1wpa_supplicant 2============== 3 4Copyright (c) 2003-2019, Jouni Malinen <j@w1.fi> and contributors 5All Rights Reserved. 6 7This program is licensed under the BSD license (the one with 8advertisement clause removed). 9 10If you are submitting changes to the project, please see CONTRIBUTIONS 11file for more instructions. 12 13 14 15License 16------- 17 18This software may be distributed, used, and modified under the terms of 19BSD license: 20 21Redistribution and use in source and binary forms, with or without 22modification, are permitted provided that the following conditions are 23met: 24 251. Redistributions of source code must retain the above copyright 26 notice, this list of conditions and the following disclaimer. 27 282. Redistributions in binary form must reproduce the above copyright 29 notice, this list of conditions and the following disclaimer in the 30 documentation and/or other materials provided with the distribution. 31 323. Neither the name(s) of the above-listed copyright holder(s) nor the 33 names of its contributors may be used to endorse or promote products 34 derived from this software without specific prior written permission. 35 36THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 48 49 50Features 51-------- 52 53Supported WPA/IEEE 802.11i features: 54- WPA-PSK ("WPA-Personal") 55- WPA with EAP (e.g., with RADIUS authentication server) ("WPA-Enterprise") 56 Following authentication methods are supported with an integrate IEEE 802.1X 57 Supplicant: 58 * EAP-TLS 59 * EAP-PEAP/MSCHAPv2 (both PEAPv0 and PEAPv1) 60 * EAP-PEAP/TLS (both PEAPv0 and PEAPv1) 61 * EAP-PEAP/GTC (both PEAPv0 and PEAPv1) 62 * EAP-PEAP/OTP (both PEAPv0 and PEAPv1) 63 * EAP-PEAP/MD5-Challenge (both PEAPv0 and PEAPv1) 64 * EAP-TTLS/EAP-MD5-Challenge 65 * EAP-TTLS/EAP-GTC 66 * EAP-TTLS/EAP-OTP 67 * EAP-TTLS/EAP-MSCHAPv2 68 * EAP-TTLS/EAP-TLS 69 * EAP-TTLS/MSCHAPv2 70 * EAP-TTLS/MSCHAP 71 * EAP-TTLS/PAP 72 * EAP-TTLS/CHAP 73 * EAP-SIM 74 * EAP-AKA 75 * EAP-AKA' 76 * EAP-PSK 77 * EAP-PAX 78 * EAP-SAKE 79 * EAP-IKEv2 80 * EAP-GPSK 81 * EAP-pwd 82 * LEAP (note: requires special support from the driver for IEEE 802.11 83 authentication) 84 (following methods are supported, but since they do not generate keying 85 material, they cannot be used with WPA or IEEE 802.1X WEP keying) 86 * EAP-MD5-Challenge 87 * EAP-MSCHAPv2 88 * EAP-GTC 89 * EAP-OTP 90- key management for CCMP, TKIP, WEP104, WEP40 91- RSN/WPA2 (IEEE 802.11i) 92 * pre-authentication 93 * PMKSA caching 94 95Supported TLS/crypto libraries: 96- OpenSSL (default) 97- GnuTLS 98 99Internal TLS/crypto implementation (optional): 100- can be used in place of an external TLS/crypto library 101- TLSv1 102- X.509 certificate processing 103- PKCS #1 104- ASN.1 105- RSA 106- bignum 107- minimal size (ca. 50 kB binary, parts of which are already needed for WPA; 108 TLSv1/X.509/ASN.1/RSA/bignum parts are about 25 kB on x86) 109 110 111Requirements 112------------ 113 114Current hardware/software requirements: 115- Linux kernel 2.4.x or 2.6.x with Linux Wireless Extensions v15 or newer 116- FreeBSD 6-CURRENT 117- NetBSD-current 118- Microsoft Windows with WinPcap (at least WinXP, may work with other versions) 119- drivers: 120 Linux drivers that support cfg80211/nl80211. Even though there are 121 number of driver specific interface included in wpa_supplicant, please 122 note that Linux drivers are moving to use generic wireless configuration 123 interface driver_nl80211 (-Dnl80211 on wpa_supplicant command line) 124 should be the default option to start with before falling back to driver 125 specific interface. 126 127 Linux drivers that support WPA/WPA2 configuration with the generic 128 Linux wireless extensions (WE-18 or newer). Obsoleted by nl80211. 129 130 In theory, any driver that supports Linux wireless extensions can be 131 used with IEEE 802.1X (i.e., not WPA) when using ap_scan=0 option in 132 configuration file. 133 134 Wired Ethernet drivers (with ap_scan=0) 135 136 BSD net80211 layer (e.g., Atheros driver) 137 At the moment, this is for FreeBSD 6-CURRENT branch and NetBSD-current. 138 139 Windows NDIS 140 The current Windows port requires WinPcap (http://winpcap.polito.it/). 141 See README-Windows.txt for more information. 142 143wpa_supplicant was designed to be portable for different drivers and 144operating systems. Hopefully, support for more wlan cards and OSes will be 145added in the future. See developer's documentation 146(http://hostap.epitest.fi/wpa_supplicant/devel/) for more information about the 147design of wpa_supplicant and porting to other drivers. One main goal 148is to add full WPA/WPA2 support to Linux wireless extensions to allow 149new drivers to be supported without having to implement new 150driver-specific interface code in wpa_supplicant. 151 152Optional libraries for layer2 packet processing: 153- libpcap (tested with 0.7.2, most relatively recent versions assumed to work, 154 this is likely to be available with most distributions, 155 http://tcpdump.org/) 156- libdnet (tested with v1.4, most versions assumed to work, 157 http://libdnet.sourceforge.net/) 158 159These libraries are _not_ used in the default Linux build. Instead, 160internal Linux specific implementation is used. libpcap/libdnet are 161more portable and they can be used by adding CONFIG_L2_PACKET=pcap into 162.config. They may also be selected automatically for other operating 163systems. In case of Windows builds, WinPcap is used by default 164(CONFIG_L2_PACKET=winpcap). 165 166 167Optional libraries for EAP-TLS, EAP-PEAP, and EAP-TTLS: 168- OpenSSL (tested with 1.0.1 and 1.0.2 versions; assumed to 169 work with most relatively recent versions; this is likely to be 170 available with most distributions, http://www.openssl.org/) 171- GnuTLS 172- internal TLSv1 implementation 173 174One of these libraries is needed when EAP-TLS, EAP-PEAP, EAP-TTLS, or 175EAP-FAST support is enabled. WPA-PSK mode does not require this or EAPOL/EAP 176implementation. A configuration file, .config, for compilation is 177needed to enable IEEE 802.1X/EAPOL and EAP methods. Note that EAP-MD5, 178EAP-GTC, EAP-OTP, and EAP-MSCHAPV2 cannot be used alone with WPA, so 179they should only be enabled if testing the EAPOL/EAP state 180machines. However, there can be used as inner authentication 181algorithms with EAP-PEAP and EAP-TTLS. 182 183See Building and installing section below for more detailed 184information about the wpa_supplicant build time configuration. 185 186 187 188WPA 189--- 190 191The original security mechanism of IEEE 802.11 standard was not 192designed to be strong and has proven to be insufficient for most 193networks that require some kind of security. Task group I (Security) 194of IEEE 802.11 working group (http://www.ieee802.org/11/) has worked 195to address the flaws of the base standard and has in practice 196completed its work in May 2004. The IEEE 802.11i amendment to the IEEE 197802.11 standard was approved in June 2004 and published in July 2004. 198 199Wi-Fi Alliance (http://www.wi-fi.org/) used a draft version of the 200IEEE 802.11i work (draft 3.0) to define a subset of the security 201enhancements that can be implemented with existing wlan hardware. This 202is called Wi-Fi Protected Access<TM> (WPA). This has now become a 203mandatory component of interoperability testing and certification done 204by Wi-Fi Alliance. Wi-Fi provides information about WPA at its web 205site (http://www.wi-fi.org/OpenSection/protected_access.asp). 206 207IEEE 802.11 standard defined wired equivalent privacy (WEP) algorithm 208for protecting wireless networks. WEP uses RC4 with 40-bit keys, 20924-bit initialization vector (IV), and CRC32 to protect against packet 210forgery. All these choices have proven to be insufficient: key space is 211too small against current attacks, RC4 key scheduling is insufficient 212(beginning of the pseudorandom stream should be skipped), IV space is 213too small and IV reuse makes attacks easier, there is no replay 214protection, and non-keyed authentication does not protect against bit 215flipping packet data. 216 217WPA is an intermediate solution for the security issues. It uses 218Temporal Key Integrity Protocol (TKIP) to replace WEP. TKIP is a 219compromise on strong security and possibility to use existing 220hardware. It still uses RC4 for the encryption like WEP, but with 221per-packet RC4 keys. In addition, it implements replay protection, 222keyed packet authentication mechanism (Michael MIC). 223 224Keys can be managed using two different mechanisms. WPA can either use 225an external authentication server (e.g., RADIUS) and EAP just like 226IEEE 802.1X is using or pre-shared keys without need for additional 227servers. Wi-Fi calls these "WPA-Enterprise" and "WPA-Personal", 228respectively. Both mechanisms will generate a master session key for 229the Authenticator (AP) and Supplicant (client station). 230 231WPA implements a new key handshake (4-Way Handshake and Group Key 232Handshake) for generating and exchanging data encryption keys between 233the Authenticator and Supplicant. This handshake is also used to 234verify that both Authenticator and Supplicant know the master session 235key. These handshakes are identical regardless of the selected key 236management mechanism (only the method for generating master session 237key changes). 238 239 240 241IEEE 802.11i / WPA2 242------------------- 243 244The design for parts of IEEE 802.11i that were not included in WPA has 245finished (May 2004) and this amendment to IEEE 802.11 was approved in 246June 2004. Wi-Fi Alliance is using the final IEEE 802.11i as a new 247version of WPA called WPA2. This includes, e.g., support for more 248robust encryption algorithm (CCMP: AES in Counter mode with CBC-MAC) 249to replace TKIP and optimizations for handoff (reduced number of 250messages in initial key handshake, pre-authentication, and PMKSA caching). 251 252 253 254wpa_supplicant 255-------------- 256 257wpa_supplicant is an implementation of the WPA Supplicant component, 258i.e., the part that runs in the client stations. It implements WPA key 259negotiation with a WPA Authenticator and EAP authentication with 260Authentication Server. In addition, it controls the roaming and IEEE 261802.11 authentication/association of the wlan driver. 262 263wpa_supplicant is designed to be a "daemon" program that runs in the 264background and acts as the backend component controlling the wireless 265connection. wpa_supplicant supports separate frontend programs and an 266example text-based frontend, wpa_cli, is included with wpa_supplicant. 267 268Following steps are used when associating with an AP using WPA: 269 270- wpa_supplicant requests the kernel driver to scan neighboring BSSes 271- wpa_supplicant selects a BSS based on its configuration 272- wpa_supplicant requests the kernel driver to associate with the chosen 273 BSS 274- If WPA-EAP: integrated IEEE 802.1X Supplicant completes EAP 275 authentication with the authentication server (proxied by the 276 Authenticator in the AP) 277- If WPA-EAP: master key is received from the IEEE 802.1X Supplicant 278- If WPA-PSK: wpa_supplicant uses PSK as the master session key 279- wpa_supplicant completes WPA 4-Way Handshake and Group Key Handshake 280 with the Authenticator (AP) 281- wpa_supplicant configures encryption keys for unicast and broadcast 282- normal data packets can be transmitted and received 283 284 285 286Building and installing 287----------------------- 288 289In order to be able to build wpa_supplicant, you will first need to 290select which parts of it will be included. This is done by creating a 291build time configuration file, .config, in the wpa_supplicant root 292directory. Configuration options are text lines using following 293format: CONFIG_<option>=y. Lines starting with # are considered 294comments and are ignored. See defconfig file for an example configuration 295and a list of available options and additional notes. 296 297The build time configuration can be used to select only the needed 298features and limit the binary size and requirements for external 299libraries. The main configuration parts are the selection of which 300driver interfaces (e.g., nl80211, wext, ..) and which authentication 301methods (e.g., EAP-TLS, EAP-PEAP, ..) are included. 302 303Following build time configuration options are used to control IEEE 304802.1X/EAPOL and EAP state machines and all EAP methods. Including 305TLS, PEAP, or TTLS will require linking wpa_supplicant with OpenSSL 306library for TLS implementation. Alternatively, GnuTLS or the internal 307TLSv1 implementation can be used for TLS functionality. 308 309CONFIG_IEEE8021X_EAPOL=y 310CONFIG_EAP_MD5=y 311CONFIG_EAP_MSCHAPV2=y 312CONFIG_EAP_TLS=y 313CONFIG_EAP_PEAP=y 314CONFIG_EAP_TTLS=y 315CONFIG_EAP_GTC=y 316CONFIG_EAP_OTP=y 317CONFIG_EAP_SIM=y 318CONFIG_EAP_AKA=y 319CONFIG_EAP_AKA_PRIME=y 320CONFIG_EAP_PSK=y 321CONFIG_EAP_SAKE=y 322CONFIG_EAP_GPSK=y 323CONFIG_EAP_PAX=y 324CONFIG_EAP_LEAP=y 325CONFIG_EAP_IKEV2=y 326CONFIG_EAP_PWD=y 327 328Following option can be used to include GSM SIM/USIM interface for GSM/UMTS 329authentication algorithm (for EAP-SIM/EAP-AKA/EAP-AKA'). This requires pcsc-lite 330(http://www.linuxnet.com/) for smart card access. 331 332CONFIG_PCSC=y 333 334Following options can be added to .config to select which driver 335interfaces are included. 336 337CONFIG_DRIVER_NL80211=y 338CONFIG_DRIVER_WEXT=y 339CONFIG_DRIVER_BSD=y 340CONFIG_DRIVER_NDIS=y 341 342Following example includes some more features and driver interfaces that 343are included in the wpa_supplicant package: 344 345CONFIG_DRIVER_NL80211=y 346CONFIG_DRIVER_WEXT=y 347CONFIG_DRIVER_BSD=y 348CONFIG_DRIVER_NDIS=y 349CONFIG_IEEE8021X_EAPOL=y 350CONFIG_EAP_MD5=y 351CONFIG_EAP_MSCHAPV2=y 352CONFIG_EAP_TLS=y 353CONFIG_EAP_PEAP=y 354CONFIG_EAP_TTLS=y 355CONFIG_EAP_GTC=y 356CONFIG_EAP_OTP=y 357CONFIG_EAP_SIM=y 358CONFIG_EAP_AKA=y 359CONFIG_EAP_PSK=y 360CONFIG_EAP_SAKE=y 361CONFIG_EAP_GPSK=y 362CONFIG_EAP_PAX=y 363CONFIG_EAP_LEAP=y 364CONFIG_EAP_IKEV2=y 365CONFIG_PCSC=y 366 367EAP-PEAP and EAP-TTLS will automatically include configured EAP 368methods (MD5, OTP, GTC, MSCHAPV2) for inner authentication selection. 369 370 371After you have created a configuration file, you can build 372wpa_supplicant and wpa_cli with 'make' command. You may then install 373the binaries to a suitable system directory, e.g., /usr/local/bin. 374 375Example commands: 376 377# build wpa_supplicant and wpa_cli 378make 379# install binaries (this may need root privileges) 380cp wpa_cli wpa_supplicant /usr/local/bin 381 382 383You will need to make a configuration file, e.g., 384/etc/wpa_supplicant.conf, with network configuration for the networks 385you are going to use. Configuration file section below includes 386explanation of the configuration file format and includes various 387examples. Once the configuration is ready, you can test whether the 388configuration work by first running wpa_supplicant with following 389command to start it on foreground with debugging enabled: 390 391wpa_supplicant -iwlan0 -c/etc/wpa_supplicant.conf -d 392 393Assuming everything goes fine, you can start using following command 394to start wpa_supplicant on background without debugging: 395 396wpa_supplicant -iwlan0 -c/etc/wpa_supplicant.conf -B 397 398Please note that if you included more than one driver interface in the 399build time configuration (.config), you may need to specify which 400interface to use by including -D<driver name> option on the command 401line. See following section for more details on command line options 402for wpa_supplicant. 403 404 405 406Command line options 407-------------------- 408 409usage: 410 wpa_supplicant [-BddfhKLqqtuvW] [-P<pid file>] [-g<global ctrl>] \ 411 [-G<group>] \ 412 -i<ifname> -c<config file> [-C<ctrl>] [-D<driver>] [-p<driver_param>] \ 413 [-b<br_ifname> [-MN -i<ifname> -c<conf> [-C<ctrl>] [-D<driver>] \ 414 [-p<driver_param>] [-b<br_ifname>] [-m<P2P Device config file>] ... 415 416options: 417 -b = optional bridge interface name 418 -B = run daemon in the background 419 -c = Configuration file 420 -C = ctrl_interface parameter (only used if -c is not) 421 -i = interface name 422 -d = increase debugging verbosity (-dd even more) 423 -D = driver name (can be multiple drivers: nl80211,wext) 424 -f = Log output to default log location (normally /tmp) 425 -g = global ctrl_interface 426 -G = global ctrl_interface group 427 -K = include keys (passwords, etc.) in debug output 428 -t = include timestamp in debug messages 429 -h = show this help text 430 -L = show license (BSD) 431 -p = driver parameters 432 -P = PID file 433 -q = decrease debugging verbosity (-qq even less) 434 -u = enable DBus control interface 435 -v = show version 436 -W = wait for a control interface monitor before starting 437 -M = start describing matching interface 438 -N = start describing new interface 439 -m = Configuration file for the P2P Device 440 441drivers: 442 nl80211 = Linux nl80211/cfg80211 443 wext = Linux wireless extensions (generic) 444 wired = wpa_supplicant wired Ethernet driver 445 roboswitch = wpa_supplicant Broadcom switch driver 446 bsd = BSD 802.11 support (Atheros, etc.) 447 ndis = Windows NDIS driver 448 449In most common cases, wpa_supplicant is started with 450 451wpa_supplicant -B -c/etc/wpa_supplicant.conf -iwlan0 452 453This makes the process fork into background. 454 455The easiest way to debug problems, and to get debug log for bug 456reports, is to start wpa_supplicant on foreground with debugging 457enabled: 458 459wpa_supplicant -c/etc/wpa_supplicant.conf -iwlan0 -d 460 461If the specific driver wrapper is not known beforehand, it is possible 462to specify multiple comma separated driver wrappers on the command 463line. wpa_supplicant will use the first driver wrapper that is able to 464initialize the interface. 465 466wpa_supplicant -Dnl80211,wext -c/etc/wpa_supplicant.conf -iwlan0 467 468 469wpa_supplicant can control multiple interfaces (radios) either by 470running one process for each interface separately or by running just 471one process and list of options at command line. Each interface is 472separated with -N argument. As an example, following command would 473start wpa_supplicant for two interfaces: 474 475wpa_supplicant \ 476 -c wpa1.conf -i wlan0 -D nl80211 -N \ 477 -c wpa2.conf -i wlan1 -D wext 478 479 480If the interfaces on which wpa_supplicant is to run are not known or do 481not exist, wpa_supplicant can match an interface when it arrives. Each 482matched interface is separated with -M argument and the -i argument now 483allows for pattern matching. 484 485As an example, the following command would start wpa_supplicant for a 486specific wired interface called lan0, any interface starting with wlan 487and lastly any other interface. Each match has its own configuration 488file, and for the wired interface a specific driver has also been given. 489 490wpa_supplicant \ 491 -M -c wpa_wired.conf -ilan0 -D wired \ 492 -M -c wpa1.conf -iwlan* \ 493 -M -c wpa2.conf 494 495 496If the interface is added in a Linux bridge (e.g., br0), the bridge 497interface needs to be configured to wpa_supplicant in addition to the 498main interface: 499 500wpa_supplicant -cw.conf -Dnl80211 -iwlan0 -bbr0 501 502 503Configuration file 504------------------ 505 506wpa_supplicant is configured using a text file that lists all accepted 507networks and security policies, including pre-shared keys. See 508example configuration file, wpa_supplicant.conf, for detailed 509information about the configuration format and supported fields. 510 511Changes to configuration file can be reloaded be sending SIGHUP signal 512to wpa_supplicant ('killall -HUP wpa_supplicant'). Similarly, 513reloading can be triggered with 'wpa_cli reconfigure' command. 514 515Configuration file can include one or more network blocks, e.g., one 516for each used SSID. wpa_supplicant will automatically select the best 517network based on the order of network blocks in the configuration 518file, network security level (WPA/WPA2 is preferred), and signal 519strength. 520 521Example configuration files for some common configurations: 522 5231) WPA-Personal (PSK) as home network and WPA-Enterprise with EAP-TLS as work 524 network 525 526# allow frontend (e.g., wpa_cli) to be used by all users in 'wheel' group 527ctrl_interface=/var/run/wpa_supplicant 528ctrl_interface_group=wheel 529# 530# home network; allow all valid ciphers 531network={ 532 ssid="home" 533 scan_ssid=1 534 key_mgmt=WPA-PSK 535 psk="very secret passphrase" 536} 537# 538# work network; use EAP-TLS with WPA; allow only CCMP and TKIP ciphers 539network={ 540 ssid="work" 541 scan_ssid=1 542 key_mgmt=WPA-EAP 543 pairwise=CCMP TKIP 544 group=CCMP TKIP 545 eap=TLS 546 identity="user@example.com" 547 ca_cert="/etc/cert/ca.pem" 548 client_cert="/etc/cert/user.pem" 549 private_key="/etc/cert/user.prv" 550 private_key_passwd="password" 551} 552 553 5542) WPA-RADIUS/EAP-PEAP/MSCHAPv2 with RADIUS servers that use old peaplabel 555 (e.g., Funk Odyssey and SBR, Meetinghouse Aegis, Interlink RAD-Series) 556 557ctrl_interface=/var/run/wpa_supplicant 558ctrl_interface_group=wheel 559network={ 560 ssid="example" 561 scan_ssid=1 562 key_mgmt=WPA-EAP 563 eap=PEAP 564 identity="user@example.com" 565 password="foobar" 566 ca_cert="/etc/cert/ca.pem" 567 phase1="peaplabel=0" 568 phase2="auth=MSCHAPV2" 569} 570 571 5723) EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the 573 unencrypted use. Real identity is sent only within an encrypted TLS tunnel. 574 575ctrl_interface=/var/run/wpa_supplicant 576ctrl_interface_group=wheel 577network={ 578 ssid="example" 579 scan_ssid=1 580 key_mgmt=WPA-EAP 581 eap=TTLS 582 identity="user@example.com" 583 anonymous_identity="anonymous@example.com" 584 password="foobar" 585 ca_cert="/etc/cert/ca.pem" 586 phase2="auth=MD5" 587} 588 589 5904) IEEE 802.1X (i.e., no WPA) with dynamic WEP keys (require both unicast and 591 broadcast); use EAP-TLS for authentication 592 593ctrl_interface=/var/run/wpa_supplicant 594ctrl_interface_group=wheel 595network={ 596 ssid="1x-test" 597 scan_ssid=1 598 key_mgmt=IEEE8021X 599 eap=TLS 600 identity="user@example.com" 601 ca_cert="/etc/cert/ca.pem" 602 client_cert="/etc/cert/user.pem" 603 private_key="/etc/cert/user.prv" 604 private_key_passwd="password" 605 eapol_flags=3 606} 607 608 6095) Catch all example that allows more or less all configuration modes. The 610 configuration options are used based on what security policy is used in the 611 selected SSID. This is mostly for testing and is not recommended for normal 612 use. 613 614ctrl_interface=/var/run/wpa_supplicant 615ctrl_interface_group=wheel 616network={ 617 ssid="example" 618 scan_ssid=1 619 key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE 620 pairwise=CCMP TKIP 621 group=CCMP TKIP WEP104 WEP40 622 psk="very secret passphrase" 623 eap=TTLS PEAP TLS 624 identity="user@example.com" 625 password="foobar" 626 ca_cert="/etc/cert/ca.pem" 627 client_cert="/etc/cert/user.pem" 628 private_key="/etc/cert/user.prv" 629 private_key_passwd="password" 630 phase1="peaplabel=0" 631 ca_cert2="/etc/cert/ca2.pem" 632 client_cert2="/etc/cer/user.pem" 633 private_key2="/etc/cer/user.prv" 634 private_key2_passwd="password" 635} 636 637 6386) Authentication for wired Ethernet. This can be used with 'wired' or 639 'roboswitch' interface (-Dwired or -Droboswitch on command line). 640 641ctrl_interface=/var/run/wpa_supplicant 642ctrl_interface_group=wheel 643ap_scan=0 644network={ 645 key_mgmt=IEEE8021X 646 eap=MD5 647 identity="user" 648 password="password" 649 eapol_flags=0 650} 651 652 653 654Certificates 655------------ 656 657Some EAP authentication methods require use of certificates. EAP-TLS 658uses both server side and client certificates whereas EAP-PEAP and 659EAP-TTLS only require the server side certificate. When client 660certificate is used, a matching private key file has to also be 661included in configuration. If the private key uses a passphrase, this 662has to be configured in wpa_supplicant.conf ("private_key_passwd"). 663 664wpa_supplicant supports X.509 certificates in PEM and DER 665formats. User certificate and private key can be included in the same 666file. 667 668If the user certificate and private key is received in PKCS#12/PFX 669format, they need to be converted to suitable PEM/DER format for 670wpa_supplicant. This can be done, e.g., with following commands: 671 672# convert client certificate and private key to PEM format 673openssl pkcs12 -in example.pfx -out user.pem -clcerts 674# convert CA certificate (if included in PFX file) to PEM format 675openssl pkcs12 -in example.pfx -out ca.pem -cacerts -nokeys 676 677 678 679wpa_cli 680------- 681 682wpa_cli is a text-based frontend program for interacting with 683wpa_supplicant. It is used to query current status, change 684configuration, trigger events, and request interactive user input. 685 686wpa_cli can show the current authentication status, selected security 687mode, dot11 and dot1x MIBs, etc. In addition, it can configure some 688variables like EAPOL state machine parameters and trigger events like 689reassociation and IEEE 802.1X logoff/logon. wpa_cli provides a user 690interface to request authentication information, like username and 691password, if these are not included in the configuration. This can be 692used to implement, e.g., one-time-passwords or generic token card 693authentication where the authentication is based on a 694challenge-response that uses an external device for generating the 695response. 696 697The control interface of wpa_supplicant can be configured to allow 698non-root user access (ctrl_interface_group in the configuration 699file). This makes it possible to run wpa_cli with a normal user 700account. 701 702wpa_cli supports two modes: interactive and command line. Both modes 703share the same command set and the main difference is in interactive 704mode providing access to unsolicited messages (event messages, 705username/password requests). 706 707Interactive mode is started when wpa_cli is executed without including 708the command as a command line parameter. Commands are then entered on 709the wpa_cli prompt. In command line mode, the same commands are 710entered as command line arguments for wpa_cli. 711 712 713Interactive authentication parameters request 714 715When wpa_supplicant need authentication parameters, like username and 716password, which are not present in the configuration file, it sends a 717request message to all attached frontend programs, e.g., wpa_cli in 718interactive mode. wpa_cli shows these requests with 719"CTRL-REQ-<type>-<id>:<text>" prefix. <type> is IDENTITY, PASSWORD, or 720OTP (one-time-password). <id> is a unique identifier for the current 721network. <text> is description of the request. In case of OTP request, 722it includes the challenge from the authentication server. 723 724The reply to these requests can be given with 'identity', 'password', 725and 'otp' commands. <id> needs to be copied from the the matching 726request. 'password' and 'otp' commands can be used regardless of 727whether the request was for PASSWORD or OTP. The main difference 728between these two commands is that values given with 'password' are 729remembered as long as wpa_supplicant is running whereas values given 730with 'otp' are used only once and then forgotten, i.e., wpa_supplicant 731will ask frontend for a new value for every use. This can be used to 732implement one-time-password lists and generic token card -based 733authentication. 734 735Example request for password and a matching reply: 736 737CTRL-REQ-PASSWORD-1:Password needed for SSID foobar 738> password 1 mysecretpassword 739 740Example request for generic token card challenge-response: 741 742CTRL-REQ-OTP-2:Challenge 1235663 needed for SSID foobar 743> otp 2 9876 744 745 746wpa_cli commands 747 748 status = get current WPA/EAPOL/EAP status 749 mib = get MIB variables (dot1x, dot11) 750 help = show this usage help 751 interface [ifname] = show interfaces/select interface 752 level <debug level> = change debug level 753 license = show full wpa_cli license 754 logoff = IEEE 802.1X EAPOL state machine logoff 755 logon = IEEE 802.1X EAPOL state machine logon 756 set = set variables (shows list of variables when run without arguments) 757 pmksa = show PMKSA cache 758 reassociate = force reassociation 759 reconfigure = force wpa_supplicant to re-read its configuration file 760 preauthenticate <BSSID> = force preauthentication 761 identity <network id> <identity> = configure identity for an SSID 762 password <network id> <password> = configure password for an SSID 763 pin <network id> <pin> = configure pin for an SSID 764 otp <network id> <password> = configure one-time-password for an SSID 765 passphrase <network id> <passphrase> = configure private key passphrase 766 for an SSID 767 bssid <network id> <BSSID> = set preferred BSSID for an SSID 768 list_networks = list configured networks 769 select_network <network id> = select a network (disable others) 770 enable_network <network id> = enable a network 771 disable_network <network id> = disable a network 772 add_network = add a network 773 remove_network <network id> = remove a network 774 set_network <network id> <variable> <value> = set network variables (shows 775 list of variables when run without arguments) 776 get_network <network id> <variable> = get network variables 777 save_config = save the current configuration 778 disconnect = disconnect and wait for reassociate command before connecting 779 scan = request new BSS scan 780 scan_results = get latest scan results 781 get_capability <eap/pairwise/group/key_mgmt/proto/auth_alg> = get capabilities 782 terminate = terminate wpa_supplicant 783 quit = exit wpa_cli 784 785 786wpa_cli command line options 787 788wpa_cli [-p<path to ctrl sockets>] [-i<ifname>] [-hvB] [-a<action file>] \ 789 [-P<pid file>] [-g<global ctrl>] [command..] 790 -h = help (show this usage text) 791 -v = shown version information 792 -a = run in daemon mode executing the action file based on events from 793 wpa_supplicant 794 -B = run a daemon in the background 795 default path: /var/run/wpa_supplicant 796 default interface: first interface found in socket path 797 798 799Using wpa_cli to run external program on connect/disconnect 800----------------------------------------------------------- 801 802wpa_cli can used to run external programs whenever wpa_supplicant 803connects or disconnects from a network. This can be used, e.g., to 804update network configuration and/or trigget DHCP client to update IP 805addresses, etc. 806 807One wpa_cli process in "action" mode needs to be started for each 808interface. For example, the following command starts wpa_cli for the 809default interface (-i can be used to select the interface in case of 810more than one interface being used at the same time): 811 812wpa_cli -a/sbin/wpa_action.sh -B 813 814The action file (-a option, /sbin/wpa_action.sh in this example) will 815be executed whenever wpa_supplicant completes authentication (connect 816event) or detects disconnection). The action script will be called 817with two command line arguments: interface name and event (CONNECTED 818or DISCONNECTED). If the action script needs to get more information 819about the current network, it can use 'wpa_cli status' to query 820wpa_supplicant for more information. 821 822Following example can be used as a simple template for an action 823script: 824 825#!/bin/sh 826 827IFNAME=$1 828CMD=$2 829 830if [ "$CMD" = "CONNECTED" ]; then 831 SSID=`wpa_cli -i$IFNAME status | grep ^ssid= | cut -f2- -d=` 832 # configure network, signal DHCP client, etc. 833fi 834 835if [ "$CMD" = "DISCONNECTED" ]; then 836 # remove network configuration, if needed 837 SSID= 838fi 839 840 841 842Integrating with pcmcia-cs/cardmgr scripts 843------------------------------------------ 844 845wpa_supplicant needs to be running when using a wireless network with 846WPA. It can be started either from system startup scripts or from 847pcmcia-cs/cardmgr scripts (when using PC Cards). WPA handshake must be 848completed before data frames can be exchanged, so wpa_supplicant 849should be started before DHCP client. 850 851For example, following small changes to pcmcia-cs scripts can be used 852to enable WPA support: 853 854Add MODE="Managed" and WPA="y" to the network scheme in 855/etc/pcmcia/wireless.opts. 856 857Add the following block to the end of 'start' action handler in 858/etc/pcmcia/wireless: 859 860 if [ "$WPA" = "y" -a -x /usr/local/bin/wpa_supplicant ]; then 861 /usr/local/bin/wpa_supplicant -B -c/etc/wpa_supplicant.conf \ 862 -i$DEVICE 863 fi 864 865Add the following block to the end of 'stop' action handler (may need 866to be separated from other actions) in /etc/pcmcia/wireless: 867 868 if [ "$WPA" = "y" -a -x /usr/local/bin/wpa_supplicant ]; then 869 killall wpa_supplicant 870 fi 871 872This will make cardmgr start wpa_supplicant when the card is plugged 873in. 874 875 876 877Dynamic interface add and operation without configuration files 878--------------------------------------------------------------- 879 880wpa_supplicant can be started without any configuration files or 881network interfaces. When used in this way, a global (i.e., per 882wpa_supplicant process) control interface is used to add and remove 883network interfaces. Each network interface can then be configured 884through a per-network interface control interface. For example, 885following commands show how to start wpa_supplicant without any 886network interfaces and then add a network interface and configure a 887network (SSID): 888 889# Start wpa_supplicant in the background 890wpa_supplicant -g/var/run/wpa_supplicant-global -B 891 892# Add a new interface (wlan0, no configuration file, driver=nl80211, and 893# enable control interface) 894wpa_cli -g/var/run/wpa_supplicant-global interface_add wlan0 \ 895 "" nl80211 /var/run/wpa_supplicant 896 897# Configure a network using the newly added network interface: 898wpa_cli -iwlan0 add_network 899wpa_cli -iwlan0 set_network 0 ssid '"test"' 900wpa_cli -iwlan0 set_network 0 key_mgmt WPA-PSK 901wpa_cli -iwlan0 set_network 0 psk '"12345678"' 902wpa_cli -iwlan0 set_network 0 pairwise TKIP 903wpa_cli -iwlan0 set_network 0 group TKIP 904wpa_cli -iwlan0 set_network 0 proto WPA 905wpa_cli -iwlan0 enable_network 0 906 907# At this point, the new network interface should start trying to associate 908# with the WPA-PSK network using SSID test. 909 910# Remove network interface 911wpa_cli -g/var/run/wpa_supplicant-global interface_remove wlan0 912 913 914Privilege separation 915-------------------- 916 917To minimize the size of code that needs to be run with root privileges 918(e.g., to control wireless interface operation), wpa_supplicant 919supports optional privilege separation. If enabled, this separates the 920privileged operations into a separate process (wpa_priv) while leaving 921rest of the code (e.g., EAP authentication and WPA handshakes) into an 922unprivileged process (wpa_supplicant) that can be run as non-root 923user. Privilege separation restricts the effects of potential software 924errors by containing the majority of the code in an unprivileged 925process to avoid full system compromise. 926 927Privilege separation is not enabled by default and it can be enabled 928by adding CONFIG_PRIVSEP=y to the build configuration (.config). When 929enabled, the privileged operations (driver wrapper and l2_packet) are 930linked into a separate daemon program, wpa_priv. The unprivileged 931program, wpa_supplicant, will be built with a special driver/l2_packet 932wrappers that communicate with the privileged wpa_priv process to 933perform the needed operations. wpa_priv can control what privileged 934are allowed. 935 936wpa_priv needs to be run with network admin privileges (usually, root 937user). It opens a UNIX domain socket for each interface that is 938included on the command line; any other interface will be off limits 939for wpa_supplicant in this kind of configuration. After this, 940wpa_supplicant can be run as a non-root user (e.g., all standard users 941on a laptop or as a special non-privileged user account created just 942for this purpose to limit access to user files even further). 943 944 945Example configuration: 946- create user group for users that are allowed to use wpa_supplicant 947 ('wpapriv' in this example) and assign users that should be able to 948 use wpa_supplicant into that group 949- create /var/run/wpa_priv directory for UNIX domain sockets and control 950 user access by setting it accessible only for the wpapriv group: 951 mkdir /var/run/wpa_priv 952 chown root:wpapriv /var/run/wpa_priv 953 chmod 0750 /var/run/wpa_priv 954- start wpa_priv as root (e.g., from system startup scripts) with the 955 enabled interfaces configured on the command line: 956 wpa_priv -B -P /var/run/wpa_priv.pid nl80211:wlan0 957- run wpa_supplicant as non-root with a user that is in wpapriv group: 958 wpa_supplicant -i ath0 -c wpa_supplicant.conf 959 960wpa_priv does not use the network interface before wpa_supplicant is 961started, so it is fine to include network interfaces that are not 962available at the time wpa_priv is started. As an alternative, wpa_priv 963can be started when an interface is added (hotplug/udev/etc. scripts). 964wpa_priv can control multiple interface with one process, but it is 965also possible to run multiple wpa_priv processes at the same time, if 966desired. 967 968It should be noted that the interface used between wpa_supplicant and 969wpa_priv does not include all the capabilities of the wpa_supplicant 970driver interface and at times, this interface lacks update especially 971for recent addition. Consequently, use of wpa_priv does come with the 972price of somewhat reduced available functionality. The next section 973describing how wpa_supplicant can be used with reduced privileges 974without having to handle the complexity of separate wpa_priv. While that 975approve does not provide separation for network admin capabilities, it 976does allow other root privileges to be dropped without the drawbacks of 977the wpa_priv process. 978 979 980Linux capabilities instead of privileged process 981------------------------------------------------ 982 983wpa_supplicant performs operations that need special permissions, e.g., 984to control the network connection. Traditionally this has been achieved 985by running wpa_supplicant as a privileged process with effective user id 9860 (root). Linux capabilities can be used to provide restricted set of 987capabilities to match the functions needed by wpa_supplicant. The 988minimum set of capabilities needed for the operations is CAP_NET_ADMIN 989and CAP_NET_RAW. 990 991setcap(8) can be used to set file capabilities. For example: 992 993sudo setcap cap_net_raw,cap_net_admin+ep wpa_supplicant 994 995Please note that this would give anyone being able to run that 996wpa_supplicant binary access to the additional capabilities. This can 997further be limited by file owner/group and mode bits. For example: 998 999sudo chown wpas wpa_supplicant 1000sudo chmod 0100 wpa_supplicant 1001 1002This combination of setcap, chown, and chmod commands would allow wpas 1003user to execute wpa_supplicant with additional network admin/raw 1004capabilities. 1005 1006Common way style of creating a control interface socket in 1007/var/run/wpa_supplicant could not be done by this user, but this 1008directory could be created before starting the wpa_supplicant and set to 1009suitable mode to allow wpa_supplicant to create sockets 1010there. Alternatively, other directory or abstract socket namespace could 1011be used for the control interface. 1012 1013 1014External requests for radio control 1015----------------------------------- 1016 1017External programs can request wpa_supplicant to not start offchannel 1018operations during other tasks that may need exclusive control of the 1019radio. The RADIO_WORK control interface command can be used for this. 1020 1021"RADIO_WORK add <name> [freq=<MHz>] [timeout=<seconds>]" command can be 1022used to reserve a slot for radio access. If freq is specified, other 1023radio work items on the same channel may be completed in 1024parallel. Otherwise, all other radio work items are blocked during 1025execution. Timeout is set to 10 seconds by default to avoid blocking 1026wpa_supplicant operations for excessive time. If a longer (or shorter) 1027safety timeout is needed, that can be specified with the optional 1028timeout parameter. This command returns an identifier for the radio work 1029item. 1030 1031Once the radio work item has been started, "EXT-RADIO-WORK-START <id>" 1032event message is indicated that the external processing can start. Once 1033the operation has been completed, "RADIO_WORK done <id>" is used to 1034indicate that to wpa_supplicant. This allows other radio works to be 1035performed. If this command is forgotten (e.g., due to the external 1036program terminating), wpa_supplicant will time out the radio work item 1037and send "EXT-RADIO-WORK-TIMEOUT <id>" event to indicate that this has 1038happened. "RADIO_WORK done <id>" can also be used to cancel items that 1039have not yet been started. 1040 1041For example, in wpa_cli interactive mode: 1042 1043> radio_work add test 10441 1045<3>EXT-RADIO-WORK-START 1 1046> radio_work show 1047ext:test@wlan0:0:1:2.487797 1048> radio_work done 1 1049OK 1050> radio_work show 1051 1052 1053> radio_work done 3 1054OK 1055> radio_work show 1056ext:test freq=2412 timeout=30@wlan0:2412:1:28.583483 1057<3>EXT-RADIO-WORK-TIMEOUT 2 1058 1059 1060> radio_work add test2 freq=2412 timeout=60 10615 1062<3>EXT-RADIO-WORK-START 5 1063> radio_work add test3 10646 1065> radio_work add test4 10667 1067> radio_work show 1068ext:test2 freq=2412 timeout=60@wlan0:2412:1:9.751844 1069ext:test3@wlan0:0:0:5.071812 1070ext:test4@wlan0:0:0:3.143870 1071> radio_work done 6 1072OK 1073> radio_work show 1074ext:test2 freq=2412 timeout=60@wlan0:2412:1:16.287869 1075ext:test4@wlan0:0:0:9.679895 1076> radio_work done 5 1077OK 1078<3>EXT-RADIO-WORK-START 7 1079<3>EXT-RADIO-WORK-TIMEOUT 7 1080 1081 1082DSCP policy procedures 1083---------------------- 1084 1085DSCP policy procedures defined in WFA QoS Management-R2 program 1086facilitates AP devices to configure DSCP settings for specific uplink 1087data streams. 1088 1089An AP may transmit a DSCP Policy Request frame containing zero or more 1090QoS Management IEs to an associated STA which supports DSCP policy 1091procedures. Each QoS Management element in a DSCP Policy Request frame 1092represents one DSCP policy, and shall include one DSCP Policy attribute 1093including a DSCP Policy ID, Request type, and a DSCP value. 1094 1095wpa_supplicant sends control interface event messages consisting details 1096of DSCP policies requested by the AP through a DSCP Policy Request frame 1097to external programs. The format of the control interface event messages 1098is as shown below: 1099 1100- Control interface event message format to indicate DSCP request start 1101 1102 <3>CTRL-EVENT-DSCP-POLICY request_start [clear_all] [more] 1103 1104 clear_all - AP requested to clear all DSCP policies configured earlier 1105 more - AP may request to configure more DSCP policies with new DSCP 1106 request 1107 1108- Control interface event message format to add new policy 1109 1110 <3>CTRL-EVENT-DSCP-POLICY add <policy_id> <dscp_value> <ip_version=0|4|6> 1111 [protocol] [source ip] [destination_ip]/[domain name] [source port] 1112 [[<start_port> <end_port>]/destination port] 1113 1114 ip_version = 0: Both IPv4 and IPv6 1115 = 4: IPv4 1116 = 6: IPv6 1117 protocol: Internet Protocol Numbers as per IETF RFCs 1118 = 6: TCP 1119 = 17: UDP 1120 = 50: ESP 1121 1122- Control interface event message format to remove a particular policy, 1123 identified by the policy_id attribute. 1124 1125 <3>CTRL-EVENT-DSCP-POLICY remove <policy_id> 1126 1127- DSCP policy may get rejected due to invalid policy parameters. Ccontrol 1128 interface event message format for rejected policy. 1129 1130 <3>CTRL-EVENT-DSCP-POLICY reject <policy_id> 1131 1132- Control interface event message format to indicate end of DSCP request. 1133 1134 <3>CTRL-EVENT-DSCP-POLICY request_end 1135 1136- External applications shall clear active DSCP policies upon receiving 1137 "CTRL-EVENT-DISCONNECTED" or "CTRL-EVENT-DSCP-POLICY clear_all" events. 1138 1139- Control interface event message format to indicate wpa_supplicant started 1140 a timer to wait until the unsolicited DSCP request from the AP. 1141 1142 <3>CTRL-EVENT-DSCP-POLICY request_wait start 1143 1144- Control interface event message format to indicate timeout to receive the 1145 unsolicited DSCP request. This event is expected only when an unsolicited 1146 DSCP request is not received from the AP before timeout. 1147 1148 <3>CTRL-EVENT-DSCP-POLICY request_wait end 1149 1150DSCP Response: 1151A QoS Management STA that enables DSCP Policy capability shall respond 1152with DSCP response on receipt of a successful DSCP request from its 1153associated AP. wpa_supplicant sends DSCP policy response based on the 1154control interface command received from the user is as below: 1155 1156DSCP_RESP <[reset]>/<[solicited] [policy_id=1 status=0...]> [more] 1157 1158DSCP Query: 1159DSCP Policy Query enables a STA to query its associated AP for DSCP 1160policies applicable to the STA. Currently, this includes support to send 1161a wildcard DSCP query or a DSCP query with a single domain name 1162attribute. The command format for the DSCP query command is as follows: 1163DSCP_QUERY <wildcard>/<domain_name=<string>> 1164