1 /////////////////////////////////////////////////////////////////////////////// 2 // 3 /// \file crc64.c 4 /// \brief CRC64 calculation 5 /// 6 /// There are two methods in this file. crc64_generic uses the 7 /// the slice-by-four algorithm. This is the same idea that is 8 /// used in crc32_fast.c, but for CRC64 we use only four tables 9 /// instead of eight to avoid increasing CPU cache usage. 10 /// 11 /// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions. 12 /// It was derived from 13 /// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf 14 /// and the public domain code from https://github.com/rawrunprotected/crc 15 /// (URLs were checked on 2022-11-07). 16 /// 17 /// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead 18 /// of this file and thus CLMUL version isn't available on 32-bit x86 19 /// unless configured with --disable-assembler. Even then the lookup table 20 /// isn't omitted in crc64_table.c since it doesn't know that assembly 21 /// code has been disabled. 22 // 23 // Authors: Lasse Collin 24 // Ilya Kurdyukov 25 // 26 // This file has been put into the public domain. 27 // You can do whatever you want with this file. 28 // 29 /////////////////////////////////////////////////////////////////////////////// 30 31 #include "check.h" 32 33 #undef CRC_GENERIC 34 #undef CRC_CLMUL 35 #undef CRC_USE_GENERIC_FOR_SMALL_INPUTS 36 37 // If CLMUL cannot be used then only the generic slice-by-four is built. 38 #if !defined(HAVE_USABLE_CLMUL) 39 # define CRC_GENERIC 1 40 41 // If CLMUL is allowed unconditionally in the compiler options then the 42 // generic version can be omitted. Note that this doesn't work with MSVC 43 // as I don't know how to detect the features here. 44 // 45 // NOTE: Keep this this in sync with crc64_table.c. 46 #elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \ 47 || (defined(__e2k__) && __iset__ >= 6) 48 # define CRC_CLMUL 1 49 50 // Otherwise build both and detect at runtime which version to use. 51 #else 52 # define CRC_GENERIC 1 53 # define CRC_CLMUL 1 54 55 /* 56 // The generic code is much faster with 1-8-byte inputs and has 57 // similar performance up to 16 bytes at least in microbenchmarks 58 // (it depends on input buffer alignment too). If both versions are 59 // built, this #define will use the generic version for inputs up to 60 // 16 bytes and CLMUL for bigger inputs. It saves a little in code 61 // size since the special cases for 0-16-byte inputs will be omitted 62 // from the CLMUL code. 63 # define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1 64 */ 65 66 # if defined(_MSC_VER) 67 # include <intrin.h> 68 # elif defined(HAVE_CPUID_H) 69 # include <cpuid.h> 70 # endif 71 #endif 72 73 74 ///////////////////////////////// 75 // Generic slice-by-four CRC64 // 76 ///////////////////////////////// 77 78 #ifdef CRC_GENERIC 79 80 #include "crc_macros.h" 81 82 83 #ifdef WORDS_BIGENDIAN 84 # define A1(x) ((x) >> 56) 85 #else 86 # define A1 A 87 #endif 88 89 90 // See the comments in crc32_fast.c. They aren't duplicated here. 91 static uint64_t 92 crc64_generic(const uint8_t *buf, size_t size, uint64_t crc) 93 { 94 crc = ~crc; 95 96 #ifdef WORDS_BIGENDIAN 97 crc = bswap64(crc); 98 #endif 99 100 if (size > 4) { 101 while ((uintptr_t)(buf) & 3) { 102 crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc); 103 --size; 104 } 105 106 const uint8_t *const limit = buf + (size & ~(size_t)(3)); 107 size &= (size_t)(3); 108 109 while (buf < limit) { 110 #ifdef WORDS_BIGENDIAN 111 const uint32_t tmp = (uint32_t)(crc >> 32) 112 ^ aligned_read32ne(buf); 113 #else 114 const uint32_t tmp = (uint32_t)crc 115 ^ aligned_read32ne(buf); 116 #endif 117 buf += 4; 118 119 crc = lzma_crc64_table[3][A(tmp)] 120 ^ lzma_crc64_table[2][B(tmp)] 121 ^ S32(crc) 122 ^ lzma_crc64_table[1][C(tmp)] 123 ^ lzma_crc64_table[0][D(tmp)]; 124 } 125 } 126 127 while (size-- != 0) 128 crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc); 129 130 #ifdef WORDS_BIGENDIAN 131 crc = bswap64(crc); 132 #endif 133 134 return ~crc; 135 } 136 #endif 137 138 139 ///////////////////// 140 // x86 CLMUL CRC64 // 141 ///////////////////// 142 143 #ifdef CRC_CLMUL 144 145 #include <immintrin.h> 146 147 148 /* 149 // These functions were used to generate the constants 150 // at the top of crc64_clmul(). 151 static uint64_t 152 calc_lo(uint64_t poly) 153 { 154 uint64_t a = poly; 155 uint64_t b = 0; 156 157 for (unsigned i = 0; i < 64; ++i) { 158 b = (b >> 1) | (a << 63); 159 a = (a >> 1) ^ (a & 1 ? poly : 0); 160 } 161 162 return b; 163 } 164 165 static uint64_t 166 calc_hi(uint64_t poly, uint64_t a) 167 { 168 for (unsigned i = 0; i < 64; ++i) 169 a = (a >> 1) ^ (a & 1 ? poly : 0); 170 171 return a; 172 } 173 */ 174 175 176 #define MASK_L(in, mask, r) \ 177 r = _mm_shuffle_epi8(in, mask) 178 179 #define MASK_H(in, mask, r) \ 180 r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)) 181 182 #define MASK_LH(in, mask, low, high) \ 183 MASK_L(in, mask, low); \ 184 MASK_H(in, mask, high) 185 186 187 // EDG-based compilers (Intel's classic compiler and compiler for E2K) can 188 // define __GNUC__ but the attribute must not be used with them. 189 // The new Clang-based ICX needs the attribute. 190 // 191 // NOTE: Build systems check for this too, keep them in sync with this. 192 #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) 193 __attribute__((__target__("ssse3,sse4.1,pclmul"))) 194 #endif 195 static uint64_t 196 crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc) 197 { 198 // The prototypes of the intrinsics use signed types while most of 199 // the values are treated as unsigned here. These warnings in this 200 // function have been checked and found to be harmless so silence them. 201 #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) 202 # pragma GCC diagnostic push 203 # pragma GCC diagnostic ignored "-Wsign-conversion" 204 # pragma GCC diagnostic ignored "-Wconversion" 205 #endif 206 207 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS 208 // The code assumes that there is at least one byte of input. 209 if (size == 0) 210 return crc; 211 #endif 212 213 // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial 214 const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1 215 const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1 216 const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1) 217 const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2) 218 const __m128i vfold0 = _mm_set_epi64x(p, mu); 219 const __m128i vfold1 = _mm_set_epi64x(k2, k1); 220 221 // Create a vector with 8-bit values 0 to 15. This is used to 222 // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8. 223 const __m128i vramp = _mm_setr_epi32( 224 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); 225 226 // This is used to inverse the control mask of _mm_shuffle_epi8 227 // so that bytes that wouldn't be picked with the original mask 228 // will be picked and vice versa. 229 const __m128i vsign = _mm_set1_epi8(0x80); 230 231 // Memory addresses A to D and the distances between them: 232 // 233 // A B C D 234 // [skip_start][size][skip_end] 235 // [ size2 ] 236 // 237 // A and D are 16-byte aligned. B and C are 1-byte aligned. 238 // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. 239 // 240 // A = aligned_buf will initially point to this address. 241 // B = The address pointed by the caller-supplied buf. 242 // C = buf + size == aligned_buf + size2 243 // D = buf + size + skip_end == aligned_buf + size2 + skip_end 244 const size_t skip_start = (size_t)((uintptr_t)buf & 15); 245 const size_t skip_end = (size_t)(-(uintptr_t)(buf + size) & 15); 246 const __m128i *aligned_buf = (const __m128i *)( 247 (uintptr_t)buf & ~(uintptr_t)15); 248 249 // If size2 <= 16 then the whole input fits into a single 16-byte 250 // vector. If size2 > 16 then at least two 16-byte vectors must 251 // be processed. If size2 > 16 && size <= 16 then there is only 252 // one 16-byte vector's worth of input but it is unaligned in memory. 253 // 254 // NOTE: There is no integer overflow here if the arguments are valid. 255 // If this overflowed, buf + size would too. 256 size_t size2 = skip_start + size; 257 258 // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8: 259 // The first skip_start or skip_end bytes in the vectors will have 260 // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8 261 // will produce zeros for these positions. (Bitwise-xor of these 262 // masks with vsign will produce the opposite behavior.) 263 const __m128i mask_start 264 = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start)); 265 const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end)); 266 267 // Get the first 1-16 bytes into data0. If loading less than 16 bytes, 268 // the bytes are loaded to the high bits of the vector and the least 269 // significant positions are filled with zeros. 270 const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf), 271 _mm_setzero_si128(), mask_start); 272 ++aligned_buf; 273 274 #if defined(__i386__) || defined(_M_IX86) 275 const __m128i initial_crc = _mm_set_epi64x(0, ~crc); 276 #else 277 // GCC and Clang would produce good code with _mm_set_epi64x 278 // but MSVC needs _mm_cvtsi64_si128 on x86-64. 279 const __m128i initial_crc = _mm_cvtsi64_si128(~crc); 280 #endif 281 282 __m128i v0, v1, v2, v3; 283 284 #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS 285 if (size <= 16) { 286 // Right-shift initial_crc by 1-16 bytes based on "size" 287 // and store the result in v1 (high bytes) and v0 (low bytes). 288 // 289 // NOTE: The highest 8 bytes of initial_crc are zeros so 290 // v1 will be filled with zeros if size >= 8. The highest 8 291 // bytes of v1 will always become zeros. 292 // 293 // [ v1 ][ v0 ] 294 // [ initial_crc ] size == 1 295 // [ initial_crc ] size == 2 296 // [ initial_crc ] size == 15 297 // [ initial_crc ] size == 16 (all in v0) 298 const __m128i mask_low = _mm_add_epi8( 299 vramp, _mm_set1_epi8(size - 16)); 300 MASK_LH(initial_crc, mask_low, v0, v1); 301 302 if (size2 <= 16) { 303 // There are 1-16 bytes of input and it is all 304 // in data0. Copy the input bytes to v3. If there 305 // are fewer than 16 bytes, the low bytes in v3 306 // will be filled with zeros. That is, the input 307 // bytes are stored to the same position as 308 // (part of) initial_crc is in v0. 309 MASK_L(data0, mask_end, v3); 310 } else { 311 // There are 2-16 bytes of input but not all bytes 312 // are in data0. 313 const __m128i data1 = _mm_load_si128(aligned_buf); 314 315 // Collect the 2-16 input bytes from data0 and data1 316 // to v2 and v3, and bitwise-xor them with the 317 // low bits of initial_crc in v0. Note that the 318 // the second xor is below this else-block as it 319 // is shared with the other branch. 320 MASK_H(data0, mask_end, v2); 321 MASK_L(data1, mask_end, v3); 322 v0 = _mm_xor_si128(v0, v2); 323 } 324 325 v0 = _mm_xor_si128(v0, v3); 326 v1 = _mm_alignr_epi8(v1, v0, 8); 327 } else 328 #endif 329 { 330 const __m128i data1 = _mm_load_si128(aligned_buf); 331 MASK_LH(initial_crc, mask_start, v0, v1); 332 v0 = _mm_xor_si128(v0, data0); 333 v1 = _mm_xor_si128(v1, data1); 334 335 #define FOLD \ 336 v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \ 337 v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11)); 338 339 while (size2 > 32) { 340 ++aligned_buf; 341 size2 -= 16; 342 FOLD 343 v1 = _mm_load_si128(aligned_buf); 344 } 345 346 if (size2 < 32) { 347 MASK_H(v0, mask_end, v2); 348 MASK_L(v0, mask_end, v0); 349 MASK_L(v1, mask_end, v3); 350 v1 = _mm_or_si128(v2, v3); 351 } 352 353 FOLD 354 v1 = _mm_srli_si128(v0, 8); 355 #undef FOLD 356 } 357 358 v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1); 359 v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00); 360 v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10); 361 v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1); 362 363 #if defined(__i386__) || defined(_M_IX86) 364 return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | 365 (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2)); 366 #else 367 return ~(uint64_t)_mm_extract_epi64(v0, 1); 368 #endif 369 370 #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) 371 # pragma GCC diagnostic pop 372 #endif 373 } 374 #endif 375 376 377 //////////////////////// 378 // Detect CPU support // 379 //////////////////////// 380 381 #if defined(CRC_GENERIC) && defined(CRC_CLMUL) 382 static inline bool 383 is_clmul_supported(void) 384 { 385 int success = 1; 386 uint32_t r[4]; // eax, ebx, ecx, edx 387 388 #if defined(_MSC_VER) 389 // This needs <intrin.h> with MSVC. ICC has it as a built-in 390 // on all platforms. 391 __cpuid(r, 1); 392 #elif defined(HAVE_CPUID_H) 393 // Compared to just using __asm__ to run CPUID, this also checks 394 // that CPUID is supported and saves and restores ebx as that is 395 // needed with GCC < 5 with position-independent code (PIC). 396 success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); 397 #else 398 // Just a fallback that shouldn't be needed. 399 __asm__("cpuid\n\t" 400 : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) 401 : "a"(1), "c"(0)); 402 #endif 403 404 // Returns true if these are supported: 405 // CLMUL (bit 1 in ecx) 406 // SSSE3 (bit 9 in ecx) 407 // SSE4.1 (bit 19 in ecx) 408 const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); 409 return success && (r[2] & ecx_mask) == ecx_mask; 410 411 // Alternative methods that weren't used: 412 // - ICC's _may_i_use_cpu_feature: the other methods should work too. 413 // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") 414 // 415 // CPUID decding is needed with MSVC anyway and older GCC. This keeps 416 // the feature checks in the build system simpler too. The nice thing 417 // about __builtin_cpu_supports would be that it generates very short 418 // code as is it only reads a variable set at startup but a few bytes 419 // doesn't matter here. 420 } 421 422 423 #ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR 424 # define CRC64_FUNC_INIT 425 # define CRC64_SET_FUNC_ATTR __attribute__((__constructor__)) 426 #else 427 # define CRC64_FUNC_INIT = &crc64_dispatch 428 # define CRC64_SET_FUNC_ATTR 429 static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc); 430 #endif 431 432 433 // Pointer to the the selected CRC64 method. 434 static uint64_t (*crc64_func)(const uint8_t *buf, size_t size, uint64_t crc) 435 CRC64_FUNC_INIT; 436 437 438 CRC64_SET_FUNC_ATTR 439 static void 440 crc64_set_func(void) 441 { 442 crc64_func = is_clmul_supported() ? &crc64_clmul : &crc64_generic; 443 return; 444 } 445 446 447 #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR 448 static uint64_t 449 crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc) 450 { 451 // When __attribute__((__constructor__)) isn't supported, set the 452 // function pointer without any locking. If multiple threads run 453 // the detection code in parallel, they will all end up setting 454 // the pointer to the same value. This avoids the use of 455 // mythread_once() on every call to lzma_crc64() but this likely 456 // isn't strictly standards compliant. Let's change it if it breaks. 457 crc64_set_func(); 458 return crc64_func(buf, size, crc); 459 } 460 #endif 461 #endif 462 463 464 extern LZMA_API(uint64_t) 465 lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc) 466 { 467 #if defined(CRC_GENERIC) && defined(CRC_CLMUL) 468 // If CLMUL is available, it is the best for non-tiny inputs, 469 // being over twice as fast as the generic slice-by-four version. 470 // However, for size <= 16 it's different. In the extreme case 471 // of size == 1 the generic version can be five times faster. 472 // At size >= 8 the CLMUL starts to become reasonable. It 473 // varies depending on the alignment of buf too. 474 // 475 // The above doesn't include the overhead of mythread_once(). 476 // At least on x86-64 GNU/Linux, pthread_once() is very fast but 477 // it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When 478 // size reaches 12-16 bytes the overhead becomes negligible. 479 // 480 // So using the generic version for size <= 16 may give better 481 // performance with tiny inputs but if such inputs happen rarely 482 // it's not so obvious because then the lookup table of the 483 // generic version may not be in the processor cache. 484 #ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS 485 if (size <= 16) 486 return crc64_generic(buf, size, crc); 487 #endif 488 489 /* 490 #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR 491 // See crc64_dispatch(). This would be the alternative which uses 492 // locking and doesn't use crc64_dispatch(). Note that on Windows 493 // this method needs Vista threads. 494 mythread_once(crc64_set_func); 495 #endif 496 */ 497 498 return crc64_func(buf, size, crc); 499 500 #elif defined(CRC_CLMUL) 501 // If CLMUL is used unconditionally without runtime CPU detection 502 // then omitting the generic version and its 8 KiB lookup table 503 // makes the library smaller. 504 // 505 // FIXME: Lookup table isn't currently omitted on 32-bit x86, 506 // see crc64_table.c. 507 return crc64_clmul(buf, size, crc); 508 509 #else 510 return crc64_generic(buf, size, crc); 511 #endif 512 } 513