1 // SPDX-License-Identifier: 0BSD 2 3 /////////////////////////////////////////////////////////////////////////////// 4 // 5 /// \file crc_x86_clmul.h 6 /// \brief CRC32 and CRC64 implementations using CLMUL instructions. 7 /// 8 /// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and 9 /// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too. 10 /// 11 /// They were derived from 12 /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation 13 /// and the public domain code from https://github.com/rawrunprotected/crc 14 /// (URLs were checked on 2023-10-14). 15 /// 16 /// While this file has both CRC32 and CRC64 implementations, only one 17 /// should be built at a time to ensure that crc_simd_body() is inlined 18 /// even with compilers with which lzma_always_inline expands to plain inline. 19 /// The version to build is selected by defining BUILDING_CRC32_CLMUL or 20 /// BUILDING_CRC64_CLMUL before including this file. 21 /// 22 /// FIXME: Builds for 32-bit x86 use the assembly .S files by default 23 /// unless configured with --disable-assembler. Even then the lookup table 24 /// isn't omitted in crc64_table.c since it doesn't know that assembly 25 /// code has been disabled. 26 // 27 // Authors: Ilya Kurdyukov 28 // Hans Jansen 29 // Lasse Collin 30 // Jia Tan 31 // 32 /////////////////////////////////////////////////////////////////////////////// 33 34 // This file must not be included more than once. 35 #ifdef LZMA_CRC_X86_CLMUL_H 36 # error crc_x86_clmul.h was included twice. 37 #endif 38 #define LZMA_CRC_X86_CLMUL_H 39 40 #include <immintrin.h> 41 42 #if defined(_MSC_VER) 43 # include <intrin.h> 44 #elif defined(HAVE_CPUID_H) 45 # include <cpuid.h> 46 #endif 47 48 49 // EDG-based compilers (Intel's classic compiler and compiler for E2K) can 50 // define __GNUC__ but the attribute must not be used with them. 51 // The new Clang-based ICX needs the attribute. 52 // 53 // NOTE: Build systems check for this too, keep them in sync with this. 54 #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) 55 # define crc_attr_target \ 56 __attribute__((__target__("ssse3,sse4.1,pclmul"))) 57 #else 58 # define crc_attr_target 59 #endif 60 61 62 #define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask) 63 64 #define MASK_H(in, mask, r) \ 65 r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)) 66 67 #define MASK_LH(in, mask, low, high) \ 68 MASK_L(in, mask, low); \ 69 MASK_H(in, mask, high) 70 71 72 crc_attr_target 73 crc_attr_no_sanitize_address 74 static lzma_always_inline void 75 crc_simd_body(const uint8_t *buf, const size_t size, __m128i *v0, __m128i *v1, 76 const __m128i vfold16, const __m128i initial_crc) 77 { 78 // Create a vector with 8-bit values 0 to 15. This is used to 79 // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8. 80 const __m128i vramp = _mm_setr_epi32( 81 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); 82 83 // This is used to inverse the control mask of _mm_shuffle_epi8 84 // so that bytes that wouldn't be picked with the original mask 85 // will be picked and vice versa. 86 const __m128i vsign = _mm_set1_epi8(-0x80); 87 88 // Memory addresses A to D and the distances between them: 89 // 90 // A B C D 91 // [skip_start][size][skip_end] 92 // [ size2 ] 93 // 94 // A and D are 16-byte aligned. B and C are 1-byte aligned. 95 // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. 96 // 97 // A = aligned_buf will initially point to this address. 98 // B = The address pointed by the caller-supplied buf. 99 // C = buf + size == aligned_buf + size2 100 // D = buf + size + skip_end == aligned_buf + size2 + skip_end 101 const size_t skip_start = (size_t)((uintptr_t)buf & 15); 102 const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15); 103 const __m128i *aligned_buf = (const __m128i *)( 104 (uintptr_t)buf & ~(uintptr_t)15); 105 106 // If size2 <= 16 then the whole input fits into a single 16-byte 107 // vector. If size2 > 16 then at least two 16-byte vectors must 108 // be processed. If size2 > 16 && size <= 16 then there is only 109 // one 16-byte vector's worth of input but it is unaligned in memory. 110 // 111 // NOTE: There is no integer overflow here if the arguments 112 // are valid. If this overflowed, buf + size would too. 113 const size_t size2 = skip_start + size; 114 115 // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8: 116 // The first skip_start or skip_end bytes in the vectors will have 117 // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8 118 // will produce zeros for these positions. (Bitwise-xor of these 119 // masks with vsign will produce the opposite behavior.) 120 const __m128i mask_start 121 = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_start)); 122 const __m128i mask_end 123 = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_end)); 124 125 // Get the first 1-16 bytes into data0. If loading less than 16 126 // bytes, the bytes are loaded to the high bits of the vector and 127 // the least significant positions are filled with zeros. 128 const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf), 129 _mm_setzero_si128(), mask_start); 130 aligned_buf++; 131 132 __m128i v2, v3; 133 134 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS 135 if (size <= 16) { 136 // Right-shift initial_crc by 1-16 bytes based on "size" 137 // and store the result in v1 (high bytes) and v0 (low bytes). 138 // 139 // NOTE: The highest 8 bytes of initial_crc are zeros so 140 // v1 will be filled with zeros if size >= 8. The highest 141 // 8 bytes of v1 will always become zeros. 142 // 143 // [ v1 ][ v0 ] 144 // [ initial_crc ] size == 1 145 // [ initial_crc ] size == 2 146 // [ initial_crc ] size == 15 147 // [ initial_crc ] size == 16 (all in v0) 148 const __m128i mask_low = _mm_add_epi8( 149 vramp, _mm_set1_epi8((char)(size - 16))); 150 MASK_LH(initial_crc, mask_low, *v0, *v1); 151 152 if (size2 <= 16) { 153 // There are 1-16 bytes of input and it is all 154 // in data0. Copy the input bytes to v3. If there 155 // are fewer than 16 bytes, the low bytes in v3 156 // will be filled with zeros. That is, the input 157 // bytes are stored to the same position as 158 // (part of) initial_crc is in v0. 159 MASK_L(data0, mask_end, v3); 160 } else { 161 // There are 2-16 bytes of input but not all bytes 162 // are in data0. 163 const __m128i data1 = _mm_load_si128(aligned_buf); 164 165 // Collect the 2-16 input bytes from data0 and data1 166 // to v2 and v3, and bitwise-xor them with the 167 // low bits of initial_crc in v0. Note that the 168 // the second xor is below this else-block as it 169 // is shared with the other branch. 170 MASK_H(data0, mask_end, v2); 171 MASK_L(data1, mask_end, v3); 172 *v0 = _mm_xor_si128(*v0, v2); 173 } 174 175 *v0 = _mm_xor_si128(*v0, v3); 176 *v1 = _mm_alignr_epi8(*v1, *v0, 8); 177 } else 178 #endif 179 { 180 // There is more than 16 bytes of input. 181 const __m128i data1 = _mm_load_si128(aligned_buf); 182 const __m128i *end = (const __m128i*)( 183 (const char *)aligned_buf - 16 + size2); 184 aligned_buf++; 185 186 MASK_LH(initial_crc, mask_start, *v0, *v1); 187 *v0 = _mm_xor_si128(*v0, data0); 188 *v1 = _mm_xor_si128(*v1, data1); 189 190 while (aligned_buf < end) { 191 *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( 192 *v0, vfold16, 0x00)); 193 *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( 194 *v0, vfold16, 0x11)); 195 *v1 = _mm_load_si128(aligned_buf++); 196 } 197 198 if (aligned_buf != end) { 199 MASK_H(*v0, mask_end, v2); 200 MASK_L(*v0, mask_end, *v0); 201 MASK_L(*v1, mask_end, v3); 202 *v1 = _mm_or_si128(v2, v3); 203 } 204 205 *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( 206 *v0, vfold16, 0x00)); 207 *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( 208 *v0, vfold16, 0x11)); 209 *v1 = _mm_srli_si128(*v0, 8); 210 } 211 } 212 213 214 ///////////////////// 215 // x86 CLMUL CRC32 // 216 ///////////////////// 217 218 /* 219 // These functions were used to generate the constants 220 // at the top of crc32_arch_optimized(). 221 static uint64_t 222 calc_lo(uint64_t p, uint64_t a, int n) 223 { 224 uint64_t b = 0; int i; 225 for (i = 0; i < n; i++) { 226 b = b >> 1 | (a & 1) << (n - 1); 227 a = (a >> 1) ^ ((0 - (a & 1)) & p); 228 } 229 return b; 230 } 231 232 // same as ~crc(&a, sizeof(a), ~0) 233 static uint64_t 234 calc_hi(uint64_t p, uint64_t a, int n) 235 { 236 int i; 237 for (i = 0; i < n; i++) 238 a = (a >> 1) ^ ((0 - (a & 1)) & p); 239 return a; 240 } 241 */ 242 243 #ifdef BUILDING_CRC32_CLMUL 244 245 crc_attr_target 246 crc_attr_no_sanitize_address 247 static uint32_t 248 crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc) 249 { 250 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS 251 // The code assumes that there is at least one byte of input. 252 if (size == 0) 253 return crc; 254 #endif 255 256 // uint32_t poly = 0xedb88320; 257 const int64_t p = 0x1db710640; // p << 1 258 const int64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1 259 const int64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1 260 const int64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1 261 const int64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1 262 263 const __m128i vfold4 = _mm_set_epi64x(mu, p); 264 const __m128i vfold8 = _mm_set_epi64x(0, k5); 265 const __m128i vfold16 = _mm_set_epi64x(k4, k3); 266 267 __m128i v0, v1, v2; 268 269 crc_simd_body(buf, size, &v0, &v1, vfold16, 270 _mm_cvtsi32_si128((int32_t)~crc)); 271 272 v1 = _mm_xor_si128( 273 _mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0 274 v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0 275 v0 = _mm_slli_epi64(v1, 32); // [0] 276 v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00); 277 v0 = _mm_xor_si128(v0, v2); // [1] [2] 278 v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10); 279 v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00); 280 v0 = _mm_xor_si128(v0, v2); // [2] 281 return ~(uint32_t)_mm_extract_epi32(v0, 2); 282 } 283 #endif // BUILDING_CRC32_CLMUL 284 285 286 ///////////////////// 287 // x86 CLMUL CRC64 // 288 ///////////////////// 289 290 /* 291 // These functions were used to generate the constants 292 // at the top of crc64_arch_optimized(). 293 static uint64_t 294 calc_lo(uint64_t poly) 295 { 296 uint64_t a = poly; 297 uint64_t b = 0; 298 299 for (unsigned i = 0; i < 64; ++i) { 300 b = (b >> 1) | (a << 63); 301 a = (a >> 1) ^ (a & 1 ? poly : 0); 302 } 303 304 return b; 305 } 306 307 static uint64_t 308 calc_hi(uint64_t poly, uint64_t a) 309 { 310 for (unsigned i = 0; i < 64; ++i) 311 a = (a >> 1) ^ (a & 1 ? poly : 0); 312 313 return a; 314 } 315 */ 316 317 #ifdef BUILDING_CRC64_CLMUL 318 319 // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC 320 // code when optimizations are enabled (release build). According to the bug 321 // report, the ebx register is corrupted and the calculated result is wrong. 322 // Trying to workaround the problem with "__asm mov ebx, ebx" didn't help. 323 // The following pragma works and performance is still good. x86-64 builds 324 // and CRC32 CLMUL aren't affected by this problem. The problem does not 325 // happen in crc_simd_body() either (which is shared with CRC32 CLMUL anyway). 326 // 327 // NOTE: Another pragma after crc64_arch_optimized() restores 328 // the optimizations. If the #if condition here is updated, 329 // the other one must be updated too. 330 #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ 331 && defined(_M_IX86) 332 # pragma optimize("g", off) 333 #endif 334 335 crc_attr_target 336 crc_attr_no_sanitize_address 337 static uint64_t 338 crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc) 339 { 340 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS 341 // The code assumes that there is at least one byte of input. 342 if (size == 0) 343 return crc; 344 #endif 345 346 // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial 347 const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1 348 const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1 349 const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1) 350 const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2) 351 352 const __m128i vfold8 = _mm_set_epi64x((int64_t)p, (int64_t)mu); 353 const __m128i vfold16 = _mm_set_epi64x((int64_t)k2, (int64_t)k1); 354 355 __m128i v0, v1, v2; 356 357 #if defined(__i386__) || defined(_M_IX86) 358 crc_simd_body(buf, size, &v0, &v1, vfold16, 359 _mm_set_epi64x(0, (int64_t)~crc)); 360 #else 361 // GCC and Clang would produce good code with _mm_set_epi64x 362 // but MSVC needs _mm_cvtsi64_si128 on x86-64. 363 crc_simd_body(buf, size, &v0, &v1, vfold16, 364 _mm_cvtsi64_si128((int64_t)~crc)); 365 #endif 366 367 v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1); 368 v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00); 369 v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10); 370 v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2); 371 372 #if defined(__i386__) || defined(_M_IX86) 373 return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | 374 (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2)); 375 #else 376 return ~(uint64_t)_mm_extract_epi64(v0, 1); 377 #endif 378 } 379 380 #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ 381 && defined(_M_IX86) 382 # pragma optimize("", on) 383 #endif 384 385 #endif // BUILDING_CRC64_CLMUL 386 387 388 // is_arch_extension_supported() must be inlined in this header file because 389 // the ifunc resolver function may not support calling a function in another 390 // translation unit. Depending on compiler-toolchain and flags, a call to 391 // a function defined in another translation unit could result in a 392 // reference to the PLT, which is unsafe to do in an ifunc resolver. The 393 // ifunc resolver runs very early when loading a shared library, so the PLT 394 // entries may not be setup at that time. Inlining this function duplicates 395 // the function body in crc32_resolve() and crc64_resolve(), but this is 396 // acceptable because the function results in very few instructions. 397 static inline bool 398 is_arch_extension_supported(void) 399 { 400 int success = 1; 401 uint32_t r[4]; // eax, ebx, ecx, edx 402 403 #if defined(_MSC_VER) 404 // This needs <intrin.h> with MSVC. ICC has it as a built-in 405 // on all platforms. 406 __cpuid(r, 1); 407 #elif defined(HAVE_CPUID_H) 408 // Compared to just using __asm__ to run CPUID, this also checks 409 // that CPUID is supported and saves and restores ebx as that is 410 // needed with GCC < 5 with position-independent code (PIC). 411 success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); 412 #else 413 // Just a fallback that shouldn't be needed. 414 __asm__("cpuid\n\t" 415 : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) 416 : "a"(1), "c"(0)); 417 #endif 418 419 // Returns true if these are supported: 420 // CLMUL (bit 1 in ecx) 421 // SSSE3 (bit 9 in ecx) 422 // SSE4.1 (bit 19 in ecx) 423 const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); 424 return success && (r[2] & ecx_mask) == ecx_mask; 425 426 // Alternative methods that weren't used: 427 // - ICC's _may_i_use_cpu_feature: the other methods should work too. 428 // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") 429 // 430 // CPUID decding is needed with MSVC anyway and older GCC. This keeps 431 // the feature checks in the build system simpler too. The nice thing 432 // about __builtin_cpu_supports would be that it generates very short 433 // code as is it only reads a variable set at startup but a few bytes 434 // doesn't matter here. 435 } 436