1 /* 2 * Minimal code for RSA support from LibTomMath 0.41 3 * http://libtom.org/ 4 * http://libtom.org/files/ltm-0.41.tar.bz2 5 * This library was released in public domain by Tom St Denis. 6 * 7 * The combination in this file may not use all of the optimized algorithms 8 * from LibTomMath and may be considerable slower than the LibTomMath with its 9 * default settings. The main purpose of having this version here is to make it 10 * easier to build bignum.c wrapper without having to install and build an 11 * external library. 12 * 13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this 14 * libtommath.c file instead of using the external LibTomMath library. 15 */ 16 17 #ifndef CHAR_BIT 18 #define CHAR_BIT 8 19 #endif 20 21 #define BN_MP_INVMOD_C 22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would 23 * require BN_MP_EXPTMOD_FAST_C instead */ 24 #define BN_S_MP_MUL_DIGS_C 25 #define BN_MP_INVMOD_SLOW_C 26 #define BN_S_MP_SQR_C 27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this 28 * would require other than mp_reduce */ 29 30 #ifdef LTM_FAST 31 32 /* Use faster div at the cost of about 1 kB */ 33 #define BN_MP_MUL_D_C 34 35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */ 36 #define BN_MP_EXPTMOD_FAST_C 37 #define BN_MP_MONTGOMERY_SETUP_C 38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C 39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 40 #define BN_MP_MUL_2_C 41 42 /* Include faster sqr at the cost of about 0.5 kB in code */ 43 #define BN_FAST_S_MP_SQR_C 44 45 #else /* LTM_FAST */ 46 47 #define BN_MP_DIV_SMALL 48 #define BN_MP_INIT_MULTI_C 49 #define BN_MP_CLEAR_MULTI_C 50 #define BN_MP_ABS_C 51 #endif /* LTM_FAST */ 52 53 /* Current uses do not require support for negative exponent in exptmod, so we 54 * can save about 1.5 kB in leaving out invmod. */ 55 #define LTM_NO_NEG_EXP 56 57 /* from tommath.h */ 58 59 #ifndef MIN 60 #define MIN(x,y) ((x)<(y)?(x):(y)) 61 #endif 62 63 #ifndef MAX 64 #define MAX(x,y) ((x)>(y)?(x):(y)) 65 #endif 66 67 #define OPT_CAST(x) 68 69 #ifdef __x86_64__ 70 typedef unsigned long mp_digit; 71 typedef unsigned long mp_word __attribute__((mode(TI))); 72 73 #define DIGIT_BIT 60 74 #define MP_64BIT 75 #else 76 typedef unsigned long mp_digit; 77 typedef u64 mp_word; 78 79 #define DIGIT_BIT 28 80 #define MP_28BIT 81 #endif 82 83 84 #define XMALLOC os_malloc 85 #define XFREE os_free 86 #define XREALLOC os_realloc 87 88 89 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) 90 91 #define MP_LT -1 /* less than */ 92 #define MP_EQ 0 /* equal to */ 93 #define MP_GT 1 /* greater than */ 94 95 #define MP_ZPOS 0 /* positive integer */ 96 #define MP_NEG 1 /* negative */ 97 98 #define MP_OKAY 0 /* ok result */ 99 #define MP_MEM -2 /* out of mem */ 100 #define MP_VAL -3 /* invalid input */ 101 102 #define MP_YES 1 /* yes response */ 103 #define MP_NO 0 /* no response */ 104 105 typedef int mp_err; 106 107 /* define this to use lower memory usage routines (exptmods mostly) */ 108 #define MP_LOW_MEM 109 110 /* default precision */ 111 #ifndef MP_PREC 112 #ifndef MP_LOW_MEM 113 #define MP_PREC 32 /* default digits of precision */ 114 #else 115 #define MP_PREC 8 /* default digits of precision */ 116 #endif 117 #endif 118 119 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ 120 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) 121 122 /* the infamous mp_int structure */ 123 typedef struct { 124 int used, alloc, sign; 125 mp_digit *dp; 126 } mp_int; 127 128 129 /* ---> Basic Manipulations <--- */ 130 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) 131 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) 132 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) 133 134 135 /* prototypes for copied functions */ 136 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) 137 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 138 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 139 static int s_mp_sqr(mp_int * a, mp_int * b); 140 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); 141 142 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 143 144 #ifdef BN_MP_INIT_MULTI_C 145 static int mp_init_multi(mp_int *mp, ...); 146 #endif 147 #ifdef BN_MP_CLEAR_MULTI_C 148 static void mp_clear_multi(mp_int *mp, ...); 149 #endif 150 static int mp_lshd(mp_int * a, int b); 151 static void mp_set(mp_int * a, mp_digit b); 152 static void mp_clamp(mp_int * a); 153 static void mp_exch(mp_int * a, mp_int * b); 154 static void mp_rshd(mp_int * a, int b); 155 static void mp_zero(mp_int * a); 156 static int mp_mod_2d(mp_int * a, int b, mp_int * c); 157 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); 158 static int mp_init_copy(mp_int * a, mp_int * b); 159 static int mp_mul_2d(mp_int * a, int b, mp_int * c); 160 #ifndef LTM_NO_NEG_EXP 161 static int mp_div_2(mp_int * a, mp_int * b); 162 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c); 163 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); 164 #endif /* LTM_NO_NEG_EXP */ 165 static int mp_copy(mp_int * a, mp_int * b); 166 static int mp_count_bits(mp_int * a); 167 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); 168 static int mp_mod(mp_int * a, mp_int * b, mp_int * c); 169 static int mp_grow(mp_int * a, int size); 170 static int mp_cmp_mag(mp_int * a, mp_int * b); 171 #ifdef BN_MP_ABS_C 172 static int mp_abs(mp_int * a, mp_int * b); 173 #endif 174 static int mp_sqr(mp_int * a, mp_int * b); 175 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); 176 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); 177 static int mp_2expt(mp_int * a, int b); 178 static int mp_reduce_setup(mp_int * a, mp_int * b); 179 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu); 180 static int mp_init_size(mp_int * a, int size); 181 #ifdef BN_MP_EXPTMOD_FAST_C 182 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 183 #endif /* BN_MP_EXPTMOD_FAST_C */ 184 #ifdef BN_FAST_S_MP_SQR_C 185 static int fast_s_mp_sqr (mp_int * a, mp_int * b); 186 #endif /* BN_FAST_S_MP_SQR_C */ 187 #ifdef BN_MP_MUL_D_C 188 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); 189 #endif /* BN_MP_MUL_D_C */ 190 191 192 193 /* functions from bn_<func name>.c */ 194 195 196 /* reverse an array, used for radix code */ 197 static void bn_reverse (unsigned char *s, int len) 198 { 199 int ix, iy; 200 unsigned char t; 201 202 ix = 0; 203 iy = len - 1; 204 while (ix < iy) { 205 t = s[ix]; 206 s[ix] = s[iy]; 207 s[iy] = t; 208 ++ix; 209 --iy; 210 } 211 } 212 213 214 /* low level addition, based on HAC pp.594, Algorithm 14.7 */ 215 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c) 216 { 217 mp_int *x; 218 int olduse, res, min, max; 219 220 /* find sizes, we let |a| <= |b| which means we have to sort 221 * them. "x" will point to the input with the most digits 222 */ 223 if (a->used > b->used) { 224 min = b->used; 225 max = a->used; 226 x = a; 227 } else { 228 min = a->used; 229 max = b->used; 230 x = b; 231 } 232 233 /* init result */ 234 if (c->alloc < max + 1) { 235 if ((res = mp_grow (c, max + 1)) != MP_OKAY) { 236 return res; 237 } 238 } 239 240 /* get old used digit count and set new one */ 241 olduse = c->used; 242 c->used = max + 1; 243 244 { 245 register mp_digit u, *tmpa, *tmpb, *tmpc; 246 register int i; 247 248 /* alias for digit pointers */ 249 250 /* first input */ 251 tmpa = a->dp; 252 253 /* second input */ 254 tmpb = b->dp; 255 256 /* destination */ 257 tmpc = c->dp; 258 259 /* zero the carry */ 260 u = 0; 261 for (i = 0; i < min; i++) { 262 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ 263 *tmpc = *tmpa++ + *tmpb++ + u; 264 265 /* U = carry bit of T[i] */ 266 u = *tmpc >> ((mp_digit)DIGIT_BIT); 267 268 /* take away carry bit from T[i] */ 269 *tmpc++ &= MP_MASK; 270 } 271 272 /* now copy higher words if any, that is in A+B 273 * if A or B has more digits add those in 274 */ 275 if (min != max) { 276 for (; i < max; i++) { 277 /* T[i] = X[i] + U */ 278 *tmpc = x->dp[i] + u; 279 280 /* U = carry bit of T[i] */ 281 u = *tmpc >> ((mp_digit)DIGIT_BIT); 282 283 /* take away carry bit from T[i] */ 284 *tmpc++ &= MP_MASK; 285 } 286 } 287 288 /* add carry */ 289 *tmpc++ = u; 290 291 /* clear digits above oldused */ 292 for (i = c->used; i < olduse; i++) { 293 *tmpc++ = 0; 294 } 295 } 296 297 mp_clamp (c); 298 return MP_OKAY; 299 } 300 301 302 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ 303 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) 304 { 305 int olduse, res, min, max; 306 307 /* find sizes */ 308 min = b->used; 309 max = a->used; 310 311 /* init result */ 312 if (c->alloc < max) { 313 if ((res = mp_grow (c, max)) != MP_OKAY) { 314 return res; 315 } 316 } 317 olduse = c->used; 318 c->used = max; 319 320 { 321 register mp_digit u, *tmpa, *tmpb, *tmpc; 322 register int i; 323 324 /* alias for digit pointers */ 325 tmpa = a->dp; 326 tmpb = b->dp; 327 tmpc = c->dp; 328 329 /* set carry to zero */ 330 u = 0; 331 for (i = 0; i < min; i++) { 332 /* T[i] = A[i] - B[i] - U */ 333 *tmpc = *tmpa++ - *tmpb++ - u; 334 335 /* U = carry bit of T[i] 336 * Note this saves performing an AND operation since 337 * if a carry does occur it will propagate all the way to the 338 * MSB. As a result a single shift is enough to get the carry 339 */ 340 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 341 342 /* Clear carry from T[i] */ 343 *tmpc++ &= MP_MASK; 344 } 345 346 /* now copy higher words if any, e.g. if A has more digits than B */ 347 for (; i < max; i++) { 348 /* T[i] = A[i] - U */ 349 *tmpc = *tmpa++ - u; 350 351 /* U = carry bit of T[i] */ 352 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 353 354 /* Clear carry from T[i] */ 355 *tmpc++ &= MP_MASK; 356 } 357 358 /* clear digits above used (since we may not have grown result above) */ 359 for (i = c->used; i < olduse; i++) { 360 *tmpc++ = 0; 361 } 362 } 363 364 mp_clamp (c); 365 return MP_OKAY; 366 } 367 368 369 /* init a new mp_int */ 370 static int mp_init (mp_int * a) 371 { 372 int i; 373 374 /* allocate memory required and clear it */ 375 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); 376 if (a->dp == NULL) { 377 return MP_MEM; 378 } 379 380 /* set the digits to zero */ 381 for (i = 0; i < MP_PREC; i++) { 382 a->dp[i] = 0; 383 } 384 385 /* set the used to zero, allocated digits to the default precision 386 * and sign to positive */ 387 a->used = 0; 388 a->alloc = MP_PREC; 389 a->sign = MP_ZPOS; 390 391 return MP_OKAY; 392 } 393 394 395 /* clear one (frees) */ 396 static void mp_clear (mp_int * a) 397 { 398 int i; 399 400 /* only do anything if a hasn't been freed previously */ 401 if (a->dp != NULL) { 402 /* first zero the digits */ 403 for (i = 0; i < a->used; i++) { 404 a->dp[i] = 0; 405 } 406 407 /* free ram */ 408 XFREE(a->dp); 409 410 /* reset members to make debugging easier */ 411 a->dp = NULL; 412 a->alloc = a->used = 0; 413 a->sign = MP_ZPOS; 414 } 415 } 416 417 418 /* high level addition (handles signs) */ 419 static int mp_add (mp_int * a, mp_int * b, mp_int * c) 420 { 421 int sa, sb, res; 422 423 /* get sign of both inputs */ 424 sa = a->sign; 425 sb = b->sign; 426 427 /* handle two cases, not four */ 428 if (sa == sb) { 429 /* both positive or both negative */ 430 /* add their magnitudes, copy the sign */ 431 c->sign = sa; 432 res = s_mp_add (a, b, c); 433 } else { 434 /* one positive, the other negative */ 435 /* subtract the one with the greater magnitude from */ 436 /* the one of the lesser magnitude. The result gets */ 437 /* the sign of the one with the greater magnitude. */ 438 if (mp_cmp_mag (a, b) == MP_LT) { 439 c->sign = sb; 440 res = s_mp_sub (b, a, c); 441 } else { 442 c->sign = sa; 443 res = s_mp_sub (a, b, c); 444 } 445 } 446 return res; 447 } 448 449 450 /* high level subtraction (handles signs) */ 451 static int mp_sub (mp_int * a, mp_int * b, mp_int * c) 452 { 453 int sa, sb, res; 454 455 sa = a->sign; 456 sb = b->sign; 457 458 if (sa != sb) { 459 /* subtract a negative from a positive, OR */ 460 /* subtract a positive from a negative. */ 461 /* In either case, ADD their magnitudes, */ 462 /* and use the sign of the first number. */ 463 c->sign = sa; 464 res = s_mp_add (a, b, c); 465 } else { 466 /* subtract a positive from a positive, OR */ 467 /* subtract a negative from a negative. */ 468 /* First, take the difference between their */ 469 /* magnitudes, then... */ 470 if (mp_cmp_mag (a, b) != MP_LT) { 471 /* Copy the sign from the first */ 472 c->sign = sa; 473 /* The first has a larger or equal magnitude */ 474 res = s_mp_sub (a, b, c); 475 } else { 476 /* The result has the *opposite* sign from */ 477 /* the first number. */ 478 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; 479 /* The second has a larger magnitude */ 480 res = s_mp_sub (b, a, c); 481 } 482 } 483 return res; 484 } 485 486 487 /* high level multiplication (handles sign) */ 488 static int mp_mul (mp_int * a, mp_int * b, mp_int * c) 489 { 490 int res, neg; 491 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 492 493 /* use Toom-Cook? */ 494 #ifdef BN_MP_TOOM_MUL_C 495 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { 496 res = mp_toom_mul(a, b, c); 497 } else 498 #endif 499 #ifdef BN_MP_KARATSUBA_MUL_C 500 /* use Karatsuba? */ 501 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { 502 res = mp_karatsuba_mul (a, b, c); 503 } else 504 #endif 505 { 506 /* can we use the fast multiplier? 507 * 508 * The fast multiplier can be used if the output will 509 * have less than MP_WARRAY digits and the number of 510 * digits won't affect carry propagation 511 */ 512 #ifdef BN_FAST_S_MP_MUL_DIGS_C 513 int digs = a->used + b->used + 1; 514 515 if ((digs < MP_WARRAY) && 516 MIN(a->used, b->used) <= 517 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 518 res = fast_s_mp_mul_digs (a, b, c, digs); 519 } else 520 #endif 521 #ifdef BN_S_MP_MUL_DIGS_C 522 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ 523 #else 524 #error mp_mul could fail 525 res = MP_VAL; 526 #endif 527 528 } 529 c->sign = (c->used > 0) ? neg : MP_ZPOS; 530 return res; 531 } 532 533 534 /* d = a * b (mod c) */ 535 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 536 { 537 int res; 538 mp_int t; 539 540 if ((res = mp_init (&t)) != MP_OKAY) { 541 return res; 542 } 543 544 if ((res = mp_mul (a, b, &t)) != MP_OKAY) { 545 mp_clear (&t); 546 return res; 547 } 548 res = mp_mod (&t, c, d); 549 mp_clear (&t); 550 return res; 551 } 552 553 554 /* c = a mod b, 0 <= c < b */ 555 static int mp_mod (mp_int * a, mp_int * b, mp_int * c) 556 { 557 mp_int t; 558 int res; 559 560 if ((res = mp_init (&t)) != MP_OKAY) { 561 return res; 562 } 563 564 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { 565 mp_clear (&t); 566 return res; 567 } 568 569 if (t.sign != b->sign) { 570 res = mp_add (b, &t, c); 571 } else { 572 res = MP_OKAY; 573 mp_exch (&t, c); 574 } 575 576 mp_clear (&t); 577 return res; 578 } 579 580 581 /* this is a shell function that calls either the normal or Montgomery 582 * exptmod functions. Originally the call to the montgomery code was 583 * embedded in the normal function but that wasted a lot of stack space 584 * for nothing (since 99% of the time the Montgomery code would be called) 585 */ 586 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) 587 { 588 int dr; 589 590 /* modulus P must be positive */ 591 if (P->sign == MP_NEG) { 592 return MP_VAL; 593 } 594 595 /* if exponent X is negative we have to recurse */ 596 if (X->sign == MP_NEG) { 597 #ifdef LTM_NO_NEG_EXP 598 return MP_VAL; 599 #else /* LTM_NO_NEG_EXP */ 600 #ifdef BN_MP_INVMOD_C 601 mp_int tmpG, tmpX; 602 int err; 603 604 /* first compute 1/G mod P */ 605 if ((err = mp_init(&tmpG)) != MP_OKAY) { 606 return err; 607 } 608 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { 609 mp_clear(&tmpG); 610 return err; 611 } 612 613 /* now get |X| */ 614 if ((err = mp_init(&tmpX)) != MP_OKAY) { 615 mp_clear(&tmpG); 616 return err; 617 } 618 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { 619 mp_clear_multi(&tmpG, &tmpX, NULL); 620 return err; 621 } 622 623 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ 624 err = mp_exptmod(&tmpG, &tmpX, P, Y); 625 mp_clear_multi(&tmpG, &tmpX, NULL); 626 return err; 627 #else 628 #error mp_exptmod would always fail 629 /* no invmod */ 630 return MP_VAL; 631 #endif 632 #endif /* LTM_NO_NEG_EXP */ 633 } 634 635 /* modified diminished radix reduction */ 636 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) 637 if (mp_reduce_is_2k_l(P) == MP_YES) { 638 return s_mp_exptmod(G, X, P, Y, 1); 639 } 640 #endif 641 642 #ifdef BN_MP_DR_IS_MODULUS_C 643 /* is it a DR modulus? */ 644 dr = mp_dr_is_modulus(P); 645 #else 646 /* default to no */ 647 dr = 0; 648 #endif 649 650 #ifdef BN_MP_REDUCE_IS_2K_C 651 /* if not, is it a unrestricted DR modulus? */ 652 if (dr == 0) { 653 dr = mp_reduce_is_2k(P) << 1; 654 } 655 #endif 656 657 /* if the modulus is odd or dr != 0 use the montgomery method */ 658 #ifdef BN_MP_EXPTMOD_FAST_C 659 if (mp_isodd (P) == 1 || dr != 0) { 660 return mp_exptmod_fast (G, X, P, Y, dr); 661 } else { 662 #endif 663 #ifdef BN_S_MP_EXPTMOD_C 664 /* otherwise use the generic Barrett reduction technique */ 665 return s_mp_exptmod (G, X, P, Y, 0); 666 #else 667 #error mp_exptmod could fail 668 /* no exptmod for evens */ 669 return MP_VAL; 670 #endif 671 #ifdef BN_MP_EXPTMOD_FAST_C 672 } 673 #endif 674 } 675 676 677 /* compare two ints (signed)*/ 678 static int mp_cmp (mp_int * a, mp_int * b) 679 { 680 /* compare based on sign */ 681 if (a->sign != b->sign) { 682 if (a->sign == MP_NEG) { 683 return MP_LT; 684 } else { 685 return MP_GT; 686 } 687 } 688 689 /* compare digits */ 690 if (a->sign == MP_NEG) { 691 /* if negative compare opposite direction */ 692 return mp_cmp_mag(b, a); 693 } else { 694 return mp_cmp_mag(a, b); 695 } 696 } 697 698 699 /* compare a digit */ 700 static int mp_cmp_d(mp_int * a, mp_digit b) 701 { 702 /* compare based on sign */ 703 if (a->sign == MP_NEG) { 704 return MP_LT; 705 } 706 707 /* compare based on magnitude */ 708 if (a->used > 1) { 709 return MP_GT; 710 } 711 712 /* compare the only digit of a to b */ 713 if (a->dp[0] > b) { 714 return MP_GT; 715 } else if (a->dp[0] < b) { 716 return MP_LT; 717 } else { 718 return MP_EQ; 719 } 720 } 721 722 723 #ifndef LTM_NO_NEG_EXP 724 /* hac 14.61, pp608 */ 725 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c) 726 { 727 /* b cannot be negative */ 728 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 729 return MP_VAL; 730 } 731 732 #ifdef BN_FAST_MP_INVMOD_C 733 /* if the modulus is odd we can use a faster routine instead */ 734 if (mp_isodd (b) == 1) { 735 return fast_mp_invmod (a, b, c); 736 } 737 #endif 738 739 #ifdef BN_MP_INVMOD_SLOW_C 740 return mp_invmod_slow(a, b, c); 741 #endif 742 743 #ifndef BN_FAST_MP_INVMOD_C 744 #ifndef BN_MP_INVMOD_SLOW_C 745 #error mp_invmod would always fail 746 #endif 747 #endif 748 return MP_VAL; 749 } 750 #endif /* LTM_NO_NEG_EXP */ 751 752 753 /* get the size for an unsigned equivalent */ 754 static int mp_unsigned_bin_size (mp_int * a) 755 { 756 int size = mp_count_bits (a); 757 return (size / 8 + ((size & 7) != 0 ? 1 : 0)); 758 } 759 760 761 #ifndef LTM_NO_NEG_EXP 762 /* hac 14.61, pp608 */ 763 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) 764 { 765 mp_int x, y, u, v, A, B, C, D; 766 int res; 767 768 /* b cannot be negative */ 769 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 770 return MP_VAL; 771 } 772 773 /* init temps */ 774 if ((res = mp_init_multi(&x, &y, &u, &v, 775 &A, &B, &C, &D, NULL)) != MP_OKAY) { 776 return res; 777 } 778 779 /* x = a, y = b */ 780 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { 781 goto LBL_ERR; 782 } 783 if ((res = mp_copy (b, &y)) != MP_OKAY) { 784 goto LBL_ERR; 785 } 786 787 /* 2. [modified] if x,y are both even then return an error! */ 788 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { 789 res = MP_VAL; 790 goto LBL_ERR; 791 } 792 793 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ 794 if ((res = mp_copy (&x, &u)) != MP_OKAY) { 795 goto LBL_ERR; 796 } 797 if ((res = mp_copy (&y, &v)) != MP_OKAY) { 798 goto LBL_ERR; 799 } 800 mp_set (&A, 1); 801 mp_set (&D, 1); 802 803 top: 804 /* 4. while u is even do */ 805 while (mp_iseven (&u) == 1) { 806 /* 4.1 u = u/2 */ 807 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { 808 goto LBL_ERR; 809 } 810 /* 4.2 if A or B is odd then */ 811 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { 812 /* A = (A+y)/2, B = (B-x)/2 */ 813 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { 814 goto LBL_ERR; 815 } 816 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { 817 goto LBL_ERR; 818 } 819 } 820 /* A = A/2, B = B/2 */ 821 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { 822 goto LBL_ERR; 823 } 824 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { 825 goto LBL_ERR; 826 } 827 } 828 829 /* 5. while v is even do */ 830 while (mp_iseven (&v) == 1) { 831 /* 5.1 v = v/2 */ 832 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { 833 goto LBL_ERR; 834 } 835 /* 5.2 if C or D is odd then */ 836 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { 837 /* C = (C+y)/2, D = (D-x)/2 */ 838 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { 839 goto LBL_ERR; 840 } 841 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { 842 goto LBL_ERR; 843 } 844 } 845 /* C = C/2, D = D/2 */ 846 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { 847 goto LBL_ERR; 848 } 849 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { 850 goto LBL_ERR; 851 } 852 } 853 854 /* 6. if u >= v then */ 855 if (mp_cmp (&u, &v) != MP_LT) { 856 /* u = u - v, A = A - C, B = B - D */ 857 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { 858 goto LBL_ERR; 859 } 860 861 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { 862 goto LBL_ERR; 863 } 864 865 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { 866 goto LBL_ERR; 867 } 868 } else { 869 /* v - v - u, C = C - A, D = D - B */ 870 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { 871 goto LBL_ERR; 872 } 873 874 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { 875 goto LBL_ERR; 876 } 877 878 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { 879 goto LBL_ERR; 880 } 881 } 882 883 /* if not zero goto step 4 */ 884 if (mp_iszero (&u) == 0) 885 goto top; 886 887 /* now a = C, b = D, gcd == g*v */ 888 889 /* if v != 1 then there is no inverse */ 890 if (mp_cmp_d (&v, 1) != MP_EQ) { 891 res = MP_VAL; 892 goto LBL_ERR; 893 } 894 895 /* if its too low */ 896 while (mp_cmp_d(&C, 0) == MP_LT) { 897 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { 898 goto LBL_ERR; 899 } 900 } 901 902 /* too big */ 903 while (mp_cmp_mag(&C, b) != MP_LT) { 904 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { 905 goto LBL_ERR; 906 } 907 } 908 909 /* C is now the inverse */ 910 mp_exch (&C, c); 911 res = MP_OKAY; 912 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); 913 return res; 914 } 915 #endif /* LTM_NO_NEG_EXP */ 916 917 918 /* compare maginitude of two ints (unsigned) */ 919 static int mp_cmp_mag (mp_int * a, mp_int * b) 920 { 921 int n; 922 mp_digit *tmpa, *tmpb; 923 924 /* compare based on # of non-zero digits */ 925 if (a->used > b->used) { 926 return MP_GT; 927 } 928 929 if (a->used < b->used) { 930 return MP_LT; 931 } 932 933 /* alias for a */ 934 tmpa = a->dp + (a->used - 1); 935 936 /* alias for b */ 937 tmpb = b->dp + (a->used - 1); 938 939 /* compare based on digits */ 940 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { 941 if (*tmpa > *tmpb) { 942 return MP_GT; 943 } 944 945 if (*tmpa < *tmpb) { 946 return MP_LT; 947 } 948 } 949 return MP_EQ; 950 } 951 952 953 /* reads a unsigned char array, assumes the msb is stored first [big endian] */ 954 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) 955 { 956 int res; 957 958 /* make sure there are at least two digits */ 959 if (a->alloc < 2) { 960 if ((res = mp_grow(a, 2)) != MP_OKAY) { 961 return res; 962 } 963 } 964 965 /* zero the int */ 966 mp_zero (a); 967 968 /* read the bytes in */ 969 while (c-- > 0) { 970 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { 971 return res; 972 } 973 974 #ifndef MP_8BIT 975 a->dp[0] |= *b++; 976 a->used += 1; 977 #else 978 a->dp[0] = (*b & MP_MASK); 979 a->dp[1] |= ((*b++ >> 7U) & 1); 980 a->used += 2; 981 #endif 982 } 983 mp_clamp (a); 984 return MP_OKAY; 985 } 986 987 988 /* store in unsigned [big endian] format */ 989 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b) 990 { 991 int x, res; 992 mp_int t; 993 994 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { 995 return res; 996 } 997 998 x = 0; 999 while (mp_iszero (&t) == 0) { 1000 #ifndef MP_8BIT 1001 b[x++] = (unsigned char) (t.dp[0] & 255); 1002 #else 1003 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); 1004 #endif 1005 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { 1006 mp_clear (&t); 1007 return res; 1008 } 1009 } 1010 bn_reverse (b, x); 1011 mp_clear (&t); 1012 return MP_OKAY; 1013 } 1014 1015 1016 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ 1017 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) 1018 { 1019 mp_digit D, r, rr; 1020 int x, res; 1021 mp_int t; 1022 1023 1024 /* if the shift count is <= 0 then we do no work */ 1025 if (b <= 0) { 1026 res = mp_copy (a, c); 1027 if (d != NULL) { 1028 mp_zero (d); 1029 } 1030 return res; 1031 } 1032 1033 if ((res = mp_init (&t)) != MP_OKAY) { 1034 return res; 1035 } 1036 1037 /* get the remainder */ 1038 if (d != NULL) { 1039 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { 1040 mp_clear (&t); 1041 return res; 1042 } 1043 } 1044 1045 /* copy */ 1046 if ((res = mp_copy (a, c)) != MP_OKAY) { 1047 mp_clear (&t); 1048 return res; 1049 } 1050 1051 /* shift by as many digits in the bit count */ 1052 if (b >= (int)DIGIT_BIT) { 1053 mp_rshd (c, b / DIGIT_BIT); 1054 } 1055 1056 /* shift any bit count < DIGIT_BIT */ 1057 D = (mp_digit) (b % DIGIT_BIT); 1058 if (D != 0) { 1059 register mp_digit *tmpc, mask, shift; 1060 1061 /* mask */ 1062 mask = (((mp_digit)1) << D) - 1; 1063 1064 /* shift for lsb */ 1065 shift = DIGIT_BIT - D; 1066 1067 /* alias */ 1068 tmpc = c->dp + (c->used - 1); 1069 1070 /* carry */ 1071 r = 0; 1072 for (x = c->used - 1; x >= 0; x--) { 1073 /* get the lower bits of this word in a temp */ 1074 rr = *tmpc & mask; 1075 1076 /* shift the current word and mix in the carry bits from the previous word */ 1077 *tmpc = (*tmpc >> D) | (r << shift); 1078 --tmpc; 1079 1080 /* set the carry to the carry bits of the current word found above */ 1081 r = rr; 1082 } 1083 } 1084 mp_clamp (c); 1085 if (d != NULL) { 1086 mp_exch (&t, d); 1087 } 1088 mp_clear (&t); 1089 return MP_OKAY; 1090 } 1091 1092 1093 static int mp_init_copy (mp_int * a, mp_int * b) 1094 { 1095 int res; 1096 1097 if ((res = mp_init (a)) != MP_OKAY) { 1098 return res; 1099 } 1100 return mp_copy (b, a); 1101 } 1102 1103 1104 /* set to zero */ 1105 static void mp_zero (mp_int * a) 1106 { 1107 int n; 1108 mp_digit *tmp; 1109 1110 a->sign = MP_ZPOS; 1111 a->used = 0; 1112 1113 tmp = a->dp; 1114 for (n = 0; n < a->alloc; n++) { 1115 *tmp++ = 0; 1116 } 1117 } 1118 1119 1120 /* copy, b = a */ 1121 static int mp_copy (mp_int * a, mp_int * b) 1122 { 1123 int res, n; 1124 1125 /* if dst == src do nothing */ 1126 if (a == b) { 1127 return MP_OKAY; 1128 } 1129 1130 /* grow dest */ 1131 if (b->alloc < a->used) { 1132 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1133 return res; 1134 } 1135 } 1136 1137 /* zero b and copy the parameters over */ 1138 { 1139 register mp_digit *tmpa, *tmpb; 1140 1141 /* pointer aliases */ 1142 1143 /* source */ 1144 tmpa = a->dp; 1145 1146 /* destination */ 1147 tmpb = b->dp; 1148 1149 /* copy all the digits */ 1150 for (n = 0; n < a->used; n++) { 1151 *tmpb++ = *tmpa++; 1152 } 1153 1154 /* clear high digits */ 1155 for (; n < b->used; n++) { 1156 *tmpb++ = 0; 1157 } 1158 } 1159 1160 /* copy used count and sign */ 1161 b->used = a->used; 1162 b->sign = a->sign; 1163 return MP_OKAY; 1164 } 1165 1166 1167 /* shift right a certain amount of digits */ 1168 static void mp_rshd (mp_int * a, int b) 1169 { 1170 int x; 1171 1172 /* if b <= 0 then ignore it */ 1173 if (b <= 0) { 1174 return; 1175 } 1176 1177 /* if b > used then simply zero it and return */ 1178 if (a->used <= b) { 1179 mp_zero (a); 1180 return; 1181 } 1182 1183 { 1184 register mp_digit *bottom, *top; 1185 1186 /* shift the digits down */ 1187 1188 /* bottom */ 1189 bottom = a->dp; 1190 1191 /* top [offset into digits] */ 1192 top = a->dp + b; 1193 1194 /* this is implemented as a sliding window where 1195 * the window is b-digits long and digits from 1196 * the top of the window are copied to the bottom 1197 * 1198 * e.g. 1199 1200 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> 1201 /\ | ----> 1202 \-------------------/ ----> 1203 */ 1204 for (x = 0; x < (a->used - b); x++) { 1205 *bottom++ = *top++; 1206 } 1207 1208 /* zero the top digits */ 1209 for (; x < a->used; x++) { 1210 *bottom++ = 0; 1211 } 1212 } 1213 1214 /* remove excess digits */ 1215 a->used -= b; 1216 } 1217 1218 1219 /* swap the elements of two integers, for cases where you can't simply swap the 1220 * mp_int pointers around 1221 */ 1222 static void mp_exch (mp_int * a, mp_int * b) 1223 { 1224 mp_int t; 1225 1226 t = *a; 1227 *a = *b; 1228 *b = t; 1229 } 1230 1231 1232 /* trim unused digits 1233 * 1234 * This is used to ensure that leading zero digits are 1235 * trimed and the leading "used" digit will be non-zero 1236 * Typically very fast. Also fixes the sign if there 1237 * are no more leading digits 1238 */ 1239 static void mp_clamp (mp_int * a) 1240 { 1241 /* decrease used while the most significant digit is 1242 * zero. 1243 */ 1244 while (a->used > 0 && a->dp[a->used - 1] == 0) { 1245 --(a->used); 1246 } 1247 1248 /* reset the sign flag if used == 0 */ 1249 if (a->used == 0) { 1250 a->sign = MP_ZPOS; 1251 } 1252 } 1253 1254 1255 /* grow as required */ 1256 static int mp_grow (mp_int * a, int size) 1257 { 1258 int i; 1259 mp_digit *tmp; 1260 1261 /* if the alloc size is smaller alloc more ram */ 1262 if (a->alloc < size) { 1263 /* ensure there are always at least MP_PREC digits extra on top */ 1264 size += (MP_PREC * 2) - (size % MP_PREC); 1265 1266 /* reallocate the array a->dp 1267 * 1268 * We store the return in a temporary variable 1269 * in case the operation failed we don't want 1270 * to overwrite the dp member of a. 1271 */ 1272 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); 1273 if (tmp == NULL) { 1274 /* reallocation failed but "a" is still valid [can be freed] */ 1275 return MP_MEM; 1276 } 1277 1278 /* reallocation succeeded so set a->dp */ 1279 a->dp = tmp; 1280 1281 /* zero excess digits */ 1282 i = a->alloc; 1283 a->alloc = size; 1284 for (; i < a->alloc; i++) { 1285 a->dp[i] = 0; 1286 } 1287 } 1288 return MP_OKAY; 1289 } 1290 1291 1292 #ifdef BN_MP_ABS_C 1293 /* b = |a| 1294 * 1295 * Simple function copies the input and fixes the sign to positive 1296 */ 1297 static int mp_abs (mp_int * a, mp_int * b) 1298 { 1299 int res; 1300 1301 /* copy a to b */ 1302 if (a != b) { 1303 if ((res = mp_copy (a, b)) != MP_OKAY) { 1304 return res; 1305 } 1306 } 1307 1308 /* force the sign of b to positive */ 1309 b->sign = MP_ZPOS; 1310 1311 return MP_OKAY; 1312 } 1313 #endif 1314 1315 1316 /* set to a digit */ 1317 static void mp_set (mp_int * a, mp_digit b) 1318 { 1319 mp_zero (a); 1320 a->dp[0] = b & MP_MASK; 1321 a->used = (a->dp[0] != 0) ? 1 : 0; 1322 } 1323 1324 1325 #ifndef LTM_NO_NEG_EXP 1326 /* b = a/2 */ 1327 static int mp_div_2(mp_int * a, mp_int * b) 1328 { 1329 int x, res, oldused; 1330 1331 /* copy */ 1332 if (b->alloc < a->used) { 1333 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1334 return res; 1335 } 1336 } 1337 1338 oldused = b->used; 1339 b->used = a->used; 1340 { 1341 register mp_digit r, rr, *tmpa, *tmpb; 1342 1343 /* source alias */ 1344 tmpa = a->dp + b->used - 1; 1345 1346 /* dest alias */ 1347 tmpb = b->dp + b->used - 1; 1348 1349 /* carry */ 1350 r = 0; 1351 for (x = b->used - 1; x >= 0; x--) { 1352 /* get the carry for the next iteration */ 1353 rr = *tmpa & 1; 1354 1355 /* shift the current digit, add in carry and store */ 1356 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); 1357 1358 /* forward carry to next iteration */ 1359 r = rr; 1360 } 1361 1362 /* zero excess digits */ 1363 tmpb = b->dp + b->used; 1364 for (x = b->used; x < oldused; x++) { 1365 *tmpb++ = 0; 1366 } 1367 } 1368 b->sign = a->sign; 1369 mp_clamp (b); 1370 return MP_OKAY; 1371 } 1372 #endif /* LTM_NO_NEG_EXP */ 1373 1374 1375 /* shift left by a certain bit count */ 1376 static int mp_mul_2d (mp_int * a, int b, mp_int * c) 1377 { 1378 mp_digit d; 1379 int res; 1380 1381 /* copy */ 1382 if (a != c) { 1383 if ((res = mp_copy (a, c)) != MP_OKAY) { 1384 return res; 1385 } 1386 } 1387 1388 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { 1389 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { 1390 return res; 1391 } 1392 } 1393 1394 /* shift by as many digits in the bit count */ 1395 if (b >= (int)DIGIT_BIT) { 1396 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { 1397 return res; 1398 } 1399 } 1400 1401 /* shift any bit count < DIGIT_BIT */ 1402 d = (mp_digit) (b % DIGIT_BIT); 1403 if (d != 0) { 1404 register mp_digit *tmpc, shift, mask, r, rr; 1405 register int x; 1406 1407 /* bitmask for carries */ 1408 mask = (((mp_digit)1) << d) - 1; 1409 1410 /* shift for msbs */ 1411 shift = DIGIT_BIT - d; 1412 1413 /* alias */ 1414 tmpc = c->dp; 1415 1416 /* carry */ 1417 r = 0; 1418 for (x = 0; x < c->used; x++) { 1419 /* get the higher bits of the current word */ 1420 rr = (*tmpc >> shift) & mask; 1421 1422 /* shift the current word and OR in the carry */ 1423 *tmpc = ((*tmpc << d) | r) & MP_MASK; 1424 ++tmpc; 1425 1426 /* set the carry to the carry bits of the current word */ 1427 r = rr; 1428 } 1429 1430 /* set final carry */ 1431 if (r != 0) { 1432 c->dp[(c->used)++] = r; 1433 } 1434 } 1435 mp_clamp (c); 1436 return MP_OKAY; 1437 } 1438 1439 1440 #ifdef BN_MP_INIT_MULTI_C 1441 static int mp_init_multi(mp_int *mp, ...) 1442 { 1443 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ 1444 int n = 0; /* Number of ok inits */ 1445 mp_int* cur_arg = mp; 1446 va_list args; 1447 1448 va_start(args, mp); /* init args to next argument from caller */ 1449 while (cur_arg != NULL) { 1450 if (mp_init(cur_arg) != MP_OKAY) { 1451 /* Oops - error! Back-track and mp_clear what we already 1452 succeeded in init-ing, then return error. 1453 */ 1454 va_list clean_args; 1455 1456 /* end the current list */ 1457 va_end(args); 1458 1459 /* now start cleaning up */ 1460 cur_arg = mp; 1461 va_start(clean_args, mp); 1462 while (n--) { 1463 mp_clear(cur_arg); 1464 cur_arg = va_arg(clean_args, mp_int*); 1465 } 1466 va_end(clean_args); 1467 res = MP_MEM; 1468 break; 1469 } 1470 n++; 1471 cur_arg = va_arg(args, mp_int*); 1472 } 1473 va_end(args); 1474 return res; /* Assumed ok, if error flagged above. */ 1475 } 1476 #endif 1477 1478 1479 #ifdef BN_MP_CLEAR_MULTI_C 1480 static void mp_clear_multi(mp_int *mp, ...) 1481 { 1482 mp_int* next_mp = mp; 1483 va_list args; 1484 va_start(args, mp); 1485 while (next_mp != NULL) { 1486 mp_clear(next_mp); 1487 next_mp = va_arg(args, mp_int*); 1488 } 1489 va_end(args); 1490 } 1491 #endif 1492 1493 1494 /* shift left a certain amount of digits */ 1495 static int mp_lshd (mp_int * a, int b) 1496 { 1497 int x, res; 1498 1499 /* if its less than zero return */ 1500 if (b <= 0) { 1501 return MP_OKAY; 1502 } 1503 1504 /* grow to fit the new digits */ 1505 if (a->alloc < a->used + b) { 1506 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { 1507 return res; 1508 } 1509 } 1510 1511 { 1512 register mp_digit *top, *bottom; 1513 1514 /* increment the used by the shift amount then copy upwards */ 1515 a->used += b; 1516 1517 /* top */ 1518 top = a->dp + a->used - 1; 1519 1520 /* base */ 1521 bottom = a->dp + a->used - 1 - b; 1522 1523 /* much like mp_rshd this is implemented using a sliding window 1524 * except the window goes the otherway around. Copying from 1525 * the bottom to the top. see bn_mp_rshd.c for more info. 1526 */ 1527 for (x = a->used - 1; x >= b; x--) { 1528 *top-- = *bottom--; 1529 } 1530 1531 /* zero the lower digits */ 1532 top = a->dp; 1533 for (x = 0; x < b; x++) { 1534 *top++ = 0; 1535 } 1536 } 1537 return MP_OKAY; 1538 } 1539 1540 1541 /* returns the number of bits in an int */ 1542 static int mp_count_bits (mp_int * a) 1543 { 1544 int r; 1545 mp_digit q; 1546 1547 /* shortcut */ 1548 if (a->used == 0) { 1549 return 0; 1550 } 1551 1552 /* get number of digits and add that */ 1553 r = (a->used - 1) * DIGIT_BIT; 1554 1555 /* take the last digit and count the bits in it */ 1556 q = a->dp[a->used - 1]; 1557 while (q > ((mp_digit) 0)) { 1558 ++r; 1559 q >>= ((mp_digit) 1); 1560 } 1561 return r; 1562 } 1563 1564 1565 /* calc a value mod 2**b */ 1566 static int mp_mod_2d (mp_int * a, int b, mp_int * c) 1567 { 1568 int x, res; 1569 1570 /* if b is <= 0 then zero the int */ 1571 if (b <= 0) { 1572 mp_zero (c); 1573 return MP_OKAY; 1574 } 1575 1576 /* if the modulus is larger than the value than return */ 1577 if (b >= (int) (a->used * DIGIT_BIT)) { 1578 res = mp_copy (a, c); 1579 return res; 1580 } 1581 1582 /* copy */ 1583 if ((res = mp_copy (a, c)) != MP_OKAY) { 1584 return res; 1585 } 1586 1587 /* zero digits above the last digit of the modulus */ 1588 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { 1589 c->dp[x] = 0; 1590 } 1591 /* clear the digit that is not completely outside/inside the modulus */ 1592 c->dp[b / DIGIT_BIT] &= 1593 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); 1594 mp_clamp (c); 1595 return MP_OKAY; 1596 } 1597 1598 1599 #ifdef BN_MP_DIV_SMALL 1600 1601 /* slower bit-bang division... also smaller */ 1602 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1603 { 1604 mp_int ta, tb, tq, q; 1605 int res, n, n2; 1606 1607 /* is divisor zero ? */ 1608 if (mp_iszero (b) == 1) { 1609 return MP_VAL; 1610 } 1611 1612 /* if a < b then q=0, r = a */ 1613 if (mp_cmp_mag (a, b) == MP_LT) { 1614 if (d != NULL) { 1615 res = mp_copy (a, d); 1616 } else { 1617 res = MP_OKAY; 1618 } 1619 if (c != NULL) { 1620 mp_zero (c); 1621 } 1622 return res; 1623 } 1624 1625 /* init our temps */ 1626 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { 1627 return res; 1628 } 1629 1630 1631 mp_set(&tq, 1); 1632 n = mp_count_bits(a) - mp_count_bits(b); 1633 if (((res = mp_abs(a, &ta)) != MP_OKAY) || 1634 ((res = mp_abs(b, &tb)) != MP_OKAY) || 1635 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || 1636 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { 1637 goto LBL_ERR; 1638 } 1639 1640 while (n-- >= 0) { 1641 if (mp_cmp(&tb, &ta) != MP_GT) { 1642 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || 1643 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { 1644 goto LBL_ERR; 1645 } 1646 } 1647 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || 1648 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { 1649 goto LBL_ERR; 1650 } 1651 } 1652 1653 /* now q == quotient and ta == remainder */ 1654 n = a->sign; 1655 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); 1656 if (c != NULL) { 1657 mp_exch(c, &q); 1658 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; 1659 } 1660 if (d != NULL) { 1661 mp_exch(d, &ta); 1662 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; 1663 } 1664 LBL_ERR: 1665 mp_clear_multi(&ta, &tb, &tq, &q, NULL); 1666 return res; 1667 } 1668 1669 #else 1670 1671 /* integer signed division. 1672 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] 1673 * HAC pp.598 Algorithm 14.20 1674 * 1675 * Note that the description in HAC is horribly 1676 * incomplete. For example, it doesn't consider 1677 * the case where digits are removed from 'x' in 1678 * the inner loop. It also doesn't consider the 1679 * case that y has fewer than three digits, etc.. 1680 * 1681 * The overall algorithm is as described as 1682 * 14.20 from HAC but fixed to treat these cases. 1683 */ 1684 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1685 { 1686 mp_int q, x, y, t1, t2; 1687 int res, n, t, i, norm, neg; 1688 1689 /* is divisor zero ? */ 1690 if (mp_iszero (b) == 1) { 1691 return MP_VAL; 1692 } 1693 1694 /* if a < b then q=0, r = a */ 1695 if (mp_cmp_mag (a, b) == MP_LT) { 1696 if (d != NULL) { 1697 res = mp_copy (a, d); 1698 } else { 1699 res = MP_OKAY; 1700 } 1701 if (c != NULL) { 1702 mp_zero (c); 1703 } 1704 return res; 1705 } 1706 1707 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { 1708 return res; 1709 } 1710 q.used = a->used + 2; 1711 1712 if ((res = mp_init (&t1)) != MP_OKAY) { 1713 goto LBL_Q; 1714 } 1715 1716 if ((res = mp_init (&t2)) != MP_OKAY) { 1717 goto LBL_T1; 1718 } 1719 1720 if ((res = mp_init_copy (&x, a)) != MP_OKAY) { 1721 goto LBL_T2; 1722 } 1723 1724 if ((res = mp_init_copy (&y, b)) != MP_OKAY) { 1725 goto LBL_X; 1726 } 1727 1728 /* fix the sign */ 1729 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 1730 x.sign = y.sign = MP_ZPOS; 1731 1732 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ 1733 norm = mp_count_bits(&y) % DIGIT_BIT; 1734 if (norm < (int)(DIGIT_BIT-1)) { 1735 norm = (DIGIT_BIT-1) - norm; 1736 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { 1737 goto LBL_Y; 1738 } 1739 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { 1740 goto LBL_Y; 1741 } 1742 } else { 1743 norm = 0; 1744 } 1745 1746 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ 1747 n = x.used - 1; 1748 t = y.used - 1; 1749 1750 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ 1751 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ 1752 goto LBL_Y; 1753 } 1754 1755 while (mp_cmp (&x, &y) != MP_LT) { 1756 ++(q.dp[n - t]); 1757 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { 1758 goto LBL_Y; 1759 } 1760 } 1761 1762 /* reset y by shifting it back down */ 1763 mp_rshd (&y, n - t); 1764 1765 /* step 3. for i from n down to (t + 1) */ 1766 for (i = n; i >= (t + 1); i--) { 1767 if (i > x.used) { 1768 continue; 1769 } 1770 1771 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 1772 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ 1773 if (x.dp[i] == y.dp[t]) { 1774 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); 1775 } else { 1776 mp_word tmp; 1777 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); 1778 tmp |= ((mp_word) x.dp[i - 1]); 1779 tmp /= ((mp_word) y.dp[t]); 1780 if (tmp > (mp_word) MP_MASK) 1781 tmp = MP_MASK; 1782 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); 1783 } 1784 1785 /* while (q{i-t-1} * (yt * b + y{t-1})) > 1786 xi * b**2 + xi-1 * b + xi-2 1787 1788 do q{i-t-1} -= 1; 1789 */ 1790 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; 1791 do { 1792 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; 1793 1794 /* find left hand */ 1795 mp_zero (&t1); 1796 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; 1797 t1.dp[1] = y.dp[t]; 1798 t1.used = 2; 1799 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1800 goto LBL_Y; 1801 } 1802 1803 /* find right hand */ 1804 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; 1805 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; 1806 t2.dp[2] = x.dp[i]; 1807 t2.used = 3; 1808 } while (mp_cmp_mag(&t1, &t2) == MP_GT); 1809 1810 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ 1811 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1812 goto LBL_Y; 1813 } 1814 1815 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1816 goto LBL_Y; 1817 } 1818 1819 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { 1820 goto LBL_Y; 1821 } 1822 1823 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ 1824 if (x.sign == MP_NEG) { 1825 if ((res = mp_copy (&y, &t1)) != MP_OKAY) { 1826 goto LBL_Y; 1827 } 1828 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1829 goto LBL_Y; 1830 } 1831 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { 1832 goto LBL_Y; 1833 } 1834 1835 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; 1836 } 1837 } 1838 1839 /* now q is the quotient and x is the remainder 1840 * [which we have to normalize] 1841 */ 1842 1843 /* get sign before writing to c */ 1844 x.sign = x.used == 0 ? MP_ZPOS : a->sign; 1845 1846 if (c != NULL) { 1847 mp_clamp (&q); 1848 mp_exch (&q, c); 1849 c->sign = neg; 1850 } 1851 1852 if (d != NULL) { 1853 mp_div_2d (&x, norm, &x, NULL); 1854 mp_exch (&x, d); 1855 } 1856 1857 res = MP_OKAY; 1858 1859 LBL_Y:mp_clear (&y); 1860 LBL_X:mp_clear (&x); 1861 LBL_T2:mp_clear (&t2); 1862 LBL_T1:mp_clear (&t1); 1863 LBL_Q:mp_clear (&q); 1864 return res; 1865 } 1866 1867 #endif 1868 1869 1870 #ifdef MP_LOW_MEM 1871 #define TAB_SIZE 32 1872 #else 1873 #define TAB_SIZE 256 1874 #endif 1875 1876 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 1877 { 1878 mp_int M[TAB_SIZE], res, mu; 1879 mp_digit buf; 1880 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 1881 int (*redux)(mp_int*,mp_int*,mp_int*); 1882 1883 /* find window size */ 1884 x = mp_count_bits (X); 1885 if (x <= 7) { 1886 winsize = 2; 1887 } else if (x <= 36) { 1888 winsize = 3; 1889 } else if (x <= 140) { 1890 winsize = 4; 1891 } else if (x <= 450) { 1892 winsize = 5; 1893 } else if (x <= 1303) { 1894 winsize = 6; 1895 } else if (x <= 3529) { 1896 winsize = 7; 1897 } else { 1898 winsize = 8; 1899 } 1900 1901 #ifdef MP_LOW_MEM 1902 if (winsize > 5) { 1903 winsize = 5; 1904 } 1905 #endif 1906 1907 /* init M array */ 1908 /* init first cell */ 1909 if ((err = mp_init(&M[1])) != MP_OKAY) { 1910 return err; 1911 } 1912 1913 /* now init the second half of the array */ 1914 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 1915 if ((err = mp_init(&M[x])) != MP_OKAY) { 1916 for (y = 1<<(winsize-1); y < x; y++) { 1917 mp_clear (&M[y]); 1918 } 1919 mp_clear(&M[1]); 1920 return err; 1921 } 1922 } 1923 1924 /* create mu, used for Barrett reduction */ 1925 if ((err = mp_init (&mu)) != MP_OKAY) { 1926 goto LBL_M; 1927 } 1928 1929 if (redmode == 0) { 1930 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { 1931 goto LBL_MU; 1932 } 1933 redux = mp_reduce; 1934 } else { 1935 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { 1936 goto LBL_MU; 1937 } 1938 redux = mp_reduce_2k_l; 1939 } 1940 1941 /* create M table 1942 * 1943 * The M table contains powers of the base, 1944 * e.g. M[x] = G**x mod P 1945 * 1946 * The first half of the table is not 1947 * computed though accept for M[0] and M[1] 1948 */ 1949 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { 1950 goto LBL_MU; 1951 } 1952 1953 /* compute the value at M[1<<(winsize-1)] by squaring 1954 * M[1] (winsize-1) times 1955 */ 1956 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 1957 goto LBL_MU; 1958 } 1959 1960 for (x = 0; x < (winsize - 1); x++) { 1961 /* square it */ 1962 if ((err = mp_sqr (&M[1 << (winsize - 1)], 1963 &M[1 << (winsize - 1)])) != MP_OKAY) { 1964 goto LBL_MU; 1965 } 1966 1967 /* reduce modulo P */ 1968 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { 1969 goto LBL_MU; 1970 } 1971 } 1972 1973 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) 1974 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) 1975 */ 1976 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 1977 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 1978 goto LBL_MU; 1979 } 1980 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { 1981 goto LBL_MU; 1982 } 1983 } 1984 1985 /* setup result */ 1986 if ((err = mp_init (&res)) != MP_OKAY) { 1987 goto LBL_MU; 1988 } 1989 mp_set (&res, 1); 1990 1991 /* set initial mode and bit cnt */ 1992 mode = 0; 1993 bitcnt = 1; 1994 buf = 0; 1995 digidx = X->used - 1; 1996 bitcpy = 0; 1997 bitbuf = 0; 1998 1999 for (;;) { 2000 /* grab next digit as required */ 2001 if (--bitcnt == 0) { 2002 /* if digidx == -1 we are out of digits */ 2003 if (digidx == -1) { 2004 break; 2005 } 2006 /* read next digit and reset the bitcnt */ 2007 buf = X->dp[digidx--]; 2008 bitcnt = (int) DIGIT_BIT; 2009 } 2010 2011 /* grab the next msb from the exponent */ 2012 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; 2013 buf <<= (mp_digit)1; 2014 2015 /* if the bit is zero and mode == 0 then we ignore it 2016 * These represent the leading zero bits before the first 1 bit 2017 * in the exponent. Technically this opt is not required but it 2018 * does lower the # of trivial squaring/reductions used 2019 */ 2020 if (mode == 0 && y == 0) { 2021 continue; 2022 } 2023 2024 /* if the bit is zero and mode == 1 then we square */ 2025 if (mode == 1 && y == 0) { 2026 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2027 goto LBL_RES; 2028 } 2029 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2030 goto LBL_RES; 2031 } 2032 continue; 2033 } 2034 2035 /* else we add it to the window */ 2036 bitbuf |= (y << (winsize - ++bitcpy)); 2037 mode = 2; 2038 2039 if (bitcpy == winsize) { 2040 /* ok window is filled so square as required and multiply */ 2041 /* square first */ 2042 for (x = 0; x < winsize; x++) { 2043 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2044 goto LBL_RES; 2045 } 2046 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2047 goto LBL_RES; 2048 } 2049 } 2050 2051 /* then multiply */ 2052 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 2053 goto LBL_RES; 2054 } 2055 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2056 goto LBL_RES; 2057 } 2058 2059 /* empty window and reset */ 2060 bitcpy = 0; 2061 bitbuf = 0; 2062 mode = 1; 2063 } 2064 } 2065 2066 /* if bits remain then square/multiply */ 2067 if (mode == 2 && bitcpy > 0) { 2068 /* square then multiply if the bit is set */ 2069 for (x = 0; x < bitcpy; x++) { 2070 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2071 goto LBL_RES; 2072 } 2073 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2074 goto LBL_RES; 2075 } 2076 2077 bitbuf <<= 1; 2078 if ((bitbuf & (1 << winsize)) != 0) { 2079 /* then multiply */ 2080 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 2081 goto LBL_RES; 2082 } 2083 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2084 goto LBL_RES; 2085 } 2086 } 2087 } 2088 } 2089 2090 mp_exch (&res, Y); 2091 err = MP_OKAY; 2092 LBL_RES:mp_clear (&res); 2093 LBL_MU:mp_clear (&mu); 2094 LBL_M: 2095 mp_clear(&M[1]); 2096 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 2097 mp_clear (&M[x]); 2098 } 2099 return err; 2100 } 2101 2102 2103 /* computes b = a*a */ 2104 static int mp_sqr (mp_int * a, mp_int * b) 2105 { 2106 int res; 2107 2108 #ifdef BN_MP_TOOM_SQR_C 2109 /* use Toom-Cook? */ 2110 if (a->used >= TOOM_SQR_CUTOFF) { 2111 res = mp_toom_sqr(a, b); 2112 /* Karatsuba? */ 2113 } else 2114 #endif 2115 #ifdef BN_MP_KARATSUBA_SQR_C 2116 if (a->used >= KARATSUBA_SQR_CUTOFF) { 2117 res = mp_karatsuba_sqr (a, b); 2118 } else 2119 #endif 2120 { 2121 #ifdef BN_FAST_S_MP_SQR_C 2122 /* can we use the fast comba multiplier? */ 2123 if ((a->used * 2 + 1) < MP_WARRAY && 2124 a->used < 2125 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { 2126 res = fast_s_mp_sqr (a, b); 2127 } else 2128 #endif 2129 #ifdef BN_S_MP_SQR_C 2130 res = s_mp_sqr (a, b); 2131 #else 2132 #error mp_sqr could fail 2133 res = MP_VAL; 2134 #endif 2135 } 2136 b->sign = MP_ZPOS; 2137 return res; 2138 } 2139 2140 2141 /* reduces a modulo n where n is of the form 2**p - d 2142 This differs from reduce_2k since "d" can be larger 2143 than a single digit. 2144 */ 2145 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) 2146 { 2147 mp_int q; 2148 int p, res; 2149 2150 if ((res = mp_init(&q)) != MP_OKAY) { 2151 return res; 2152 } 2153 2154 p = mp_count_bits(n); 2155 top: 2156 /* q = a/2**p, a = a mod 2**p */ 2157 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { 2158 goto ERR; 2159 } 2160 2161 /* q = q * d */ 2162 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 2163 goto ERR; 2164 } 2165 2166 /* a = a + q */ 2167 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { 2168 goto ERR; 2169 } 2170 2171 if (mp_cmp_mag(a, n) != MP_LT) { 2172 s_mp_sub(a, n, a); 2173 goto top; 2174 } 2175 2176 ERR: 2177 mp_clear(&q); 2178 return res; 2179 } 2180 2181 2182 /* determines the setup value */ 2183 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) 2184 { 2185 int res; 2186 mp_int tmp; 2187 2188 if ((res = mp_init(&tmp)) != MP_OKAY) { 2189 return res; 2190 } 2191 2192 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { 2193 goto ERR; 2194 } 2195 2196 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { 2197 goto ERR; 2198 } 2199 2200 ERR: 2201 mp_clear(&tmp); 2202 return res; 2203 } 2204 2205 2206 /* computes a = 2**b 2207 * 2208 * Simple algorithm which zeroes the int, grows it then just sets one bit 2209 * as required. 2210 */ 2211 static int mp_2expt (mp_int * a, int b) 2212 { 2213 int res; 2214 2215 /* zero a as per default */ 2216 mp_zero (a); 2217 2218 /* grow a to accommodate the single bit */ 2219 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { 2220 return res; 2221 } 2222 2223 /* set the used count of where the bit will go */ 2224 a->used = b / DIGIT_BIT + 1; 2225 2226 /* put the single bit in its place */ 2227 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); 2228 2229 return MP_OKAY; 2230 } 2231 2232 2233 /* pre-calculate the value required for Barrett reduction 2234 * For a given modulus "b" it calulates the value required in "a" 2235 */ 2236 static int mp_reduce_setup (mp_int * a, mp_int * b) 2237 { 2238 int res; 2239 2240 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { 2241 return res; 2242 } 2243 return mp_div (a, b, a, NULL); 2244 } 2245 2246 2247 /* reduces x mod m, assumes 0 < x < m**2, mu is 2248 * precomputed via mp_reduce_setup. 2249 * From HAC pp.604 Algorithm 14.42 2250 */ 2251 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) 2252 { 2253 mp_int q; 2254 int res, um = m->used; 2255 2256 /* q = x */ 2257 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { 2258 return res; 2259 } 2260 2261 /* q1 = x / b**(k-1) */ 2262 mp_rshd (&q, um - 1); 2263 2264 /* according to HAC this optimization is ok */ 2265 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { 2266 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { 2267 goto CLEANUP; 2268 } 2269 } else { 2270 #ifdef BN_S_MP_MUL_HIGH_DIGS_C 2271 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2272 goto CLEANUP; 2273 } 2274 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) 2275 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2276 goto CLEANUP; 2277 } 2278 #else 2279 { 2280 #error mp_reduce would always fail 2281 res = MP_VAL; 2282 goto CLEANUP; 2283 } 2284 #endif 2285 } 2286 2287 /* q3 = q2 / b**(k+1) */ 2288 mp_rshd (&q, um + 1); 2289 2290 /* x = x mod b**(k+1), quick (no division) */ 2291 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { 2292 goto CLEANUP; 2293 } 2294 2295 /* q = q * m mod b**(k+1), quick (no division) */ 2296 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { 2297 goto CLEANUP; 2298 } 2299 2300 /* x = x - q */ 2301 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { 2302 goto CLEANUP; 2303 } 2304 2305 /* If x < 0, add b**(k+1) to it */ 2306 if (mp_cmp_d (x, 0) == MP_LT) { 2307 mp_set (&q, 1); 2308 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) { 2309 goto CLEANUP; 2310 } 2311 if ((res = mp_add (x, &q, x)) != MP_OKAY) { 2312 goto CLEANUP; 2313 } 2314 } 2315 2316 /* Back off if it's too big */ 2317 while (mp_cmp (x, m) != MP_LT) { 2318 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { 2319 goto CLEANUP; 2320 } 2321 } 2322 2323 CLEANUP: 2324 mp_clear (&q); 2325 2326 return res; 2327 } 2328 2329 2330 /* multiplies |a| * |b| and only computes up to digs digits of result 2331 * HAC pp. 595, Algorithm 14.12 Modified so you can control how 2332 * many digits of output are created. 2333 */ 2334 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2335 { 2336 mp_int t; 2337 int res, pa, pb, ix, iy; 2338 mp_digit u; 2339 mp_word r; 2340 mp_digit tmpx, *tmpt, *tmpy; 2341 2342 /* can we use the fast multiplier? */ 2343 if (((digs) < MP_WARRAY) && 2344 MIN (a->used, b->used) < 2345 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2346 return fast_s_mp_mul_digs (a, b, c, digs); 2347 } 2348 2349 if ((res = mp_init_size (&t, digs)) != MP_OKAY) { 2350 return res; 2351 } 2352 t.used = digs; 2353 2354 /* compute the digits of the product directly */ 2355 pa = a->used; 2356 for (ix = 0; ix < pa; ix++) { 2357 /* set the carry to zero */ 2358 u = 0; 2359 2360 /* limit ourselves to making digs digits of output */ 2361 pb = MIN (b->used, digs - ix); 2362 2363 /* setup some aliases */ 2364 /* copy of the digit from a used within the nested loop */ 2365 tmpx = a->dp[ix]; 2366 2367 /* an alias for the destination shifted ix places */ 2368 tmpt = t.dp + ix; 2369 2370 /* an alias for the digits of b */ 2371 tmpy = b->dp; 2372 2373 /* compute the columns of the output and propagate the carry */ 2374 for (iy = 0; iy < pb; iy++) { 2375 /* compute the column as a mp_word */ 2376 r = ((mp_word)*tmpt) + 2377 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2378 ((mp_word) u); 2379 2380 /* the new column is the lower part of the result */ 2381 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2382 2383 /* get the carry word from the result */ 2384 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2385 } 2386 /* set carry if it is placed below digs */ 2387 if (ix + iy < digs) { 2388 *tmpt = u; 2389 } 2390 } 2391 2392 mp_clamp (&t); 2393 mp_exch (&t, c); 2394 2395 mp_clear (&t); 2396 return MP_OKAY; 2397 } 2398 2399 2400 /* Fast (comba) multiplier 2401 * 2402 * This is the fast column-array [comba] multiplier. It is 2403 * designed to compute the columns of the product first 2404 * then handle the carries afterwards. This has the effect 2405 * of making the nested loops that compute the columns very 2406 * simple and schedulable on super-scalar processors. 2407 * 2408 * This has been modified to produce a variable number of 2409 * digits of output so if say only a half-product is required 2410 * you don't have to compute the upper half (a feature 2411 * required for fast Barrett reduction). 2412 * 2413 * Based on Algorithm 14.12 on pp.595 of HAC. 2414 * 2415 */ 2416 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2417 { 2418 int olduse, res, pa, ix, iz; 2419 mp_digit W[MP_WARRAY]; 2420 register mp_word _W; 2421 2422 /* grow the destination as required */ 2423 if (c->alloc < digs) { 2424 if ((res = mp_grow (c, digs)) != MP_OKAY) { 2425 return res; 2426 } 2427 } 2428 2429 /* number of output digits to produce */ 2430 pa = MIN(digs, a->used + b->used); 2431 2432 /* clear the carry */ 2433 _W = 0; 2434 for (ix = 0; ix < pa; ix++) { 2435 int tx, ty; 2436 int iy; 2437 mp_digit *tmpx, *tmpy; 2438 2439 /* get offsets into the two bignums */ 2440 ty = MIN(b->used-1, ix); 2441 tx = ix - ty; 2442 2443 /* setup temp aliases */ 2444 tmpx = a->dp + tx; 2445 tmpy = b->dp + ty; 2446 2447 /* this is the number of times the loop will iterrate, essentially 2448 while (tx++ < a->used && ty-- >= 0) { ... } 2449 */ 2450 iy = MIN(a->used-tx, ty+1); 2451 2452 /* execute loop */ 2453 for (iz = 0; iz < iy; ++iz) { 2454 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 2455 2456 } 2457 2458 /* store term */ 2459 W[ix] = ((mp_digit)_W) & MP_MASK; 2460 2461 /* make next carry */ 2462 _W = _W >> ((mp_word)DIGIT_BIT); 2463 } 2464 2465 /* setup dest */ 2466 olduse = c->used; 2467 c->used = pa; 2468 2469 { 2470 register mp_digit *tmpc; 2471 tmpc = c->dp; 2472 for (ix = 0; ix < pa+1; ix++) { 2473 /* now extract the previous digit [below the carry] */ 2474 *tmpc++ = W[ix]; 2475 } 2476 2477 /* clear unused digits [that existed in the old copy of c] */ 2478 for (; ix < olduse; ix++) { 2479 *tmpc++ = 0; 2480 } 2481 } 2482 mp_clamp (c); 2483 return MP_OKAY; 2484 } 2485 2486 2487 /* init an mp_init for a given size */ 2488 static int mp_init_size (mp_int * a, int size) 2489 { 2490 int x; 2491 2492 /* pad size so there are always extra digits */ 2493 size += (MP_PREC * 2) - (size % MP_PREC); 2494 2495 /* alloc mem */ 2496 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); 2497 if (a->dp == NULL) { 2498 return MP_MEM; 2499 } 2500 2501 /* set the members */ 2502 a->used = 0; 2503 a->alloc = size; 2504 a->sign = MP_ZPOS; 2505 2506 /* zero the digits */ 2507 for (x = 0; x < size; x++) { 2508 a->dp[x] = 0; 2509 } 2510 2511 return MP_OKAY; 2512 } 2513 2514 2515 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ 2516 static int s_mp_sqr (mp_int * a, mp_int * b) 2517 { 2518 mp_int t; 2519 int res, ix, iy, pa; 2520 mp_word r; 2521 mp_digit u, tmpx, *tmpt; 2522 2523 pa = a->used; 2524 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { 2525 return res; 2526 } 2527 2528 /* default used is maximum possible size */ 2529 t.used = 2*pa + 1; 2530 2531 for (ix = 0; ix < pa; ix++) { 2532 /* first calculate the digit at 2*ix */ 2533 /* calculate double precision result */ 2534 r = ((mp_word) t.dp[2*ix]) + 2535 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); 2536 2537 /* store lower part in result */ 2538 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); 2539 2540 /* get the carry */ 2541 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2542 2543 /* left hand side of A[ix] * A[iy] */ 2544 tmpx = a->dp[ix]; 2545 2546 /* alias for where to store the results */ 2547 tmpt = t.dp + (2*ix + 1); 2548 2549 for (iy = ix + 1; iy < pa; iy++) { 2550 /* first calculate the product */ 2551 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); 2552 2553 /* now calculate the double precision result, note we use 2554 * addition instead of *2 since it's easier to optimize 2555 */ 2556 r = ((mp_word) *tmpt) + r + r + ((mp_word) u); 2557 2558 /* store lower part */ 2559 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2560 2561 /* get carry */ 2562 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2563 } 2564 /* propagate upwards */ 2565 while (u != ((mp_digit) 0)) { 2566 r = ((mp_word) *tmpt) + ((mp_word) u); 2567 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2568 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2569 } 2570 } 2571 2572 mp_clamp (&t); 2573 mp_exch (&t, b); 2574 mp_clear (&t); 2575 return MP_OKAY; 2576 } 2577 2578 2579 /* multiplies |a| * |b| and does not compute the lower digs digits 2580 * [meant to get the higher part of the product] 2581 */ 2582 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2583 { 2584 mp_int t; 2585 int res, pa, pb, ix, iy; 2586 mp_digit u; 2587 mp_word r; 2588 mp_digit tmpx, *tmpt, *tmpy; 2589 2590 /* can we use the fast multiplier? */ 2591 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C 2592 if (((a->used + b->used + 1) < MP_WARRAY) 2593 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2594 return fast_s_mp_mul_high_digs (a, b, c, digs); 2595 } 2596 #endif 2597 2598 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { 2599 return res; 2600 } 2601 t.used = a->used + b->used + 1; 2602 2603 pa = a->used; 2604 pb = b->used; 2605 for (ix = 0; ix < pa; ix++) { 2606 /* clear the carry */ 2607 u = 0; 2608 2609 /* left hand side of A[ix] * B[iy] */ 2610 tmpx = a->dp[ix]; 2611 2612 /* alias to the address of where the digits will be stored */ 2613 tmpt = &(t.dp[digs]); 2614 2615 /* alias for where to read the right hand side from */ 2616 tmpy = b->dp + (digs - ix); 2617 2618 for (iy = digs - ix; iy < pb; iy++) { 2619 /* calculate the double precision result */ 2620 r = ((mp_word)*tmpt) + 2621 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2622 ((mp_word) u); 2623 2624 /* get the lower part */ 2625 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2626 2627 /* carry the carry */ 2628 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2629 } 2630 *tmpt = u; 2631 } 2632 mp_clamp (&t); 2633 mp_exch (&t, c); 2634 mp_clear (&t); 2635 return MP_OKAY; 2636 } 2637 2638 2639 #ifdef BN_MP_MONTGOMERY_SETUP_C 2640 /* setups the montgomery reduction stuff */ 2641 static int 2642 mp_montgomery_setup (mp_int * n, mp_digit * rho) 2643 { 2644 mp_digit x, b; 2645 2646 /* fast inversion mod 2**k 2647 * 2648 * Based on the fact that 2649 * 2650 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) 2651 * => 2*X*A - X*X*A*A = 1 2652 * => 2*(1) - (1) = 1 2653 */ 2654 b = n->dp[0]; 2655 2656 if ((b & 1) == 0) { 2657 return MP_VAL; 2658 } 2659 2660 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ 2661 x *= 2 - b * x; /* here x*a==1 mod 2**8 */ 2662 #if !defined(MP_8BIT) 2663 x *= 2 - b * x; /* here x*a==1 mod 2**16 */ 2664 #endif 2665 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) 2666 x *= 2 - b * x; /* here x*a==1 mod 2**32 */ 2667 #endif 2668 #ifdef MP_64BIT 2669 x *= 2 - b * x; /* here x*a==1 mod 2**64 */ 2670 #endif 2671 2672 /* rho = -1/m mod b */ 2673 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; 2674 2675 return MP_OKAY; 2676 } 2677 #endif 2678 2679 2680 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 2681 /* computes xR**-1 == x (mod N) via Montgomery Reduction 2682 * 2683 * This is an optimized implementation of montgomery_reduce 2684 * which uses the comba method to quickly calculate the columns of the 2685 * reduction. 2686 * 2687 * Based on Algorithm 14.32 on pp.601 of HAC. 2688 */ 2689 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) 2690 { 2691 int ix, res, olduse; 2692 mp_word W[MP_WARRAY]; 2693 2694 /* get old used count */ 2695 olduse = x->used; 2696 2697 /* grow a as required */ 2698 if (x->alloc < n->used + 1) { 2699 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { 2700 return res; 2701 } 2702 } 2703 2704 /* first we have to get the digits of the input into 2705 * an array of double precision words W[...] 2706 */ 2707 { 2708 register mp_word *_W; 2709 register mp_digit *tmpx; 2710 2711 /* alias for the W[] array */ 2712 _W = W; 2713 2714 /* alias for the digits of x*/ 2715 tmpx = x->dp; 2716 2717 /* copy the digits of a into W[0..a->used-1] */ 2718 for (ix = 0; ix < x->used; ix++) { 2719 *_W++ = *tmpx++; 2720 } 2721 2722 /* zero the high words of W[a->used..m->used*2] */ 2723 for (; ix < n->used * 2 + 1; ix++) { 2724 *_W++ = 0; 2725 } 2726 } 2727 2728 /* now we proceed to zero successive digits 2729 * from the least significant upwards 2730 */ 2731 for (ix = 0; ix < n->used; ix++) { 2732 /* mu = ai * m' mod b 2733 * 2734 * We avoid a double precision multiplication (which isn't required) 2735 * by casting the value down to a mp_digit. Note this requires 2736 * that W[ix-1] have the carry cleared (see after the inner loop) 2737 */ 2738 register mp_digit mu; 2739 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); 2740 2741 /* a = a + mu * m * b**i 2742 * 2743 * This is computed in place and on the fly. The multiplication 2744 * by b**i is handled by offseting which columns the results 2745 * are added to. 2746 * 2747 * Note the comba method normally doesn't handle carries in the 2748 * inner loop In this case we fix the carry from the previous 2749 * column since the Montgomery reduction requires digits of the 2750 * result (so far) [see above] to work. This is 2751 * handled by fixing up one carry after the inner loop. The 2752 * carry fixups are done in order so after these loops the 2753 * first m->used words of W[] have the carries fixed 2754 */ 2755 { 2756 register int iy; 2757 register mp_digit *tmpn; 2758 register mp_word *_W; 2759 2760 /* alias for the digits of the modulus */ 2761 tmpn = n->dp; 2762 2763 /* Alias for the columns set by an offset of ix */ 2764 _W = W + ix; 2765 2766 /* inner loop */ 2767 for (iy = 0; iy < n->used; iy++) { 2768 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); 2769 } 2770 } 2771 2772 /* now fix carry for next digit, W[ix+1] */ 2773 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); 2774 } 2775 2776 /* now we have to propagate the carries and 2777 * shift the words downward [all those least 2778 * significant digits we zeroed]. 2779 */ 2780 { 2781 register mp_digit *tmpx; 2782 register mp_word *_W, *_W1; 2783 2784 /* nox fix rest of carries */ 2785 2786 /* alias for current word */ 2787 _W1 = W + ix; 2788 2789 /* alias for next word, where the carry goes */ 2790 _W = W + ++ix; 2791 2792 for (; ix <= n->used * 2 + 1; ix++) { 2793 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); 2794 } 2795 2796 /* copy out, A = A/b**n 2797 * 2798 * The result is A/b**n but instead of converting from an 2799 * array of mp_word to mp_digit than calling mp_rshd 2800 * we just copy them in the right order 2801 */ 2802 2803 /* alias for destination word */ 2804 tmpx = x->dp; 2805 2806 /* alias for shifted double precision result */ 2807 _W = W + n->used; 2808 2809 for (ix = 0; ix < n->used + 1; ix++) { 2810 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); 2811 } 2812 2813 /* zero oldused digits, if the input a was larger than 2814 * m->used+1 we'll have to clear the digits 2815 */ 2816 for (; ix < olduse; ix++) { 2817 *tmpx++ = 0; 2818 } 2819 } 2820 2821 /* set the max used and clamp */ 2822 x->used = n->used + 1; 2823 mp_clamp (x); 2824 2825 /* if A >= m then A = A - m */ 2826 if (mp_cmp_mag (x, n) != MP_LT) { 2827 return s_mp_sub (x, n, x); 2828 } 2829 return MP_OKAY; 2830 } 2831 #endif 2832 2833 2834 #ifdef BN_MP_MUL_2_C 2835 /* b = a*2 */ 2836 static int mp_mul_2(mp_int * a, mp_int * b) 2837 { 2838 int x, res, oldused; 2839 2840 /* grow to accommodate result */ 2841 if (b->alloc < a->used + 1) { 2842 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { 2843 return res; 2844 } 2845 } 2846 2847 oldused = b->used; 2848 b->used = a->used; 2849 2850 { 2851 register mp_digit r, rr, *tmpa, *tmpb; 2852 2853 /* alias for source */ 2854 tmpa = a->dp; 2855 2856 /* alias for dest */ 2857 tmpb = b->dp; 2858 2859 /* carry */ 2860 r = 0; 2861 for (x = 0; x < a->used; x++) { 2862 2863 /* get what will be the *next* carry bit from the 2864 * MSB of the current digit 2865 */ 2866 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); 2867 2868 /* now shift up this digit, add in the carry [from the previous] */ 2869 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; 2870 2871 /* copy the carry that would be from the source 2872 * digit into the next iteration 2873 */ 2874 r = rr; 2875 } 2876 2877 /* new leading digit? */ 2878 if (r != 0) { 2879 /* add a MSB which is always 1 at this point */ 2880 *tmpb = 1; 2881 ++(b->used); 2882 } 2883 2884 /* now zero any excess digits on the destination 2885 * that we didn't write to 2886 */ 2887 tmpb = b->dp + b->used; 2888 for (x = b->used; x < oldused; x++) { 2889 *tmpb++ = 0; 2890 } 2891 } 2892 b->sign = a->sign; 2893 return MP_OKAY; 2894 } 2895 #endif 2896 2897 2898 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 2899 /* 2900 * shifts with subtractions when the result is greater than b. 2901 * 2902 * The method is slightly modified to shift B unconditionally up to just under 2903 * the leading bit of b. This saves a lot of multiple precision shifting. 2904 */ 2905 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) 2906 { 2907 int x, bits, res; 2908 2909 /* how many bits of last digit does b use */ 2910 bits = mp_count_bits (b) % DIGIT_BIT; 2911 2912 if (b->used > 1) { 2913 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { 2914 return res; 2915 } 2916 } else { 2917 mp_set(a, 1); 2918 bits = 1; 2919 } 2920 2921 2922 /* now compute C = A * B mod b */ 2923 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { 2924 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { 2925 return res; 2926 } 2927 if (mp_cmp_mag (a, b) != MP_LT) { 2928 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { 2929 return res; 2930 } 2931 } 2932 } 2933 2934 return MP_OKAY; 2935 } 2936 #endif 2937 2938 2939 #ifdef BN_MP_EXPTMOD_FAST_C 2940 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 2941 * 2942 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. 2943 * The value of k changes based on the size of the exponent. 2944 * 2945 * Uses Montgomery or Diminished Radix reduction [whichever appropriate] 2946 */ 2947 2948 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 2949 { 2950 mp_int M[TAB_SIZE], res; 2951 mp_digit buf, mp; 2952 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 2953 2954 /* use a pointer to the reduction algorithm. This allows us to use 2955 * one of many reduction algorithms without modding the guts of 2956 * the code with if statements everywhere. 2957 */ 2958 int (*redux)(mp_int*,mp_int*,mp_digit); 2959 2960 /* find window size */ 2961 x = mp_count_bits (X); 2962 if (x <= 7) { 2963 winsize = 2; 2964 } else if (x <= 36) { 2965 winsize = 3; 2966 } else if (x <= 140) { 2967 winsize = 4; 2968 } else if (x <= 450) { 2969 winsize = 5; 2970 } else if (x <= 1303) { 2971 winsize = 6; 2972 } else if (x <= 3529) { 2973 winsize = 7; 2974 } else { 2975 winsize = 8; 2976 } 2977 2978 #ifdef MP_LOW_MEM 2979 if (winsize > 5) { 2980 winsize = 5; 2981 } 2982 #endif 2983 2984 /* init M array */ 2985 /* init first cell */ 2986 if ((err = mp_init(&M[1])) != MP_OKAY) { 2987 return err; 2988 } 2989 2990 /* now init the second half of the array */ 2991 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 2992 if ((err = mp_init(&M[x])) != MP_OKAY) { 2993 for (y = 1<<(winsize-1); y < x; y++) { 2994 mp_clear (&M[y]); 2995 } 2996 mp_clear(&M[1]); 2997 return err; 2998 } 2999 } 3000 3001 /* determine and setup reduction code */ 3002 if (redmode == 0) { 3003 #ifdef BN_MP_MONTGOMERY_SETUP_C 3004 /* now setup montgomery */ 3005 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { 3006 goto LBL_M; 3007 } 3008 #else 3009 err = MP_VAL; 3010 goto LBL_M; 3011 #endif 3012 3013 /* automatically pick the comba one if available (saves quite a few calls/ifs) */ 3014 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 3015 if (((P->used * 2 + 1) < MP_WARRAY) && 3016 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 3017 redux = fast_mp_montgomery_reduce; 3018 } else 3019 #endif 3020 { 3021 #ifdef BN_MP_MONTGOMERY_REDUCE_C 3022 /* use slower baseline Montgomery method */ 3023 redux = mp_montgomery_reduce; 3024 #else 3025 err = MP_VAL; 3026 goto LBL_M; 3027 #endif 3028 } 3029 } else if (redmode == 1) { 3030 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) 3031 /* setup DR reduction for moduli of the form B**k - b */ 3032 mp_dr_setup(P, &mp); 3033 redux = mp_dr_reduce; 3034 #else 3035 err = MP_VAL; 3036 goto LBL_M; 3037 #endif 3038 } else { 3039 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) 3040 /* setup DR reduction for moduli of the form 2**k - b */ 3041 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { 3042 goto LBL_M; 3043 } 3044 redux = mp_reduce_2k; 3045 #else 3046 err = MP_VAL; 3047 goto LBL_M; 3048 #endif 3049 } 3050 3051 /* setup result */ 3052 if ((err = mp_init (&res)) != MP_OKAY) { 3053 goto LBL_M; 3054 } 3055 3056 /* create M table 3057 * 3058 3059 * 3060 * The first half of the table is not computed though accept for M[0] and M[1] 3061 */ 3062 3063 if (redmode == 0) { 3064 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 3065 /* now we need R mod m */ 3066 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { 3067 goto LBL_RES; 3068 } 3069 #else 3070 err = MP_VAL; 3071 goto LBL_RES; 3072 #endif 3073 3074 /* now set M[1] to G * R mod m */ 3075 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { 3076 goto LBL_RES; 3077 } 3078 } else { 3079 mp_set(&res, 1); 3080 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { 3081 goto LBL_RES; 3082 } 3083 } 3084 3085 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ 3086 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 3087 goto LBL_RES; 3088 } 3089 3090 for (x = 0; x < (winsize - 1); x++) { 3091 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { 3092 goto LBL_RES; 3093 } 3094 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { 3095 goto LBL_RES; 3096 } 3097 } 3098 3099 /* create upper table */ 3100 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 3101 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 3102 goto LBL_RES; 3103 } 3104 if ((err = redux (&M[x], P, mp)) != MP_OKAY) { 3105 goto LBL_RES; 3106 } 3107 } 3108 3109 /* set initial mode and bit cnt */ 3110 mode = 0; 3111 bitcnt = 1; 3112 buf = 0; 3113 digidx = X->used - 1; 3114 bitcpy = 0; 3115 bitbuf = 0; 3116 3117 for (;;) { 3118 /* grab next digit as required */ 3119 if (--bitcnt == 0) { 3120 /* if digidx == -1 we are out of digits so break */ 3121 if (digidx == -1) { 3122 break; 3123 } 3124 /* read next digit and reset bitcnt */ 3125 buf = X->dp[digidx--]; 3126 bitcnt = (int)DIGIT_BIT; 3127 } 3128 3129 /* grab the next msb from the exponent */ 3130 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; 3131 buf <<= (mp_digit)1; 3132 3133 /* if the bit is zero and mode == 0 then we ignore it 3134 * These represent the leading zero bits before the first 1 bit 3135 * in the exponent. Technically this opt is not required but it 3136 * does lower the # of trivial squaring/reductions used 3137 */ 3138 if (mode == 0 && y == 0) { 3139 continue; 3140 } 3141 3142 /* if the bit is zero and mode == 1 then we square */ 3143 if (mode == 1 && y == 0) { 3144 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3145 goto LBL_RES; 3146 } 3147 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3148 goto LBL_RES; 3149 } 3150 continue; 3151 } 3152 3153 /* else we add it to the window */ 3154 bitbuf |= (y << (winsize - ++bitcpy)); 3155 mode = 2; 3156 3157 if (bitcpy == winsize) { 3158 /* ok window is filled so square as required and multiply */ 3159 /* square first */ 3160 for (x = 0; x < winsize; x++) { 3161 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3162 goto LBL_RES; 3163 } 3164 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3165 goto LBL_RES; 3166 } 3167 } 3168 3169 /* then multiply */ 3170 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 3171 goto LBL_RES; 3172 } 3173 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3174 goto LBL_RES; 3175 } 3176 3177 /* empty window and reset */ 3178 bitcpy = 0; 3179 bitbuf = 0; 3180 mode = 1; 3181 } 3182 } 3183 3184 /* if bits remain then square/multiply */ 3185 if (mode == 2 && bitcpy > 0) { 3186 /* square then multiply if the bit is set */ 3187 for (x = 0; x < bitcpy; x++) { 3188 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3189 goto LBL_RES; 3190 } 3191 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3192 goto LBL_RES; 3193 } 3194 3195 /* get next bit of the window */ 3196 bitbuf <<= 1; 3197 if ((bitbuf & (1 << winsize)) != 0) { 3198 /* then multiply */ 3199 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 3200 goto LBL_RES; 3201 } 3202 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3203 goto LBL_RES; 3204 } 3205 } 3206 } 3207 } 3208 3209 if (redmode == 0) { 3210 /* fixup result if Montgomery reduction is used 3211 * recall that any value in a Montgomery system is 3212 * actually multiplied by R mod n. So we have 3213 * to reduce one more time to cancel out the factor 3214 * of R. 3215 */ 3216 if ((err = redux(&res, P, mp)) != MP_OKAY) { 3217 goto LBL_RES; 3218 } 3219 } 3220 3221 /* swap res with Y */ 3222 mp_exch (&res, Y); 3223 err = MP_OKAY; 3224 LBL_RES:mp_clear (&res); 3225 LBL_M: 3226 mp_clear(&M[1]); 3227 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 3228 mp_clear (&M[x]); 3229 } 3230 return err; 3231 } 3232 #endif 3233 3234 3235 #ifdef BN_FAST_S_MP_SQR_C 3236 /* the jist of squaring... 3237 * you do like mult except the offset of the tmpx [one that 3238 * starts closer to zero] can't equal the offset of tmpy. 3239 * So basically you set up iy like before then you min it with 3240 * (ty-tx) so that it never happens. You double all those 3241 * you add in the inner loop 3242 3243 After that loop you do the squares and add them in. 3244 */ 3245 3246 static int fast_s_mp_sqr (mp_int * a, mp_int * b) 3247 { 3248 int olduse, res, pa, ix, iz; 3249 mp_digit W[MP_WARRAY], *tmpx; 3250 mp_word W1; 3251 3252 /* grow the destination as required */ 3253 pa = a->used + a->used; 3254 if (b->alloc < pa) { 3255 if ((res = mp_grow (b, pa)) != MP_OKAY) { 3256 return res; 3257 } 3258 } 3259 3260 /* number of output digits to produce */ 3261 W1 = 0; 3262 for (ix = 0; ix < pa; ix++) { 3263 int tx, ty, iy; 3264 mp_word _W; 3265 mp_digit *tmpy; 3266 3267 /* clear counter */ 3268 _W = 0; 3269 3270 /* get offsets into the two bignums */ 3271 ty = MIN(a->used-1, ix); 3272 tx = ix - ty; 3273 3274 /* setup temp aliases */ 3275 tmpx = a->dp + tx; 3276 tmpy = a->dp + ty; 3277 3278 /* this is the number of times the loop will iterrate, essentially 3279 while (tx++ < a->used && ty-- >= 0) { ... } 3280 */ 3281 iy = MIN(a->used-tx, ty+1); 3282 3283 /* now for squaring tx can never equal ty 3284 * we halve the distance since they approach at a rate of 2x 3285 * and we have to round because odd cases need to be executed 3286 */ 3287 iy = MIN(iy, (ty-tx+1)>>1); 3288 3289 /* execute loop */ 3290 for (iz = 0; iz < iy; iz++) { 3291 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 3292 } 3293 3294 /* double the inner product and add carry */ 3295 _W = _W + _W + W1; 3296 3297 /* even columns have the square term in them */ 3298 if ((ix&1) == 0) { 3299 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); 3300 } 3301 3302 /* store it */ 3303 W[ix] = (mp_digit)(_W & MP_MASK); 3304 3305 /* make next carry */ 3306 W1 = _W >> ((mp_word)DIGIT_BIT); 3307 } 3308 3309 /* setup dest */ 3310 olduse = b->used; 3311 b->used = a->used+a->used; 3312 3313 { 3314 mp_digit *tmpb; 3315 tmpb = b->dp; 3316 for (ix = 0; ix < pa; ix++) { 3317 *tmpb++ = W[ix] & MP_MASK; 3318 } 3319 3320 /* clear unused digits [that existed in the old copy of c] */ 3321 for (; ix < olduse; ix++) { 3322 *tmpb++ = 0; 3323 } 3324 } 3325 mp_clamp (b); 3326 return MP_OKAY; 3327 } 3328 #endif 3329 3330 3331 #ifdef BN_MP_MUL_D_C 3332 /* multiply by a digit */ 3333 static int 3334 mp_mul_d (mp_int * a, mp_digit b, mp_int * c) 3335 { 3336 mp_digit u, *tmpa, *tmpc; 3337 mp_word r; 3338 int ix, res, olduse; 3339 3340 /* make sure c is big enough to hold a*b */ 3341 if (c->alloc < a->used + 1) { 3342 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { 3343 return res; 3344 } 3345 } 3346 3347 /* get the original destinations used count */ 3348 olduse = c->used; 3349 3350 /* set the sign */ 3351 c->sign = a->sign; 3352 3353 /* alias for a->dp [source] */ 3354 tmpa = a->dp; 3355 3356 /* alias for c->dp [dest] */ 3357 tmpc = c->dp; 3358 3359 /* zero carry */ 3360 u = 0; 3361 3362 /* compute columns */ 3363 for (ix = 0; ix < a->used; ix++) { 3364 /* compute product and carry sum for this term */ 3365 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); 3366 3367 /* mask off higher bits to get a single digit */ 3368 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); 3369 3370 /* send carry into next iteration */ 3371 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 3372 } 3373 3374 /* store final carry [if any] and increment ix offset */ 3375 *tmpc++ = u; 3376 ++ix; 3377 3378 /* now zero digits above the top */ 3379 while (ix++ < olduse) { 3380 *tmpc++ = 0; 3381 } 3382 3383 /* set used count */ 3384 c->used = a->used + 1; 3385 mp_clamp(c); 3386 3387 return MP_OKAY; 3388 } 3389 #endif 3390