
209 		*v1 = _mm_srli_si128(*v0, 8);
210 	}
211 }
212 
213 
214 /////////////////////
215 // x86 CLMUL CRC32 //
216 /////////////////////
217 
218 /*
219 // These functions were used to generate the constants
220 // at the top of crc32_arch_optimized().
221 static uint64_t
222 calc_lo(uint64_t p, uint64_t a, int n)
223 {
224 	uint64_t b = 0; int i;
225 	for (i = 0; i < n; i++) {
226 		b = b >> 1 | (a & 1) << (n - 1);
227 		a = (a >> 1) ^ ((0 - (a & 1)) & p);
228 	}
229 	return b;
230 }
231 
232 // same as ~crc(&a, sizeof(a), ~0)
233 static uint64_t
234 calc_hi(uint64_t p, uint64_t a, int n)
235 {
236 	int i;
237 	for (i = 0; i < n; i++)
238 		a = (a >> 1) ^ ((0 - (a & 1)) & p);
239 	return a;
240 }
241 */
242 
243 #ifdef BUILDING_CRC32_CLMUL
244 
245 crc_attr_target
246 crc_attr_no_sanitize_address
247 static uint32_t
248 crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc)
249 {
250 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
251 	// The code assumes that there is at least one byte of input.
252 	if (size == 0)
253 		return crc;
254 #endif
255 
256 	// uint32_t poly = 0xedb88320;
257 	const int64_t p = 0x1db710640; // p << 1
258 	const int64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1
259 	const int64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1
260 	const int64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1
261 	const int64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1
262 
263 	const __m128i vfold4 = _mm_set_epi64x(mu, p);
264 	const __m128i vfold8 = _mm_set_epi64x(0, k5);
265 	const __m128i vfold16 = _mm_set_epi64x(k4, k3);
266 
267 	__m128i v0, v1, v2;
268 
269 	crc_simd_body(buf,  size, &v0, &v1, vfold16,
270 			_mm_cvtsi32_si128((int32_t)~crc));
271 
272 	v1 = _mm_xor_si128(
273 			_mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0
274 	v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0
275 	v0 = _mm_slli_epi64(v1, 32);  // [0]
276 	v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00);
277 	v0 = _mm_xor_si128(v0, v2);   // [1] [2]
278 	v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10);
279 	v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00);
280 	v0 = _mm_xor_si128(v0, v2);   // [2]
281 	return ~(uint32_t)_mm_extract_epi32(v0, 2);
282 }
283 #endif // BUILDING_CRC32_CLMUL
284 
285 
286 /////////////////////
287 // x86 CLMUL CRC64 //
288 /////////////////////
289 
290 /*
291 // These functions were used to generate the constants
292 // at the top of crc64_arch_optimized().
293 static uint64_t
294 calc_lo(uint64_t poly)
295 {
296 	uint64_t a = poly;
297 	uint64_t b = 0;
298 
299 	for (unsigned i = 0; i < 64; ++i) {
300 		b = (b >> 1) | (a << 63);
301 		a = (a >> 1) ^ (a & 1 ? poly : 0);
302 	}
303 
304 	return b;
305 }
306 
307 static uint64_t
308 calc_hi(uint64_t poly, uint64_t a)
309 {
310 	for (unsigned i = 0; i < 64; ++i)
311 		a = (a >> 1) ^ (a & 1 ? poly : 0);
312 
313 	return a;
314 }
315 */
316 
317 #ifdef BUILDING_CRC64_CLMUL
318 
319 // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
320 // code when optimizations are enabled (release build). According to the bug
321 // report, the ebx register is corrupted and the calculated result is wrong.
322 // Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
323 // The following pragma works and performance is still good. x86-64 builds
324 // and CRC32 CLMUL aren't affected by this problem. The problem does not
325 // happen in crc_simd_body() either (which is shared with CRC32 CLMUL anyway).
326 //
327 // NOTE: Another pragma after crc64_arch_optimized() restores
328 // the optimizations. If the #if condition here is updated,
329 // the other one must be updated too.
330 #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
331 		&& defined(_M_IX86)
332 #	pragma optimize("g", off)
333 #endif
334 
335 crc_attr_target
336 crc_attr_no_sanitize_address
337 static uint64_t
338 crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc)
339 {
340 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
341 	// The code assumes that there is at least one byte of input.
342 	if (size == 0)
343 		return crc;
344 #endif
345 
346 	// const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
347 	const uint64_t p  = 0x92d8af2baf0e1e85; // (poly << 1) | 1
348 	const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
349 	const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
350 	const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
351 
352 	const __m128i vfold8 = _mm_set_epi64x((int64_t)p, (int64_t)mu);
353 	const __m128i vfold16 = _mm_set_epi64x((int64_t)k2, (int64_t)k1);
354 
355 	__m128i v0, v1, v2;
356 
357 #if defined(__i386__) || defined(_M_IX86)
358 	crc_simd_body(buf,  size, &v0, &v1, vfold16,
359 			_mm_set_epi64x(0, (int64_t)~crc));
360 #else
361 	// GCC and Clang would produce good code with _mm_set_epi64x
362 	// but MSVC needs _mm_cvtsi64_si128 on x86-64.
363 	crc_simd_body(buf,  size, &v0, &v1, vfold16,
364 			_mm_cvtsi64_si128((int64_t)~crc));
365 #endif
366 
367 	v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1);
368 	v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00);
369 	v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10);
370 	v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2);
371 
372 #if defined(__i386__) || defined(_M_IX86)
373 	return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
374 			(uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
375 #else
376 	return ~(uint64_t)_mm_extract_epi64(v0, 1);
377 #endif
378 }
379 
380 #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
381 		&& defined(_M_IX86)
382 #	pragma optimize("", on)
383 #endif
384 
385 #endif // BUILDING_CRC64_CLMUL
386 
387 
388 // Inlining this function duplicates the function body in crc32_resolve() and
389 // crc64_resolve(), but this is acceptable because this is a tiny function.
390 static inline bool
391 is_arch_extension_supported(void)
392 {
393 	int success = 1;
394 	uint32_t r[4]; // eax, ebx, ecx, edx
395 
396 #if defined(_MSC_VER)
397 	// This needs <intrin.h> with MSVC. ICC has it as a built-in
398 	// on all platforms.
399 	__cpuid(r, 1);
400 #elif defined(HAVE_CPUID_H)
401 	// Compared to just using __asm__ to run CPUID, this also checks
402 	// that CPUID is supported and saves and restores ebx as that is
403 	// needed with GCC < 5 with position-independent code (PIC).
404 	success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
405 #else
406 	// Just a fallback that shouldn't be needed.
407 	__asm__("cpuid\n\t"
408 			: "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
409 			: "a"(1), "c"(0));
410 #endif
411 
412 	// Returns true if these are supported:
413 	// CLMUL (bit 1 in ecx)
414 	// SSSE3 (bit 9 in ecx)
415 	// SSE4.1 (bit 19 in ecx)
416 	const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
417 	return success && (r[2] & ecx_mask) == ecx_mask;
418 
419 	// Alternative methods that weren't used:
420 	//   - ICC's _may_i_use_cpu_feature: the other methods should work too.
421 	//   - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
422 	//
423 	// CPUID decding is needed with MSVC anyway and older GCC. This keeps
424 	// the feature checks in the build system simpler too. The nice thing
425 	// about __builtin_cpu_supports would be that it generates very short
426 	// code as is it only reads a variable set at startup but a few bytes
427 	// doesn't matter here.
428 }
429