xref: /freebsd/contrib/wpa/src/tls/libtommath.c (revision 2b15cb3d0922bd70ea592f0da9b4a5b167f4d53f)
1 /*
2  * Minimal code for RSA support from LibTomMath 0.41
3  * http://libtom.org/
4  * http://libtom.org/files/ltm-0.41.tar.bz2
5  * This library was released in public domain by Tom St Denis.
6  *
7  * The combination in this file may not use all of the optimized algorithms
8  * from LibTomMath and may be considerable slower than the LibTomMath with its
9  * default settings. The main purpose of having this version here is to make it
10  * easier to build bignum.c wrapper without having to install and build an
11  * external library.
12  *
13  * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14  * libtommath.c file instead of using the external LibTomMath library.
15  */
16 
17 #ifndef CHAR_BIT
18 #define CHAR_BIT 8
19 #endif
20 
21 #define BN_MP_INVMOD_C
22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23 			   * require BN_MP_EXPTMOD_FAST_C instead */
24 #define BN_S_MP_MUL_DIGS_C
25 #define BN_MP_INVMOD_SLOW_C
26 #define BN_S_MP_SQR_C
27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28 				 * would require other than mp_reduce */
29 
30 #ifdef LTM_FAST
31 
32 /* Use faster div at the cost of about 1 kB */
33 #define BN_MP_MUL_D_C
34 
35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36 #define BN_MP_EXPTMOD_FAST_C
37 #define BN_MP_MONTGOMERY_SETUP_C
38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C
39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
40 #define BN_MP_MUL_2_C
41 
42 /* Include faster sqr at the cost of about 0.5 kB in code */
43 #define BN_FAST_S_MP_SQR_C
44 
45 #else /* LTM_FAST */
46 
47 #define BN_MP_DIV_SMALL
48 #define BN_MP_INIT_MULTI_C
49 #define BN_MP_CLEAR_MULTI_C
50 #define BN_MP_ABS_C
51 #endif /* LTM_FAST */
52 
53 /* Current uses do not require support for negative exponent in exptmod, so we
54  * can save about 1.5 kB in leaving out invmod. */
55 #define LTM_NO_NEG_EXP
56 
57 /* from tommath.h */
58 
59 #ifndef MIN
60    #define MIN(x,y) ((x)<(y)?(x):(y))
61 #endif
62 
63 #ifndef MAX
64    #define MAX(x,y) ((x)>(y)?(x):(y))
65 #endif
66 
67 #define  OPT_CAST(x)
68 
69 #ifdef __x86_64__
70 typedef unsigned long mp_digit;
71 typedef unsigned long mp_word __attribute__((mode(TI)));
72 
73 #define DIGIT_BIT 60
74 #define MP_64BIT
75 #else
76 typedef unsigned long mp_digit;
77 typedef u64 mp_word;
78 
79 #define DIGIT_BIT          28
80 #define MP_28BIT
81 #endif
82 
83 
84 #define XMALLOC  os_malloc
85 #define XFREE    os_free
86 #define XREALLOC os_realloc
87 
88 
89 #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
90 
91 #define MP_LT        -1   /* less than */
92 #define MP_EQ         0   /* equal to */
93 #define MP_GT         1   /* greater than */
94 
95 #define MP_ZPOS       0   /* positive integer */
96 #define MP_NEG        1   /* negative */
97 
98 #define MP_OKAY       0   /* ok result */
99 #define MP_MEM        -2  /* out of mem */
100 #define MP_VAL        -3  /* invalid input */
101 
102 #define MP_YES        1   /* yes response */
103 #define MP_NO         0   /* no response */
104 
105 typedef int           mp_err;
106 
107 /* define this to use lower memory usage routines (exptmods mostly) */
108 #define MP_LOW_MEM
109 
110 /* default precision */
111 #ifndef MP_PREC
112    #ifndef MP_LOW_MEM
113       #define MP_PREC                 32     /* default digits of precision */
114    #else
115       #define MP_PREC                 8      /* default digits of precision */
116    #endif
117 #endif
118 
119 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
120 #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
121 
122 /* the infamous mp_int structure */
123 typedef struct  {
124     int used, alloc, sign;
125     mp_digit *dp;
126 } mp_int;
127 
128 
129 /* ---> Basic Manipulations <--- */
130 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
131 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
132 #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
133 
134 
135 /* prototypes for copied functions */
136 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
137 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
138 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
139 static int s_mp_sqr(mp_int * a, mp_int * b);
140 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
141 
142 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
143 
144 #ifdef BN_MP_INIT_MULTI_C
145 static int mp_init_multi(mp_int *mp, ...);
146 #endif
147 #ifdef BN_MP_CLEAR_MULTI_C
148 static void mp_clear_multi(mp_int *mp, ...);
149 #endif
150 static int mp_lshd(mp_int * a, int b);
151 static void mp_set(mp_int * a, mp_digit b);
152 static void mp_clamp(mp_int * a);
153 static void mp_exch(mp_int * a, mp_int * b);
154 static void mp_rshd(mp_int * a, int b);
155 static void mp_zero(mp_int * a);
156 static int mp_mod_2d(mp_int * a, int b, mp_int * c);
157 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
158 static int mp_init_copy(mp_int * a, mp_int * b);
159 static int mp_mul_2d(mp_int * a, int b, mp_int * c);
160 #ifndef LTM_NO_NEG_EXP
161 static int mp_div_2(mp_int * a, mp_int * b);
162 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
163 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
164 #endif /* LTM_NO_NEG_EXP */
165 static int mp_copy(mp_int * a, mp_int * b);
166 static int mp_count_bits(mp_int * a);
167 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
168 static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
169 static int mp_grow(mp_int * a, int size);
170 static int mp_cmp_mag(mp_int * a, mp_int * b);
171 #ifdef BN_MP_ABS_C
172 static int mp_abs(mp_int * a, mp_int * b);
173 #endif
174 static int mp_sqr(mp_int * a, mp_int * b);
175 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
176 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
177 static int mp_2expt(mp_int * a, int b);
178 static int mp_reduce_setup(mp_int * a, mp_int * b);
179 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
180 static int mp_init_size(mp_int * a, int size);
181 #ifdef BN_MP_EXPTMOD_FAST_C
182 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
183 #endif /* BN_MP_EXPTMOD_FAST_C */
184 #ifdef BN_FAST_S_MP_SQR_C
185 static int fast_s_mp_sqr (mp_int * a, mp_int * b);
186 #endif /* BN_FAST_S_MP_SQR_C */
187 #ifdef BN_MP_MUL_D_C
188 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
189 #endif /* BN_MP_MUL_D_C */
190 
191 
192 
193 /* functions from bn_<func name>.c */
194 
195 
196 /* reverse an array, used for radix code */
197 static void bn_reverse (unsigned char *s, int len)
198 {
199   int     ix, iy;
200   unsigned char t;
201 
202   ix = 0;
203   iy = len - 1;
204   while (ix < iy) {
205     t     = s[ix];
206     s[ix] = s[iy];
207     s[iy] = t;
208     ++ix;
209     --iy;
210   }
211 }
212 
213 
214 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
215 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
216 {
217   mp_int *x;
218   int     olduse, res, min, max;
219 
220   /* find sizes, we let |a| <= |b| which means we have to sort
221    * them.  "x" will point to the input with the most digits
222    */
223   if (a->used > b->used) {
224     min = b->used;
225     max = a->used;
226     x = a;
227   } else {
228     min = a->used;
229     max = b->used;
230     x = b;
231   }
232 
233   /* init result */
234   if (c->alloc < max + 1) {
235     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
236       return res;
237     }
238   }
239 
240   /* get old used digit count and set new one */
241   olduse = c->used;
242   c->used = max + 1;
243 
244   {
245     register mp_digit u, *tmpa, *tmpb, *tmpc;
246     register int i;
247 
248     /* alias for digit pointers */
249 
250     /* first input */
251     tmpa = a->dp;
252 
253     /* second input */
254     tmpb = b->dp;
255 
256     /* destination */
257     tmpc = c->dp;
258 
259     /* zero the carry */
260     u = 0;
261     for (i = 0; i < min; i++) {
262       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
263       *tmpc = *tmpa++ + *tmpb++ + u;
264 
265       /* U = carry bit of T[i] */
266       u = *tmpc >> ((mp_digit)DIGIT_BIT);
267 
268       /* take away carry bit from T[i] */
269       *tmpc++ &= MP_MASK;
270     }
271 
272     /* now copy higher words if any, that is in A+B
273      * if A or B has more digits add those in
274      */
275     if (min != max) {
276       for (; i < max; i++) {
277         /* T[i] = X[i] + U */
278         *tmpc = x->dp[i] + u;
279 
280         /* U = carry bit of T[i] */
281         u = *tmpc >> ((mp_digit)DIGIT_BIT);
282 
283         /* take away carry bit from T[i] */
284         *tmpc++ &= MP_MASK;
285       }
286     }
287 
288     /* add carry */
289     *tmpc++ = u;
290 
291     /* clear digits above oldused */
292     for (i = c->used; i < olduse; i++) {
293       *tmpc++ = 0;
294     }
295   }
296 
297   mp_clamp (c);
298   return MP_OKAY;
299 }
300 
301 
302 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
303 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
304 {
305   int     olduse, res, min, max;
306 
307   /* find sizes */
308   min = b->used;
309   max = a->used;
310 
311   /* init result */
312   if (c->alloc < max) {
313     if ((res = mp_grow (c, max)) != MP_OKAY) {
314       return res;
315     }
316   }
317   olduse = c->used;
318   c->used = max;
319 
320   {
321     register mp_digit u, *tmpa, *tmpb, *tmpc;
322     register int i;
323 
324     /* alias for digit pointers */
325     tmpa = a->dp;
326     tmpb = b->dp;
327     tmpc = c->dp;
328 
329     /* set carry to zero */
330     u = 0;
331     for (i = 0; i < min; i++) {
332       /* T[i] = A[i] - B[i] - U */
333       *tmpc = *tmpa++ - *tmpb++ - u;
334 
335       /* U = carry bit of T[i]
336        * Note this saves performing an AND operation since
337        * if a carry does occur it will propagate all the way to the
338        * MSB.  As a result a single shift is enough to get the carry
339        */
340       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
341 
342       /* Clear carry from T[i] */
343       *tmpc++ &= MP_MASK;
344     }
345 
346     /* now copy higher words if any, e.g. if A has more digits than B  */
347     for (; i < max; i++) {
348       /* T[i] = A[i] - U */
349       *tmpc = *tmpa++ - u;
350 
351       /* U = carry bit of T[i] */
352       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
353 
354       /* Clear carry from T[i] */
355       *tmpc++ &= MP_MASK;
356     }
357 
358     /* clear digits above used (since we may not have grown result above) */
359     for (i = c->used; i < olduse; i++) {
360       *tmpc++ = 0;
361     }
362   }
363 
364   mp_clamp (c);
365   return MP_OKAY;
366 }
367 
368 
369 /* init a new mp_int */
370 static int mp_init (mp_int * a)
371 {
372   int i;
373 
374   /* allocate memory required and clear it */
375   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
376   if (a->dp == NULL) {
377     return MP_MEM;
378   }
379 
380   /* set the digits to zero */
381   for (i = 0; i < MP_PREC; i++) {
382       a->dp[i] = 0;
383   }
384 
385   /* set the used to zero, allocated digits to the default precision
386    * and sign to positive */
387   a->used  = 0;
388   a->alloc = MP_PREC;
389   a->sign  = MP_ZPOS;
390 
391   return MP_OKAY;
392 }
393 
394 
395 /* clear one (frees)  */
396 static void mp_clear (mp_int * a)
397 {
398   int i;
399 
400   /* only do anything if a hasn't been freed previously */
401   if (a->dp != NULL) {
402     /* first zero the digits */
403     for (i = 0; i < a->used; i++) {
404         a->dp[i] = 0;
405     }
406 
407     /* free ram */
408     XFREE(a->dp);
409 
410     /* reset members to make debugging easier */
411     a->dp    = NULL;
412     a->alloc = a->used = 0;
413     a->sign  = MP_ZPOS;
414   }
415 }
416 
417 
418 /* high level addition (handles signs) */
419 static int mp_add (mp_int * a, mp_int * b, mp_int * c)
420 {
421   int     sa, sb, res;
422 
423   /* get sign of both inputs */
424   sa = a->sign;
425   sb = b->sign;
426 
427   /* handle two cases, not four */
428   if (sa == sb) {
429     /* both positive or both negative */
430     /* add their magnitudes, copy the sign */
431     c->sign = sa;
432     res = s_mp_add (a, b, c);
433   } else {
434     /* one positive, the other negative */
435     /* subtract the one with the greater magnitude from */
436     /* the one of the lesser magnitude.  The result gets */
437     /* the sign of the one with the greater magnitude. */
438     if (mp_cmp_mag (a, b) == MP_LT) {
439       c->sign = sb;
440       res = s_mp_sub (b, a, c);
441     } else {
442       c->sign = sa;
443       res = s_mp_sub (a, b, c);
444     }
445   }
446   return res;
447 }
448 
449 
450 /* high level subtraction (handles signs) */
451 static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
452 {
453   int     sa, sb, res;
454 
455   sa = a->sign;
456   sb = b->sign;
457 
458   if (sa != sb) {
459     /* subtract a negative from a positive, OR */
460     /* subtract a positive from a negative. */
461     /* In either case, ADD their magnitudes, */
462     /* and use the sign of the first number. */
463     c->sign = sa;
464     res = s_mp_add (a, b, c);
465   } else {
466     /* subtract a positive from a positive, OR */
467     /* subtract a negative from a negative. */
468     /* First, take the difference between their */
469     /* magnitudes, then... */
470     if (mp_cmp_mag (a, b) != MP_LT) {
471       /* Copy the sign from the first */
472       c->sign = sa;
473       /* The first has a larger or equal magnitude */
474       res = s_mp_sub (a, b, c);
475     } else {
476       /* The result has the *opposite* sign from */
477       /* the first number. */
478       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
479       /* The second has a larger magnitude */
480       res = s_mp_sub (b, a, c);
481     }
482   }
483   return res;
484 }
485 
486 
487 /* high level multiplication (handles sign) */
488 static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
489 {
490   int     res, neg;
491   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
492 
493   /* use Toom-Cook? */
494 #ifdef BN_MP_TOOM_MUL_C
495   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
496     res = mp_toom_mul(a, b, c);
497   } else
498 #endif
499 #ifdef BN_MP_KARATSUBA_MUL_C
500   /* use Karatsuba? */
501   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
502     res = mp_karatsuba_mul (a, b, c);
503   } else
504 #endif
505   {
506     /* can we use the fast multiplier?
507      *
508      * The fast multiplier can be used if the output will
509      * have less than MP_WARRAY digits and the number of
510      * digits won't affect carry propagation
511      */
512 #ifdef BN_FAST_S_MP_MUL_DIGS_C
513     int     digs = a->used + b->used + 1;
514 
515     if ((digs < MP_WARRAY) &&
516         MIN(a->used, b->used) <=
517         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
518       res = fast_s_mp_mul_digs (a, b, c, digs);
519     } else
520 #endif
521 #ifdef BN_S_MP_MUL_DIGS_C
522       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
523 #else
524 #error mp_mul could fail
525       res = MP_VAL;
526 #endif
527 
528   }
529   c->sign = (c->used > 0) ? neg : MP_ZPOS;
530   return res;
531 }
532 
533 
534 /* d = a * b (mod c) */
535 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
536 {
537   int     res;
538   mp_int  t;
539 
540   if ((res = mp_init (&t)) != MP_OKAY) {
541     return res;
542   }
543 
544   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
545     mp_clear (&t);
546     return res;
547   }
548   res = mp_mod (&t, c, d);
549   mp_clear (&t);
550   return res;
551 }
552 
553 
554 /* c = a mod b, 0 <= c < b */
555 static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
556 {
557   mp_int  t;
558   int     res;
559 
560   if ((res = mp_init (&t)) != MP_OKAY) {
561     return res;
562   }
563 
564   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
565     mp_clear (&t);
566     return res;
567   }
568 
569   if (t.sign != b->sign) {
570     res = mp_add (b, &t, c);
571   } else {
572     res = MP_OKAY;
573     mp_exch (&t, c);
574   }
575 
576   mp_clear (&t);
577   return res;
578 }
579 
580 
581 /* this is a shell function that calls either the normal or Montgomery
582  * exptmod functions.  Originally the call to the montgomery code was
583  * embedded in the normal function but that wasted a lot of stack space
584  * for nothing (since 99% of the time the Montgomery code would be called)
585  */
586 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
587 {
588   int dr;
589 
590   /* modulus P must be positive */
591   if (P->sign == MP_NEG) {
592      return MP_VAL;
593   }
594 
595   /* if exponent X is negative we have to recurse */
596   if (X->sign == MP_NEG) {
597 #ifdef LTM_NO_NEG_EXP
598         return MP_VAL;
599 #else /* LTM_NO_NEG_EXP */
600 #ifdef BN_MP_INVMOD_C
601      mp_int tmpG, tmpX;
602      int err;
603 
604      /* first compute 1/G mod P */
605      if ((err = mp_init(&tmpG)) != MP_OKAY) {
606         return err;
607      }
608      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
609         mp_clear(&tmpG);
610         return err;
611      }
612 
613      /* now get |X| */
614      if ((err = mp_init(&tmpX)) != MP_OKAY) {
615         mp_clear(&tmpG);
616         return err;
617      }
618      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
619         mp_clear_multi(&tmpG, &tmpX, NULL);
620         return err;
621      }
622 
623      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
624      err = mp_exptmod(&tmpG, &tmpX, P, Y);
625      mp_clear_multi(&tmpG, &tmpX, NULL);
626      return err;
627 #else
628 #error mp_exptmod would always fail
629      /* no invmod */
630      return MP_VAL;
631 #endif
632 #endif /* LTM_NO_NEG_EXP */
633   }
634 
635 /* modified diminished radix reduction */
636 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
637   if (mp_reduce_is_2k_l(P) == MP_YES) {
638      return s_mp_exptmod(G, X, P, Y, 1);
639   }
640 #endif
641 
642 #ifdef BN_MP_DR_IS_MODULUS_C
643   /* is it a DR modulus? */
644   dr = mp_dr_is_modulus(P);
645 #else
646   /* default to no */
647   dr = 0;
648 #endif
649 
650 #ifdef BN_MP_REDUCE_IS_2K_C
651   /* if not, is it a unrestricted DR modulus? */
652   if (dr == 0) {
653      dr = mp_reduce_is_2k(P) << 1;
654   }
655 #endif
656 
657   /* if the modulus is odd or dr != 0 use the montgomery method */
658 #ifdef BN_MP_EXPTMOD_FAST_C
659   if (mp_isodd (P) == 1 || dr !=  0) {
660     return mp_exptmod_fast (G, X, P, Y, dr);
661   } else {
662 #endif
663 #ifdef BN_S_MP_EXPTMOD_C
664     /* otherwise use the generic Barrett reduction technique */
665     return s_mp_exptmod (G, X, P, Y, 0);
666 #else
667 #error mp_exptmod could fail
668     /* no exptmod for evens */
669     return MP_VAL;
670 #endif
671 #ifdef BN_MP_EXPTMOD_FAST_C
672   }
673 #endif
674 }
675 
676 
677 /* compare two ints (signed)*/
678 static int mp_cmp (mp_int * a, mp_int * b)
679 {
680   /* compare based on sign */
681   if (a->sign != b->sign) {
682      if (a->sign == MP_NEG) {
683         return MP_LT;
684      } else {
685         return MP_GT;
686      }
687   }
688 
689   /* compare digits */
690   if (a->sign == MP_NEG) {
691      /* if negative compare opposite direction */
692      return mp_cmp_mag(b, a);
693   } else {
694      return mp_cmp_mag(a, b);
695   }
696 }
697 
698 
699 /* compare a digit */
700 static int mp_cmp_d(mp_int * a, mp_digit b)
701 {
702   /* compare based on sign */
703   if (a->sign == MP_NEG) {
704     return MP_LT;
705   }
706 
707   /* compare based on magnitude */
708   if (a->used > 1) {
709     return MP_GT;
710   }
711 
712   /* compare the only digit of a to b */
713   if (a->dp[0] > b) {
714     return MP_GT;
715   } else if (a->dp[0] < b) {
716     return MP_LT;
717   } else {
718     return MP_EQ;
719   }
720 }
721 
722 
723 #ifndef LTM_NO_NEG_EXP
724 /* hac 14.61, pp608 */
725 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
726 {
727   /* b cannot be negative */
728   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
729     return MP_VAL;
730   }
731 
732 #ifdef BN_FAST_MP_INVMOD_C
733   /* if the modulus is odd we can use a faster routine instead */
734   if (mp_isodd (b) == 1) {
735     return fast_mp_invmod (a, b, c);
736   }
737 #endif
738 
739 #ifdef BN_MP_INVMOD_SLOW_C
740   return mp_invmod_slow(a, b, c);
741 #endif
742 
743 #ifndef BN_FAST_MP_INVMOD_C
744 #ifndef BN_MP_INVMOD_SLOW_C
745 #error mp_invmod would always fail
746 #endif
747 #endif
748   return MP_VAL;
749 }
750 #endif /* LTM_NO_NEG_EXP */
751 
752 
753 /* get the size for an unsigned equivalent */
754 static int mp_unsigned_bin_size (mp_int * a)
755 {
756   int     size = mp_count_bits (a);
757   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
758 }
759 
760 
761 #ifndef LTM_NO_NEG_EXP
762 /* hac 14.61, pp608 */
763 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
764 {
765   mp_int  x, y, u, v, A, B, C, D;
766   int     res;
767 
768   /* b cannot be negative */
769   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
770     return MP_VAL;
771   }
772 
773   /* init temps */
774   if ((res = mp_init_multi(&x, &y, &u, &v,
775                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
776      return res;
777   }
778 
779   /* x = a, y = b */
780   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
781       goto LBL_ERR;
782   }
783   if ((res = mp_copy (b, &y)) != MP_OKAY) {
784     goto LBL_ERR;
785   }
786 
787   /* 2. [modified] if x,y are both even then return an error! */
788   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
789     res = MP_VAL;
790     goto LBL_ERR;
791   }
792 
793   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
794   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
795     goto LBL_ERR;
796   }
797   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
798     goto LBL_ERR;
799   }
800   mp_set (&A, 1);
801   mp_set (&D, 1);
802 
803 top:
804   /* 4.  while u is even do */
805   while (mp_iseven (&u) == 1) {
806     /* 4.1 u = u/2 */
807     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
808       goto LBL_ERR;
809     }
810     /* 4.2 if A or B is odd then */
811     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
812       /* A = (A+y)/2, B = (B-x)/2 */
813       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
814          goto LBL_ERR;
815       }
816       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
817          goto LBL_ERR;
818       }
819     }
820     /* A = A/2, B = B/2 */
821     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
822       goto LBL_ERR;
823     }
824     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
825       goto LBL_ERR;
826     }
827   }
828 
829   /* 5.  while v is even do */
830   while (mp_iseven (&v) == 1) {
831     /* 5.1 v = v/2 */
832     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
833       goto LBL_ERR;
834     }
835     /* 5.2 if C or D is odd then */
836     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
837       /* C = (C+y)/2, D = (D-x)/2 */
838       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
839          goto LBL_ERR;
840       }
841       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
842          goto LBL_ERR;
843       }
844     }
845     /* C = C/2, D = D/2 */
846     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
847       goto LBL_ERR;
848     }
849     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
850       goto LBL_ERR;
851     }
852   }
853 
854   /* 6.  if u >= v then */
855   if (mp_cmp (&u, &v) != MP_LT) {
856     /* u = u - v, A = A - C, B = B - D */
857     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
858       goto LBL_ERR;
859     }
860 
861     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
862       goto LBL_ERR;
863     }
864 
865     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
866       goto LBL_ERR;
867     }
868   } else {
869     /* v - v - u, C = C - A, D = D - B */
870     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
871       goto LBL_ERR;
872     }
873 
874     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
875       goto LBL_ERR;
876     }
877 
878     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
879       goto LBL_ERR;
880     }
881   }
882 
883   /* if not zero goto step 4 */
884   if (mp_iszero (&u) == 0)
885     goto top;
886 
887   /* now a = C, b = D, gcd == g*v */
888 
889   /* if v != 1 then there is no inverse */
890   if (mp_cmp_d (&v, 1) != MP_EQ) {
891     res = MP_VAL;
892     goto LBL_ERR;
893   }
894 
895   /* if its too low */
896   while (mp_cmp_d(&C, 0) == MP_LT) {
897       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
898          goto LBL_ERR;
899       }
900   }
901 
902   /* too big */
903   while (mp_cmp_mag(&C, b) != MP_LT) {
904       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
905          goto LBL_ERR;
906       }
907   }
908 
909   /* C is now the inverse */
910   mp_exch (&C, c);
911   res = MP_OKAY;
912 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
913   return res;
914 }
915 #endif /* LTM_NO_NEG_EXP */
916 
917 
918 /* compare maginitude of two ints (unsigned) */
919 static int mp_cmp_mag (mp_int * a, mp_int * b)
920 {
921   int     n;
922   mp_digit *tmpa, *tmpb;
923 
924   /* compare based on # of non-zero digits */
925   if (a->used > b->used) {
926     return MP_GT;
927   }
928 
929   if (a->used < b->used) {
930     return MP_LT;
931   }
932 
933   /* alias for a */
934   tmpa = a->dp + (a->used - 1);
935 
936   /* alias for b */
937   tmpb = b->dp + (a->used - 1);
938 
939   /* compare based on digits  */
940   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
941     if (*tmpa > *tmpb) {
942       return MP_GT;
943     }
944 
945     if (*tmpa < *tmpb) {
946       return MP_LT;
947     }
948   }
949   return MP_EQ;
950 }
951 
952 
953 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
954 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
955 {
956   int     res;
957 
958   /* make sure there are at least two digits */
959   if (a->alloc < 2) {
960      if ((res = mp_grow(a, 2)) != MP_OKAY) {
961         return res;
962      }
963   }
964 
965   /* zero the int */
966   mp_zero (a);
967 
968   /* read the bytes in */
969   while (c-- > 0) {
970     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
971       return res;
972     }
973 
974 #ifndef MP_8BIT
975       a->dp[0] |= *b++;
976       a->used += 1;
977 #else
978       a->dp[0] = (*b & MP_MASK);
979       a->dp[1] |= ((*b++ >> 7U) & 1);
980       a->used += 2;
981 #endif
982   }
983   mp_clamp (a);
984   return MP_OKAY;
985 }
986 
987 
988 /* store in unsigned [big endian] format */
989 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
990 {
991   int     x, res;
992   mp_int  t;
993 
994   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
995     return res;
996   }
997 
998   x = 0;
999   while (mp_iszero (&t) == 0) {
1000 #ifndef MP_8BIT
1001       b[x++] = (unsigned char) (t.dp[0] & 255);
1002 #else
1003       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1004 #endif
1005     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1006       mp_clear (&t);
1007       return res;
1008     }
1009   }
1010   bn_reverse (b, x);
1011   mp_clear (&t);
1012   return MP_OKAY;
1013 }
1014 
1015 
1016 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1017 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1018 {
1019   mp_digit D, r, rr;
1020   int     x, res;
1021   mp_int  t;
1022 
1023 
1024   /* if the shift count is <= 0 then we do no work */
1025   if (b <= 0) {
1026     res = mp_copy (a, c);
1027     if (d != NULL) {
1028       mp_zero (d);
1029     }
1030     return res;
1031   }
1032 
1033   if ((res = mp_init (&t)) != MP_OKAY) {
1034     return res;
1035   }
1036 
1037   /* get the remainder */
1038   if (d != NULL) {
1039     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1040       mp_clear (&t);
1041       return res;
1042     }
1043   }
1044 
1045   /* copy */
1046   if ((res = mp_copy (a, c)) != MP_OKAY) {
1047     mp_clear (&t);
1048     return res;
1049   }
1050 
1051   /* shift by as many digits in the bit count */
1052   if (b >= (int)DIGIT_BIT) {
1053     mp_rshd (c, b / DIGIT_BIT);
1054   }
1055 
1056   /* shift any bit count < DIGIT_BIT */
1057   D = (mp_digit) (b % DIGIT_BIT);
1058   if (D != 0) {
1059     register mp_digit *tmpc, mask, shift;
1060 
1061     /* mask */
1062     mask = (((mp_digit)1) << D) - 1;
1063 
1064     /* shift for lsb */
1065     shift = DIGIT_BIT - D;
1066 
1067     /* alias */
1068     tmpc = c->dp + (c->used - 1);
1069 
1070     /* carry */
1071     r = 0;
1072     for (x = c->used - 1; x >= 0; x--) {
1073       /* get the lower  bits of this word in a temp */
1074       rr = *tmpc & mask;
1075 
1076       /* shift the current word and mix in the carry bits from the previous word */
1077       *tmpc = (*tmpc >> D) | (r << shift);
1078       --tmpc;
1079 
1080       /* set the carry to the carry bits of the current word found above */
1081       r = rr;
1082     }
1083   }
1084   mp_clamp (c);
1085   if (d != NULL) {
1086     mp_exch (&t, d);
1087   }
1088   mp_clear (&t);
1089   return MP_OKAY;
1090 }
1091 
1092 
1093 static int mp_init_copy (mp_int * a, mp_int * b)
1094 {
1095   int     res;
1096 
1097   if ((res = mp_init (a)) != MP_OKAY) {
1098     return res;
1099   }
1100   return mp_copy (b, a);
1101 }
1102 
1103 
1104 /* set to zero */
1105 static void mp_zero (mp_int * a)
1106 {
1107   int       n;
1108   mp_digit *tmp;
1109 
1110   a->sign = MP_ZPOS;
1111   a->used = 0;
1112 
1113   tmp = a->dp;
1114   for (n = 0; n < a->alloc; n++) {
1115      *tmp++ = 0;
1116   }
1117 }
1118 
1119 
1120 /* copy, b = a */
1121 static int mp_copy (mp_int * a, mp_int * b)
1122 {
1123   int     res, n;
1124 
1125   /* if dst == src do nothing */
1126   if (a == b) {
1127     return MP_OKAY;
1128   }
1129 
1130   /* grow dest */
1131   if (b->alloc < a->used) {
1132      if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1133         return res;
1134      }
1135   }
1136 
1137   /* zero b and copy the parameters over */
1138   {
1139     register mp_digit *tmpa, *tmpb;
1140 
1141     /* pointer aliases */
1142 
1143     /* source */
1144     tmpa = a->dp;
1145 
1146     /* destination */
1147     tmpb = b->dp;
1148 
1149     /* copy all the digits */
1150     for (n = 0; n < a->used; n++) {
1151       *tmpb++ = *tmpa++;
1152     }
1153 
1154     /* clear high digits */
1155     for (; n < b->used; n++) {
1156       *tmpb++ = 0;
1157     }
1158   }
1159 
1160   /* copy used count and sign */
1161   b->used = a->used;
1162   b->sign = a->sign;
1163   return MP_OKAY;
1164 }
1165 
1166 
1167 /* shift right a certain amount of digits */
1168 static void mp_rshd (mp_int * a, int b)
1169 {
1170   int     x;
1171 
1172   /* if b <= 0 then ignore it */
1173   if (b <= 0) {
1174     return;
1175   }
1176 
1177   /* if b > used then simply zero it and return */
1178   if (a->used <= b) {
1179     mp_zero (a);
1180     return;
1181   }
1182 
1183   {
1184     register mp_digit *bottom, *top;
1185 
1186     /* shift the digits down */
1187 
1188     /* bottom */
1189     bottom = a->dp;
1190 
1191     /* top [offset into digits] */
1192     top = a->dp + b;
1193 
1194     /* this is implemented as a sliding window where
1195      * the window is b-digits long and digits from
1196      * the top of the window are copied to the bottom
1197      *
1198      * e.g.
1199 
1200      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
1201                  /\                   |      ---->
1202                   \-------------------/      ---->
1203      */
1204     for (x = 0; x < (a->used - b); x++) {
1205       *bottom++ = *top++;
1206     }
1207 
1208     /* zero the top digits */
1209     for (; x < a->used; x++) {
1210       *bottom++ = 0;
1211     }
1212   }
1213 
1214   /* remove excess digits */
1215   a->used -= b;
1216 }
1217 
1218 
1219 /* swap the elements of two integers, for cases where you can't simply swap the
1220  * mp_int pointers around
1221  */
1222 static void mp_exch (mp_int * a, mp_int * b)
1223 {
1224   mp_int  t;
1225 
1226   t  = *a;
1227   *a = *b;
1228   *b = t;
1229 }
1230 
1231 
1232 /* trim unused digits
1233  *
1234  * This is used to ensure that leading zero digits are
1235  * trimed and the leading "used" digit will be non-zero
1236  * Typically very fast.  Also fixes the sign if there
1237  * are no more leading digits
1238  */
1239 static void mp_clamp (mp_int * a)
1240 {
1241   /* decrease used while the most significant digit is
1242    * zero.
1243    */
1244   while (a->used > 0 && a->dp[a->used - 1] == 0) {
1245     --(a->used);
1246   }
1247 
1248   /* reset the sign flag if used == 0 */
1249   if (a->used == 0) {
1250     a->sign = MP_ZPOS;
1251   }
1252 }
1253 
1254 
1255 /* grow as required */
1256 static int mp_grow (mp_int * a, int size)
1257 {
1258   int     i;
1259   mp_digit *tmp;
1260 
1261   /* if the alloc size is smaller alloc more ram */
1262   if (a->alloc < size) {
1263     /* ensure there are always at least MP_PREC digits extra on top */
1264     size += (MP_PREC * 2) - (size % MP_PREC);
1265 
1266     /* reallocate the array a->dp
1267      *
1268      * We store the return in a temporary variable
1269      * in case the operation failed we don't want
1270      * to overwrite the dp member of a.
1271      */
1272     tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1273     if (tmp == NULL) {
1274       /* reallocation failed but "a" is still valid [can be freed] */
1275       return MP_MEM;
1276     }
1277 
1278     /* reallocation succeeded so set a->dp */
1279     a->dp = tmp;
1280 
1281     /* zero excess digits */
1282     i        = a->alloc;
1283     a->alloc = size;
1284     for (; i < a->alloc; i++) {
1285       a->dp[i] = 0;
1286     }
1287   }
1288   return MP_OKAY;
1289 }
1290 
1291 
1292 #ifdef BN_MP_ABS_C
1293 /* b = |a|
1294  *
1295  * Simple function copies the input and fixes the sign to positive
1296  */
1297 static int mp_abs (mp_int * a, mp_int * b)
1298 {
1299   int     res;
1300 
1301   /* copy a to b */
1302   if (a != b) {
1303      if ((res = mp_copy (a, b)) != MP_OKAY) {
1304        return res;
1305      }
1306   }
1307 
1308   /* force the sign of b to positive */
1309   b->sign = MP_ZPOS;
1310 
1311   return MP_OKAY;
1312 }
1313 #endif
1314 
1315 
1316 /* set to a digit */
1317 static void mp_set (mp_int * a, mp_digit b)
1318 {
1319   mp_zero (a);
1320   a->dp[0] = b & MP_MASK;
1321   a->used  = (a->dp[0] != 0) ? 1 : 0;
1322 }
1323 
1324 
1325 #ifndef LTM_NO_NEG_EXP
1326 /* b = a/2 */
1327 static int mp_div_2(mp_int * a, mp_int * b)
1328 {
1329   int     x, res, oldused;
1330 
1331   /* copy */
1332   if (b->alloc < a->used) {
1333     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1334       return res;
1335     }
1336   }
1337 
1338   oldused = b->used;
1339   b->used = a->used;
1340   {
1341     register mp_digit r, rr, *tmpa, *tmpb;
1342 
1343     /* source alias */
1344     tmpa = a->dp + b->used - 1;
1345 
1346     /* dest alias */
1347     tmpb = b->dp + b->used - 1;
1348 
1349     /* carry */
1350     r = 0;
1351     for (x = b->used - 1; x >= 0; x--) {
1352       /* get the carry for the next iteration */
1353       rr = *tmpa & 1;
1354 
1355       /* shift the current digit, add in carry and store */
1356       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1357 
1358       /* forward carry to next iteration */
1359       r = rr;
1360     }
1361 
1362     /* zero excess digits */
1363     tmpb = b->dp + b->used;
1364     for (x = b->used; x < oldused; x++) {
1365       *tmpb++ = 0;
1366     }
1367   }
1368   b->sign = a->sign;
1369   mp_clamp (b);
1370   return MP_OKAY;
1371 }
1372 #endif /* LTM_NO_NEG_EXP */
1373 
1374 
1375 /* shift left by a certain bit count */
1376 static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1377 {
1378   mp_digit d;
1379   int      res;
1380 
1381   /* copy */
1382   if (a != c) {
1383      if ((res = mp_copy (a, c)) != MP_OKAY) {
1384        return res;
1385      }
1386   }
1387 
1388   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1389      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1390        return res;
1391      }
1392   }
1393 
1394   /* shift by as many digits in the bit count */
1395   if (b >= (int)DIGIT_BIT) {
1396     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1397       return res;
1398     }
1399   }
1400 
1401   /* shift any bit count < DIGIT_BIT */
1402   d = (mp_digit) (b % DIGIT_BIT);
1403   if (d != 0) {
1404     register mp_digit *tmpc, shift, mask, r, rr;
1405     register int x;
1406 
1407     /* bitmask for carries */
1408     mask = (((mp_digit)1) << d) - 1;
1409 
1410     /* shift for msbs */
1411     shift = DIGIT_BIT - d;
1412 
1413     /* alias */
1414     tmpc = c->dp;
1415 
1416     /* carry */
1417     r    = 0;
1418     for (x = 0; x < c->used; x++) {
1419       /* get the higher bits of the current word */
1420       rr = (*tmpc >> shift) & mask;
1421 
1422       /* shift the current word and OR in the carry */
1423       *tmpc = ((*tmpc << d) | r) & MP_MASK;
1424       ++tmpc;
1425 
1426       /* set the carry to the carry bits of the current word */
1427       r = rr;
1428     }
1429 
1430     /* set final carry */
1431     if (r != 0) {
1432        c->dp[(c->used)++] = r;
1433     }
1434   }
1435   mp_clamp (c);
1436   return MP_OKAY;
1437 }
1438 
1439 
1440 #ifdef BN_MP_INIT_MULTI_C
1441 static int mp_init_multi(mp_int *mp, ...)
1442 {
1443     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
1444     int n = 0;                 /* Number of ok inits */
1445     mp_int* cur_arg = mp;
1446     va_list args;
1447 
1448     va_start(args, mp);        /* init args to next argument from caller */
1449     while (cur_arg != NULL) {
1450         if (mp_init(cur_arg) != MP_OKAY) {
1451             /* Oops - error! Back-track and mp_clear what we already
1452                succeeded in init-ing, then return error.
1453             */
1454             va_list clean_args;
1455 
1456             /* end the current list */
1457             va_end(args);
1458 
1459             /* now start cleaning up */
1460             cur_arg = mp;
1461             va_start(clean_args, mp);
1462             while (n--) {
1463                 mp_clear(cur_arg);
1464                 cur_arg = va_arg(clean_args, mp_int*);
1465             }
1466             va_end(clean_args);
1467             res = MP_MEM;
1468             break;
1469         }
1470         n++;
1471         cur_arg = va_arg(args, mp_int*);
1472     }
1473     va_end(args);
1474     return res;                /* Assumed ok, if error flagged above. */
1475 }
1476 #endif
1477 
1478 
1479 #ifdef BN_MP_CLEAR_MULTI_C
1480 static void mp_clear_multi(mp_int *mp, ...)
1481 {
1482     mp_int* next_mp = mp;
1483     va_list args;
1484     va_start(args, mp);
1485     while (next_mp != NULL) {
1486         mp_clear(next_mp);
1487         next_mp = va_arg(args, mp_int*);
1488     }
1489     va_end(args);
1490 }
1491 #endif
1492 
1493 
1494 /* shift left a certain amount of digits */
1495 static int mp_lshd (mp_int * a, int b)
1496 {
1497   int     x, res;
1498 
1499   /* if its less than zero return */
1500   if (b <= 0) {
1501     return MP_OKAY;
1502   }
1503 
1504   /* grow to fit the new digits */
1505   if (a->alloc < a->used + b) {
1506      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1507        return res;
1508      }
1509   }
1510 
1511   {
1512     register mp_digit *top, *bottom;
1513 
1514     /* increment the used by the shift amount then copy upwards */
1515     a->used += b;
1516 
1517     /* top */
1518     top = a->dp + a->used - 1;
1519 
1520     /* base */
1521     bottom = a->dp + a->used - 1 - b;
1522 
1523     /* much like mp_rshd this is implemented using a sliding window
1524      * except the window goes the otherway around.  Copying from
1525      * the bottom to the top.  see bn_mp_rshd.c for more info.
1526      */
1527     for (x = a->used - 1; x >= b; x--) {
1528       *top-- = *bottom--;
1529     }
1530 
1531     /* zero the lower digits */
1532     top = a->dp;
1533     for (x = 0; x < b; x++) {
1534       *top++ = 0;
1535     }
1536   }
1537   return MP_OKAY;
1538 }
1539 
1540 
1541 /* returns the number of bits in an int */
1542 static int mp_count_bits (mp_int * a)
1543 {
1544   int     r;
1545   mp_digit q;
1546 
1547   /* shortcut */
1548   if (a->used == 0) {
1549     return 0;
1550   }
1551 
1552   /* get number of digits and add that */
1553   r = (a->used - 1) * DIGIT_BIT;
1554 
1555   /* take the last digit and count the bits in it */
1556   q = a->dp[a->used - 1];
1557   while (q > ((mp_digit) 0)) {
1558     ++r;
1559     q >>= ((mp_digit) 1);
1560   }
1561   return r;
1562 }
1563 
1564 
1565 /* calc a value mod 2**b */
1566 static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1567 {
1568   int     x, res;
1569 
1570   /* if b is <= 0 then zero the int */
1571   if (b <= 0) {
1572     mp_zero (c);
1573     return MP_OKAY;
1574   }
1575 
1576   /* if the modulus is larger than the value than return */
1577   if (b >= (int) (a->used * DIGIT_BIT)) {
1578     res = mp_copy (a, c);
1579     return res;
1580   }
1581 
1582   /* copy */
1583   if ((res = mp_copy (a, c)) != MP_OKAY) {
1584     return res;
1585   }
1586 
1587   /* zero digits above the last digit of the modulus */
1588   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1589     c->dp[x] = 0;
1590   }
1591   /* clear the digit that is not completely outside/inside the modulus */
1592   c->dp[b / DIGIT_BIT] &=
1593     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1594   mp_clamp (c);
1595   return MP_OKAY;
1596 }
1597 
1598 
1599 #ifdef BN_MP_DIV_SMALL
1600 
1601 /* slower bit-bang division... also smaller */
1602 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1603 {
1604    mp_int ta, tb, tq, q;
1605    int    res, n, n2;
1606 
1607   /* is divisor zero ? */
1608   if (mp_iszero (b) == 1) {
1609     return MP_VAL;
1610   }
1611 
1612   /* if a < b then q=0, r = a */
1613   if (mp_cmp_mag (a, b) == MP_LT) {
1614     if (d != NULL) {
1615       res = mp_copy (a, d);
1616     } else {
1617       res = MP_OKAY;
1618     }
1619     if (c != NULL) {
1620       mp_zero (c);
1621     }
1622     return res;
1623   }
1624 
1625   /* init our temps */
1626   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1627      return res;
1628   }
1629 
1630 
1631   mp_set(&tq, 1);
1632   n = mp_count_bits(a) - mp_count_bits(b);
1633   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1634       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1635       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1636       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1637       goto LBL_ERR;
1638   }
1639 
1640   while (n-- >= 0) {
1641      if (mp_cmp(&tb, &ta) != MP_GT) {
1642         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1643             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1644            goto LBL_ERR;
1645         }
1646      }
1647      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1648          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1649            goto LBL_ERR;
1650      }
1651   }
1652 
1653   /* now q == quotient and ta == remainder */
1654   n  = a->sign;
1655   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1656   if (c != NULL) {
1657      mp_exch(c, &q);
1658      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1659   }
1660   if (d != NULL) {
1661      mp_exch(d, &ta);
1662      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1663   }
1664 LBL_ERR:
1665    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1666    return res;
1667 }
1668 
1669 #else
1670 
1671 /* integer signed division.
1672  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1673  * HAC pp.598 Algorithm 14.20
1674  *
1675  * Note that the description in HAC is horribly
1676  * incomplete.  For example, it doesn't consider
1677  * the case where digits are removed from 'x' in
1678  * the inner loop.  It also doesn't consider the
1679  * case that y has fewer than three digits, etc..
1680  *
1681  * The overall algorithm is as described as
1682  * 14.20 from HAC but fixed to treat these cases.
1683 */
1684 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1685 {
1686   mp_int  q, x, y, t1, t2;
1687   int     res, n, t, i, norm, neg;
1688 
1689   /* is divisor zero ? */
1690   if (mp_iszero (b) == 1) {
1691     return MP_VAL;
1692   }
1693 
1694   /* if a < b then q=0, r = a */
1695   if (mp_cmp_mag (a, b) == MP_LT) {
1696     if (d != NULL) {
1697       res = mp_copy (a, d);
1698     } else {
1699       res = MP_OKAY;
1700     }
1701     if (c != NULL) {
1702       mp_zero (c);
1703     }
1704     return res;
1705   }
1706 
1707   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1708     return res;
1709   }
1710   q.used = a->used + 2;
1711 
1712   if ((res = mp_init (&t1)) != MP_OKAY) {
1713     goto LBL_Q;
1714   }
1715 
1716   if ((res = mp_init (&t2)) != MP_OKAY) {
1717     goto LBL_T1;
1718   }
1719 
1720   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1721     goto LBL_T2;
1722   }
1723 
1724   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1725     goto LBL_X;
1726   }
1727 
1728   /* fix the sign */
1729   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1730   x.sign = y.sign = MP_ZPOS;
1731 
1732   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1733   norm = mp_count_bits(&y) % DIGIT_BIT;
1734   if (norm < (int)(DIGIT_BIT-1)) {
1735      norm = (DIGIT_BIT-1) - norm;
1736      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1737        goto LBL_Y;
1738      }
1739      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1740        goto LBL_Y;
1741      }
1742   } else {
1743      norm = 0;
1744   }
1745 
1746   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1747   n = x.used - 1;
1748   t = y.used - 1;
1749 
1750   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1751   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1752     goto LBL_Y;
1753   }
1754 
1755   while (mp_cmp (&x, &y) != MP_LT) {
1756     ++(q.dp[n - t]);
1757     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1758       goto LBL_Y;
1759     }
1760   }
1761 
1762   /* reset y by shifting it back down */
1763   mp_rshd (&y, n - t);
1764 
1765   /* step 3. for i from n down to (t + 1) */
1766   for (i = n; i >= (t + 1); i--) {
1767     if (i > x.used) {
1768       continue;
1769     }
1770 
1771     /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1772      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1773     if (x.dp[i] == y.dp[t]) {
1774       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1775     } else {
1776       mp_word tmp;
1777       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1778       tmp |= ((mp_word) x.dp[i - 1]);
1779       tmp /= ((mp_word) y.dp[t]);
1780       if (tmp > (mp_word) MP_MASK)
1781         tmp = MP_MASK;
1782       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1783     }
1784 
1785     /* while (q{i-t-1} * (yt * b + y{t-1})) >
1786              xi * b**2 + xi-1 * b + xi-2
1787 
1788        do q{i-t-1} -= 1;
1789     */
1790     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1791     do {
1792       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1793 
1794       /* find left hand */
1795       mp_zero (&t1);
1796       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1797       t1.dp[1] = y.dp[t];
1798       t1.used = 2;
1799       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1800         goto LBL_Y;
1801       }
1802 
1803       /* find right hand */
1804       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1805       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1806       t2.dp[2] = x.dp[i];
1807       t2.used = 3;
1808     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1809 
1810     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1811     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1812       goto LBL_Y;
1813     }
1814 
1815     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1816       goto LBL_Y;
1817     }
1818 
1819     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1820       goto LBL_Y;
1821     }
1822 
1823     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1824     if (x.sign == MP_NEG) {
1825       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1826         goto LBL_Y;
1827       }
1828       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1829         goto LBL_Y;
1830       }
1831       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1832         goto LBL_Y;
1833       }
1834 
1835       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1836     }
1837   }
1838 
1839   /* now q is the quotient and x is the remainder
1840    * [which we have to normalize]
1841    */
1842 
1843   /* get sign before writing to c */
1844   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1845 
1846   if (c != NULL) {
1847     mp_clamp (&q);
1848     mp_exch (&q, c);
1849     c->sign = neg;
1850   }
1851 
1852   if (d != NULL) {
1853     mp_div_2d (&x, norm, &x, NULL);
1854     mp_exch (&x, d);
1855   }
1856 
1857   res = MP_OKAY;
1858 
1859 LBL_Y:mp_clear (&y);
1860 LBL_X:mp_clear (&x);
1861 LBL_T2:mp_clear (&t2);
1862 LBL_T1:mp_clear (&t1);
1863 LBL_Q:mp_clear (&q);
1864   return res;
1865 }
1866 
1867 #endif
1868 
1869 
1870 #ifdef MP_LOW_MEM
1871    #define TAB_SIZE 32
1872 #else
1873    #define TAB_SIZE 256
1874 #endif
1875 
1876 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1877 {
1878   mp_int  M[TAB_SIZE], res, mu;
1879   mp_digit buf;
1880   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1881   int (*redux)(mp_int*,mp_int*,mp_int*);
1882 
1883   /* find window size */
1884   x = mp_count_bits (X);
1885   if (x <= 7) {
1886     winsize = 2;
1887   } else if (x <= 36) {
1888     winsize = 3;
1889   } else if (x <= 140) {
1890     winsize = 4;
1891   } else if (x <= 450) {
1892     winsize = 5;
1893   } else if (x <= 1303) {
1894     winsize = 6;
1895   } else if (x <= 3529) {
1896     winsize = 7;
1897   } else {
1898     winsize = 8;
1899   }
1900 
1901 #ifdef MP_LOW_MEM
1902     if (winsize > 5) {
1903        winsize = 5;
1904     }
1905 #endif
1906 
1907   /* init M array */
1908   /* init first cell */
1909   if ((err = mp_init(&M[1])) != MP_OKAY) {
1910      return err;
1911   }
1912 
1913   /* now init the second half of the array */
1914   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1915     if ((err = mp_init(&M[x])) != MP_OKAY) {
1916       for (y = 1<<(winsize-1); y < x; y++) {
1917         mp_clear (&M[y]);
1918       }
1919       mp_clear(&M[1]);
1920       return err;
1921     }
1922   }
1923 
1924   /* create mu, used for Barrett reduction */
1925   if ((err = mp_init (&mu)) != MP_OKAY) {
1926     goto LBL_M;
1927   }
1928 
1929   if (redmode == 0) {
1930      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1931         goto LBL_MU;
1932      }
1933      redux = mp_reduce;
1934   } else {
1935      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1936         goto LBL_MU;
1937      }
1938      redux = mp_reduce_2k_l;
1939   }
1940 
1941   /* create M table
1942    *
1943    * The M table contains powers of the base,
1944    * e.g. M[x] = G**x mod P
1945    *
1946    * The first half of the table is not
1947    * computed though accept for M[0] and M[1]
1948    */
1949   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1950     goto LBL_MU;
1951   }
1952 
1953   /* compute the value at M[1<<(winsize-1)] by squaring
1954    * M[1] (winsize-1) times
1955    */
1956   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1957     goto LBL_MU;
1958   }
1959 
1960   for (x = 0; x < (winsize - 1); x++) {
1961     /* square it */
1962     if ((err = mp_sqr (&M[1 << (winsize - 1)],
1963                        &M[1 << (winsize - 1)])) != MP_OKAY) {
1964       goto LBL_MU;
1965     }
1966 
1967     /* reduce modulo P */
1968     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1969       goto LBL_MU;
1970     }
1971   }
1972 
1973   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1974    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1975    */
1976   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1977     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1978       goto LBL_MU;
1979     }
1980     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1981       goto LBL_MU;
1982     }
1983   }
1984 
1985   /* setup result */
1986   if ((err = mp_init (&res)) != MP_OKAY) {
1987     goto LBL_MU;
1988   }
1989   mp_set (&res, 1);
1990 
1991   /* set initial mode and bit cnt */
1992   mode   = 0;
1993   bitcnt = 1;
1994   buf    = 0;
1995   digidx = X->used - 1;
1996   bitcpy = 0;
1997   bitbuf = 0;
1998 
1999   for (;;) {
2000     /* grab next digit as required */
2001     if (--bitcnt == 0) {
2002       /* if digidx == -1 we are out of digits */
2003       if (digidx == -1) {
2004         break;
2005       }
2006       /* read next digit and reset the bitcnt */
2007       buf    = X->dp[digidx--];
2008       bitcnt = (int) DIGIT_BIT;
2009     }
2010 
2011     /* grab the next msb from the exponent */
2012     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2013     buf <<= (mp_digit)1;
2014 
2015     /* if the bit is zero and mode == 0 then we ignore it
2016      * These represent the leading zero bits before the first 1 bit
2017      * in the exponent.  Technically this opt is not required but it
2018      * does lower the # of trivial squaring/reductions used
2019      */
2020     if (mode == 0 && y == 0) {
2021       continue;
2022     }
2023 
2024     /* if the bit is zero and mode == 1 then we square */
2025     if (mode == 1 && y == 0) {
2026       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2027         goto LBL_RES;
2028       }
2029       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2030         goto LBL_RES;
2031       }
2032       continue;
2033     }
2034 
2035     /* else we add it to the window */
2036     bitbuf |= (y << (winsize - ++bitcpy));
2037     mode    = 2;
2038 
2039     if (bitcpy == winsize) {
2040       /* ok window is filled so square as required and multiply  */
2041       /* square first */
2042       for (x = 0; x < winsize; x++) {
2043         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2044           goto LBL_RES;
2045         }
2046         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2047           goto LBL_RES;
2048         }
2049       }
2050 
2051       /* then multiply */
2052       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2053         goto LBL_RES;
2054       }
2055       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2056         goto LBL_RES;
2057       }
2058 
2059       /* empty window and reset */
2060       bitcpy = 0;
2061       bitbuf = 0;
2062       mode   = 1;
2063     }
2064   }
2065 
2066   /* if bits remain then square/multiply */
2067   if (mode == 2 && bitcpy > 0) {
2068     /* square then multiply if the bit is set */
2069     for (x = 0; x < bitcpy; x++) {
2070       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2071         goto LBL_RES;
2072       }
2073       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2074         goto LBL_RES;
2075       }
2076 
2077       bitbuf <<= 1;
2078       if ((bitbuf & (1 << winsize)) != 0) {
2079         /* then multiply */
2080         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2081           goto LBL_RES;
2082         }
2083         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2084           goto LBL_RES;
2085         }
2086       }
2087     }
2088   }
2089 
2090   mp_exch (&res, Y);
2091   err = MP_OKAY;
2092 LBL_RES:mp_clear (&res);
2093 LBL_MU:mp_clear (&mu);
2094 LBL_M:
2095   mp_clear(&M[1]);
2096   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2097     mp_clear (&M[x]);
2098   }
2099   return err;
2100 }
2101 
2102 
2103 /* computes b = a*a */
2104 static int mp_sqr (mp_int * a, mp_int * b)
2105 {
2106   int     res;
2107 
2108 #ifdef BN_MP_TOOM_SQR_C
2109   /* use Toom-Cook? */
2110   if (a->used >= TOOM_SQR_CUTOFF) {
2111     res = mp_toom_sqr(a, b);
2112   /* Karatsuba? */
2113   } else
2114 #endif
2115 #ifdef BN_MP_KARATSUBA_SQR_C
2116 if (a->used >= KARATSUBA_SQR_CUTOFF) {
2117     res = mp_karatsuba_sqr (a, b);
2118   } else
2119 #endif
2120   {
2121 #ifdef BN_FAST_S_MP_SQR_C
2122     /* can we use the fast comba multiplier? */
2123     if ((a->used * 2 + 1) < MP_WARRAY &&
2124          a->used <
2125          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2126       res = fast_s_mp_sqr (a, b);
2127     } else
2128 #endif
2129 #ifdef BN_S_MP_SQR_C
2130       res = s_mp_sqr (a, b);
2131 #else
2132 #error mp_sqr could fail
2133       res = MP_VAL;
2134 #endif
2135   }
2136   b->sign = MP_ZPOS;
2137   return res;
2138 }
2139 
2140 
2141 /* reduces a modulo n where n is of the form 2**p - d
2142    This differs from reduce_2k since "d" can be larger
2143    than a single digit.
2144 */
2145 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2146 {
2147    mp_int q;
2148    int    p, res;
2149 
2150    if ((res = mp_init(&q)) != MP_OKAY) {
2151       return res;
2152    }
2153 
2154    p = mp_count_bits(n);
2155 top:
2156    /* q = a/2**p, a = a mod 2**p */
2157    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2158       goto ERR;
2159    }
2160 
2161    /* q = q * d */
2162    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2163       goto ERR;
2164    }
2165 
2166    /* a = a + q */
2167    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2168       goto ERR;
2169    }
2170 
2171    if (mp_cmp_mag(a, n) != MP_LT) {
2172       s_mp_sub(a, n, a);
2173       goto top;
2174    }
2175 
2176 ERR:
2177    mp_clear(&q);
2178    return res;
2179 }
2180 
2181 
2182 /* determines the setup value */
2183 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2184 {
2185    int    res;
2186    mp_int tmp;
2187 
2188    if ((res = mp_init(&tmp)) != MP_OKAY) {
2189       return res;
2190    }
2191 
2192    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2193       goto ERR;
2194    }
2195 
2196    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2197       goto ERR;
2198    }
2199 
2200 ERR:
2201    mp_clear(&tmp);
2202    return res;
2203 }
2204 
2205 
2206 /* computes a = 2**b
2207  *
2208  * Simple algorithm which zeroes the int, grows it then just sets one bit
2209  * as required.
2210  */
2211 static int mp_2expt (mp_int * a, int b)
2212 {
2213   int     res;
2214 
2215   /* zero a as per default */
2216   mp_zero (a);
2217 
2218   /* grow a to accommodate the single bit */
2219   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2220     return res;
2221   }
2222 
2223   /* set the used count of where the bit will go */
2224   a->used = b / DIGIT_BIT + 1;
2225 
2226   /* put the single bit in its place */
2227   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2228 
2229   return MP_OKAY;
2230 }
2231 
2232 
2233 /* pre-calculate the value required for Barrett reduction
2234  * For a given modulus "b" it calulates the value required in "a"
2235  */
2236 static int mp_reduce_setup (mp_int * a, mp_int * b)
2237 {
2238   int     res;
2239 
2240   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2241     return res;
2242   }
2243   return mp_div (a, b, a, NULL);
2244 }
2245 
2246 
2247 /* reduces x mod m, assumes 0 < x < m**2, mu is
2248  * precomputed via mp_reduce_setup.
2249  * From HAC pp.604 Algorithm 14.42
2250  */
2251 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2252 {
2253   mp_int  q;
2254   int     res, um = m->used;
2255 
2256   /* q = x */
2257   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2258     return res;
2259   }
2260 
2261   /* q1 = x / b**(k-1)  */
2262   mp_rshd (&q, um - 1);
2263 
2264   /* according to HAC this optimization is ok */
2265   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2266     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2267       goto CLEANUP;
2268     }
2269   } else {
2270 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2271     if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2272       goto CLEANUP;
2273     }
2274 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2275     if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2276       goto CLEANUP;
2277     }
2278 #else
2279     {
2280 #error mp_reduce would always fail
2281       res = MP_VAL;
2282       goto CLEANUP;
2283     }
2284 #endif
2285   }
2286 
2287   /* q3 = q2 / b**(k+1) */
2288   mp_rshd (&q, um + 1);
2289 
2290   /* x = x mod b**(k+1), quick (no division) */
2291   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2292     goto CLEANUP;
2293   }
2294 
2295   /* q = q * m mod b**(k+1), quick (no division) */
2296   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2297     goto CLEANUP;
2298   }
2299 
2300   /* x = x - q */
2301   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2302     goto CLEANUP;
2303   }
2304 
2305   /* If x < 0, add b**(k+1) to it */
2306   if (mp_cmp_d (x, 0) == MP_LT) {
2307     mp_set (&q, 1);
2308     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2309       goto CLEANUP;
2310     }
2311     if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2312       goto CLEANUP;
2313     }
2314   }
2315 
2316   /* Back off if it's too big */
2317   while (mp_cmp (x, m) != MP_LT) {
2318     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2319       goto CLEANUP;
2320     }
2321   }
2322 
2323 CLEANUP:
2324   mp_clear (&q);
2325 
2326   return res;
2327 }
2328 
2329 
2330 /* multiplies |a| * |b| and only computes up to digs digits of result
2331  * HAC pp. 595, Algorithm 14.12  Modified so you can control how
2332  * many digits of output are created.
2333  */
2334 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2335 {
2336   mp_int  t;
2337   int     res, pa, pb, ix, iy;
2338   mp_digit u;
2339   mp_word r;
2340   mp_digit tmpx, *tmpt, *tmpy;
2341 
2342   /* can we use the fast multiplier? */
2343   if (((digs) < MP_WARRAY) &&
2344       MIN (a->used, b->used) <
2345           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2346     return fast_s_mp_mul_digs (a, b, c, digs);
2347   }
2348 
2349   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2350     return res;
2351   }
2352   t.used = digs;
2353 
2354   /* compute the digits of the product directly */
2355   pa = a->used;
2356   for (ix = 0; ix < pa; ix++) {
2357     /* set the carry to zero */
2358     u = 0;
2359 
2360     /* limit ourselves to making digs digits of output */
2361     pb = MIN (b->used, digs - ix);
2362 
2363     /* setup some aliases */
2364     /* copy of the digit from a used within the nested loop */
2365     tmpx = a->dp[ix];
2366 
2367     /* an alias for the destination shifted ix places */
2368     tmpt = t.dp + ix;
2369 
2370     /* an alias for the digits of b */
2371     tmpy = b->dp;
2372 
2373     /* compute the columns of the output and propagate the carry */
2374     for (iy = 0; iy < pb; iy++) {
2375       /* compute the column as a mp_word */
2376       r       = ((mp_word)*tmpt) +
2377                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2378                 ((mp_word) u);
2379 
2380       /* the new column is the lower part of the result */
2381       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2382 
2383       /* get the carry word from the result */
2384       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2385     }
2386     /* set carry if it is placed below digs */
2387     if (ix + iy < digs) {
2388       *tmpt = u;
2389     }
2390   }
2391 
2392   mp_clamp (&t);
2393   mp_exch (&t, c);
2394 
2395   mp_clear (&t);
2396   return MP_OKAY;
2397 }
2398 
2399 
2400 /* Fast (comba) multiplier
2401  *
2402  * This is the fast column-array [comba] multiplier.  It is
2403  * designed to compute the columns of the product first
2404  * then handle the carries afterwards.  This has the effect
2405  * of making the nested loops that compute the columns very
2406  * simple and schedulable on super-scalar processors.
2407  *
2408  * This has been modified to produce a variable number of
2409  * digits of output so if say only a half-product is required
2410  * you don't have to compute the upper half (a feature
2411  * required for fast Barrett reduction).
2412  *
2413  * Based on Algorithm 14.12 on pp.595 of HAC.
2414  *
2415  */
2416 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2417 {
2418   int     olduse, res, pa, ix, iz;
2419   mp_digit W[MP_WARRAY];
2420   register mp_word  _W;
2421 
2422   /* grow the destination as required */
2423   if (c->alloc < digs) {
2424     if ((res = mp_grow (c, digs)) != MP_OKAY) {
2425       return res;
2426     }
2427   }
2428 
2429   /* number of output digits to produce */
2430   pa = MIN(digs, a->used + b->used);
2431 
2432   /* clear the carry */
2433   _W = 0;
2434   for (ix = 0; ix < pa; ix++) {
2435       int      tx, ty;
2436       int      iy;
2437       mp_digit *tmpx, *tmpy;
2438 
2439       /* get offsets into the two bignums */
2440       ty = MIN(b->used-1, ix);
2441       tx = ix - ty;
2442 
2443       /* setup temp aliases */
2444       tmpx = a->dp + tx;
2445       tmpy = b->dp + ty;
2446 
2447       /* this is the number of times the loop will iterrate, essentially
2448          while (tx++ < a->used && ty-- >= 0) { ... }
2449        */
2450       iy = MIN(a->used-tx, ty+1);
2451 
2452       /* execute loop */
2453       for (iz = 0; iz < iy; ++iz) {
2454          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2455 
2456       }
2457 
2458       /* store term */
2459       W[ix] = ((mp_digit)_W) & MP_MASK;
2460 
2461       /* make next carry */
2462       _W = _W >> ((mp_word)DIGIT_BIT);
2463  }
2464 
2465   /* setup dest */
2466   olduse  = c->used;
2467   c->used = pa;
2468 
2469   {
2470     register mp_digit *tmpc;
2471     tmpc = c->dp;
2472     for (ix = 0; ix < pa+1; ix++) {
2473       /* now extract the previous digit [below the carry] */
2474       *tmpc++ = W[ix];
2475     }
2476 
2477     /* clear unused digits [that existed in the old copy of c] */
2478     for (; ix < olduse; ix++) {
2479       *tmpc++ = 0;
2480     }
2481   }
2482   mp_clamp (c);
2483   return MP_OKAY;
2484 }
2485 
2486 
2487 /* init an mp_init for a given size */
2488 static int mp_init_size (mp_int * a, int size)
2489 {
2490   int x;
2491 
2492   /* pad size so there are always extra digits */
2493   size += (MP_PREC * 2) - (size % MP_PREC);
2494 
2495   /* alloc mem */
2496   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2497   if (a->dp == NULL) {
2498     return MP_MEM;
2499   }
2500 
2501   /* set the members */
2502   a->used  = 0;
2503   a->alloc = size;
2504   a->sign  = MP_ZPOS;
2505 
2506   /* zero the digits */
2507   for (x = 0; x < size; x++) {
2508       a->dp[x] = 0;
2509   }
2510 
2511   return MP_OKAY;
2512 }
2513 
2514 
2515 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2516 static int s_mp_sqr (mp_int * a, mp_int * b)
2517 {
2518   mp_int  t;
2519   int     res, ix, iy, pa;
2520   mp_word r;
2521   mp_digit u, tmpx, *tmpt;
2522 
2523   pa = a->used;
2524   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2525     return res;
2526   }
2527 
2528   /* default used is maximum possible size */
2529   t.used = 2*pa + 1;
2530 
2531   for (ix = 0; ix < pa; ix++) {
2532     /* first calculate the digit at 2*ix */
2533     /* calculate double precision result */
2534     r = ((mp_word) t.dp[2*ix]) +
2535         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2536 
2537     /* store lower part in result */
2538     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2539 
2540     /* get the carry */
2541     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2542 
2543     /* left hand side of A[ix] * A[iy] */
2544     tmpx        = a->dp[ix];
2545 
2546     /* alias for where to store the results */
2547     tmpt        = t.dp + (2*ix + 1);
2548 
2549     for (iy = ix + 1; iy < pa; iy++) {
2550       /* first calculate the product */
2551       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2552 
2553       /* now calculate the double precision result, note we use
2554        * addition instead of *2 since it's easier to optimize
2555        */
2556       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2557 
2558       /* store lower part */
2559       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2560 
2561       /* get carry */
2562       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2563     }
2564     /* propagate upwards */
2565     while (u != ((mp_digit) 0)) {
2566       r       = ((mp_word) *tmpt) + ((mp_word) u);
2567       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2568       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2569     }
2570   }
2571 
2572   mp_clamp (&t);
2573   mp_exch (&t, b);
2574   mp_clear (&t);
2575   return MP_OKAY;
2576 }
2577 
2578 
2579 /* multiplies |a| * |b| and does not compute the lower digs digits
2580  * [meant to get the higher part of the product]
2581  */
2582 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2583 {
2584   mp_int  t;
2585   int     res, pa, pb, ix, iy;
2586   mp_digit u;
2587   mp_word r;
2588   mp_digit tmpx, *tmpt, *tmpy;
2589 
2590   /* can we use the fast multiplier? */
2591 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2592   if (((a->used + b->used + 1) < MP_WARRAY)
2593       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2594     return fast_s_mp_mul_high_digs (a, b, c, digs);
2595   }
2596 #endif
2597 
2598   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2599     return res;
2600   }
2601   t.used = a->used + b->used + 1;
2602 
2603   pa = a->used;
2604   pb = b->used;
2605   for (ix = 0; ix < pa; ix++) {
2606     /* clear the carry */
2607     u = 0;
2608 
2609     /* left hand side of A[ix] * B[iy] */
2610     tmpx = a->dp[ix];
2611 
2612     /* alias to the address of where the digits will be stored */
2613     tmpt = &(t.dp[digs]);
2614 
2615     /* alias for where to read the right hand side from */
2616     tmpy = b->dp + (digs - ix);
2617 
2618     for (iy = digs - ix; iy < pb; iy++) {
2619       /* calculate the double precision result */
2620       r       = ((mp_word)*tmpt) +
2621                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2622                 ((mp_word) u);
2623 
2624       /* get the lower part */
2625       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2626 
2627       /* carry the carry */
2628       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2629     }
2630     *tmpt = u;
2631   }
2632   mp_clamp (&t);
2633   mp_exch (&t, c);
2634   mp_clear (&t);
2635   return MP_OKAY;
2636 }
2637 
2638 
2639 #ifdef BN_MP_MONTGOMERY_SETUP_C
2640 /* setups the montgomery reduction stuff */
2641 static int
2642 mp_montgomery_setup (mp_int * n, mp_digit * rho)
2643 {
2644   mp_digit x, b;
2645 
2646 /* fast inversion mod 2**k
2647  *
2648  * Based on the fact that
2649  *
2650  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
2651  *                    =>  2*X*A - X*X*A*A = 1
2652  *                    =>  2*(1) - (1)     = 1
2653  */
2654   b = n->dp[0];
2655 
2656   if ((b & 1) == 0) {
2657     return MP_VAL;
2658   }
2659 
2660   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2661   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
2662 #if !defined(MP_8BIT)
2663   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
2664 #endif
2665 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2666   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
2667 #endif
2668 #ifdef MP_64BIT
2669   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
2670 #endif
2671 
2672   /* rho = -1/m mod b */
2673   *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2674 
2675   return MP_OKAY;
2676 }
2677 #endif
2678 
2679 
2680 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2681 /* computes xR**-1 == x (mod N) via Montgomery Reduction
2682  *
2683  * This is an optimized implementation of montgomery_reduce
2684  * which uses the comba method to quickly calculate the columns of the
2685  * reduction.
2686  *
2687  * Based on Algorithm 14.32 on pp.601 of HAC.
2688 */
2689 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
2690 {
2691   int     ix, res, olduse;
2692   mp_word W[MP_WARRAY];
2693 
2694   /* get old used count */
2695   olduse = x->used;
2696 
2697   /* grow a as required */
2698   if (x->alloc < n->used + 1) {
2699     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2700       return res;
2701     }
2702   }
2703 
2704   /* first we have to get the digits of the input into
2705    * an array of double precision words W[...]
2706    */
2707   {
2708     register mp_word *_W;
2709     register mp_digit *tmpx;
2710 
2711     /* alias for the W[] array */
2712     _W   = W;
2713 
2714     /* alias for the digits of  x*/
2715     tmpx = x->dp;
2716 
2717     /* copy the digits of a into W[0..a->used-1] */
2718     for (ix = 0; ix < x->used; ix++) {
2719       *_W++ = *tmpx++;
2720     }
2721 
2722     /* zero the high words of W[a->used..m->used*2] */
2723     for (; ix < n->used * 2 + 1; ix++) {
2724       *_W++ = 0;
2725     }
2726   }
2727 
2728   /* now we proceed to zero successive digits
2729    * from the least significant upwards
2730    */
2731   for (ix = 0; ix < n->used; ix++) {
2732     /* mu = ai * m' mod b
2733      *
2734      * We avoid a double precision multiplication (which isn't required)
2735      * by casting the value down to a mp_digit.  Note this requires
2736      * that W[ix-1] have  the carry cleared (see after the inner loop)
2737      */
2738     register mp_digit mu;
2739     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2740 
2741     /* a = a + mu * m * b**i
2742      *
2743      * This is computed in place and on the fly.  The multiplication
2744      * by b**i is handled by offseting which columns the results
2745      * are added to.
2746      *
2747      * Note the comba method normally doesn't handle carries in the
2748      * inner loop In this case we fix the carry from the previous
2749      * column since the Montgomery reduction requires digits of the
2750      * result (so far) [see above] to work.  This is
2751      * handled by fixing up one carry after the inner loop.  The
2752      * carry fixups are done in order so after these loops the
2753      * first m->used words of W[] have the carries fixed
2754      */
2755     {
2756       register int iy;
2757       register mp_digit *tmpn;
2758       register mp_word *_W;
2759 
2760       /* alias for the digits of the modulus */
2761       tmpn = n->dp;
2762 
2763       /* Alias for the columns set by an offset of ix */
2764       _W = W + ix;
2765 
2766       /* inner loop */
2767       for (iy = 0; iy < n->used; iy++) {
2768           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2769       }
2770     }
2771 
2772     /* now fix carry for next digit, W[ix+1] */
2773     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2774   }
2775 
2776   /* now we have to propagate the carries and
2777    * shift the words downward [all those least
2778    * significant digits we zeroed].
2779    */
2780   {
2781     register mp_digit *tmpx;
2782     register mp_word *_W, *_W1;
2783 
2784     /* nox fix rest of carries */
2785 
2786     /* alias for current word */
2787     _W1 = W + ix;
2788 
2789     /* alias for next word, where the carry goes */
2790     _W = W + ++ix;
2791 
2792     for (; ix <= n->used * 2 + 1; ix++) {
2793       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2794     }
2795 
2796     /* copy out, A = A/b**n
2797      *
2798      * The result is A/b**n but instead of converting from an
2799      * array of mp_word to mp_digit than calling mp_rshd
2800      * we just copy them in the right order
2801      */
2802 
2803     /* alias for destination word */
2804     tmpx = x->dp;
2805 
2806     /* alias for shifted double precision result */
2807     _W = W + n->used;
2808 
2809     for (ix = 0; ix < n->used + 1; ix++) {
2810       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2811     }
2812 
2813     /* zero oldused digits, if the input a was larger than
2814      * m->used+1 we'll have to clear the digits
2815      */
2816     for (; ix < olduse; ix++) {
2817       *tmpx++ = 0;
2818     }
2819   }
2820 
2821   /* set the max used and clamp */
2822   x->used = n->used + 1;
2823   mp_clamp (x);
2824 
2825   /* if A >= m then A = A - m */
2826   if (mp_cmp_mag (x, n) != MP_LT) {
2827     return s_mp_sub (x, n, x);
2828   }
2829   return MP_OKAY;
2830 }
2831 #endif
2832 
2833 
2834 #ifdef BN_MP_MUL_2_C
2835 /* b = a*2 */
2836 static int mp_mul_2(mp_int * a, mp_int * b)
2837 {
2838   int     x, res, oldused;
2839 
2840   /* grow to accommodate result */
2841   if (b->alloc < a->used + 1) {
2842     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2843       return res;
2844     }
2845   }
2846 
2847   oldused = b->used;
2848   b->used = a->used;
2849 
2850   {
2851     register mp_digit r, rr, *tmpa, *tmpb;
2852 
2853     /* alias for source */
2854     tmpa = a->dp;
2855 
2856     /* alias for dest */
2857     tmpb = b->dp;
2858 
2859     /* carry */
2860     r = 0;
2861     for (x = 0; x < a->used; x++) {
2862 
2863       /* get what will be the *next* carry bit from the
2864        * MSB of the current digit
2865        */
2866       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2867 
2868       /* now shift up this digit, add in the carry [from the previous] */
2869       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2870 
2871       /* copy the carry that would be from the source
2872        * digit into the next iteration
2873        */
2874       r = rr;
2875     }
2876 
2877     /* new leading digit? */
2878     if (r != 0) {
2879       /* add a MSB which is always 1 at this point */
2880       *tmpb = 1;
2881       ++(b->used);
2882     }
2883 
2884     /* now zero any excess digits on the destination
2885      * that we didn't write to
2886      */
2887     tmpb = b->dp + b->used;
2888     for (x = b->used; x < oldused; x++) {
2889       *tmpb++ = 0;
2890     }
2891   }
2892   b->sign = a->sign;
2893   return MP_OKAY;
2894 }
2895 #endif
2896 
2897 
2898 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2899 /*
2900  * shifts with subtractions when the result is greater than b.
2901  *
2902  * The method is slightly modified to shift B unconditionally up to just under
2903  * the leading bit of b.  This saves a lot of multiple precision shifting.
2904  */
2905 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2906 {
2907   int     x, bits, res;
2908 
2909   /* how many bits of last digit does b use */
2910   bits = mp_count_bits (b) % DIGIT_BIT;
2911 
2912   if (b->used > 1) {
2913      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2914         return res;
2915      }
2916   } else {
2917      mp_set(a, 1);
2918      bits = 1;
2919   }
2920 
2921 
2922   /* now compute C = A * B mod b */
2923   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2924     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2925       return res;
2926     }
2927     if (mp_cmp_mag (a, b) != MP_LT) {
2928       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2929         return res;
2930       }
2931     }
2932   }
2933 
2934   return MP_OKAY;
2935 }
2936 #endif
2937 
2938 
2939 #ifdef BN_MP_EXPTMOD_FAST_C
2940 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2941  *
2942  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2943  * The value of k changes based on the size of the exponent.
2944  *
2945  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2946  */
2947 
2948 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2949 {
2950   mp_int  M[TAB_SIZE], res;
2951   mp_digit buf, mp;
2952   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
2953 
2954   /* use a pointer to the reduction algorithm.  This allows us to use
2955    * one of many reduction algorithms without modding the guts of
2956    * the code with if statements everywhere.
2957    */
2958   int     (*redux)(mp_int*,mp_int*,mp_digit);
2959 
2960   /* find window size */
2961   x = mp_count_bits (X);
2962   if (x <= 7) {
2963     winsize = 2;
2964   } else if (x <= 36) {
2965     winsize = 3;
2966   } else if (x <= 140) {
2967     winsize = 4;
2968   } else if (x <= 450) {
2969     winsize = 5;
2970   } else if (x <= 1303) {
2971     winsize = 6;
2972   } else if (x <= 3529) {
2973     winsize = 7;
2974   } else {
2975     winsize = 8;
2976   }
2977 
2978 #ifdef MP_LOW_MEM
2979   if (winsize > 5) {
2980      winsize = 5;
2981   }
2982 #endif
2983 
2984   /* init M array */
2985   /* init first cell */
2986   if ((err = mp_init(&M[1])) != MP_OKAY) {
2987      return err;
2988   }
2989 
2990   /* now init the second half of the array */
2991   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2992     if ((err = mp_init(&M[x])) != MP_OKAY) {
2993       for (y = 1<<(winsize-1); y < x; y++) {
2994         mp_clear (&M[y]);
2995       }
2996       mp_clear(&M[1]);
2997       return err;
2998     }
2999   }
3000 
3001   /* determine and setup reduction code */
3002   if (redmode == 0) {
3003 #ifdef BN_MP_MONTGOMERY_SETUP_C
3004      /* now setup montgomery  */
3005      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3006         goto LBL_M;
3007      }
3008 #else
3009      err = MP_VAL;
3010      goto LBL_M;
3011 #endif
3012 
3013      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3014 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3015      if (((P->used * 2 + 1) < MP_WARRAY) &&
3016           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3017         redux = fast_mp_montgomery_reduce;
3018      } else
3019 #endif
3020      {
3021 #ifdef BN_MP_MONTGOMERY_REDUCE_C
3022         /* use slower baseline Montgomery method */
3023         redux = mp_montgomery_reduce;
3024 #else
3025         err = MP_VAL;
3026         goto LBL_M;
3027 #endif
3028      }
3029   } else if (redmode == 1) {
3030 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3031      /* setup DR reduction for moduli of the form B**k - b */
3032      mp_dr_setup(P, &mp);
3033      redux = mp_dr_reduce;
3034 #else
3035      err = MP_VAL;
3036      goto LBL_M;
3037 #endif
3038   } else {
3039 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3040      /* setup DR reduction for moduli of the form 2**k - b */
3041      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3042         goto LBL_M;
3043      }
3044      redux = mp_reduce_2k;
3045 #else
3046      err = MP_VAL;
3047      goto LBL_M;
3048 #endif
3049   }
3050 
3051   /* setup result */
3052   if ((err = mp_init (&res)) != MP_OKAY) {
3053     goto LBL_M;
3054   }
3055 
3056   /* create M table
3057    *
3058 
3059    *
3060    * The first half of the table is not computed though accept for M[0] and M[1]
3061    */
3062 
3063   if (redmode == 0) {
3064 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3065      /* now we need R mod m */
3066      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3067        goto LBL_RES;
3068      }
3069 #else
3070      err = MP_VAL;
3071      goto LBL_RES;
3072 #endif
3073 
3074      /* now set M[1] to G * R mod m */
3075      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3076        goto LBL_RES;
3077      }
3078   } else {
3079      mp_set(&res, 1);
3080      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3081         goto LBL_RES;
3082      }
3083   }
3084 
3085   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3086   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3087     goto LBL_RES;
3088   }
3089 
3090   for (x = 0; x < (winsize - 1); x++) {
3091     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3092       goto LBL_RES;
3093     }
3094     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3095       goto LBL_RES;
3096     }
3097   }
3098 
3099   /* create upper table */
3100   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3101     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3102       goto LBL_RES;
3103     }
3104     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3105       goto LBL_RES;
3106     }
3107   }
3108 
3109   /* set initial mode and bit cnt */
3110   mode   = 0;
3111   bitcnt = 1;
3112   buf    = 0;
3113   digidx = X->used - 1;
3114   bitcpy = 0;
3115   bitbuf = 0;
3116 
3117   for (;;) {
3118     /* grab next digit as required */
3119     if (--bitcnt == 0) {
3120       /* if digidx == -1 we are out of digits so break */
3121       if (digidx == -1) {
3122         break;
3123       }
3124       /* read next digit and reset bitcnt */
3125       buf    = X->dp[digidx--];
3126       bitcnt = (int)DIGIT_BIT;
3127     }
3128 
3129     /* grab the next msb from the exponent */
3130     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3131     buf <<= (mp_digit)1;
3132 
3133     /* if the bit is zero and mode == 0 then we ignore it
3134      * These represent the leading zero bits before the first 1 bit
3135      * in the exponent.  Technically this opt is not required but it
3136      * does lower the # of trivial squaring/reductions used
3137      */
3138     if (mode == 0 && y == 0) {
3139       continue;
3140     }
3141 
3142     /* if the bit is zero and mode == 1 then we square */
3143     if (mode == 1 && y == 0) {
3144       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3145         goto LBL_RES;
3146       }
3147       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3148         goto LBL_RES;
3149       }
3150       continue;
3151     }
3152 
3153     /* else we add it to the window */
3154     bitbuf |= (y << (winsize - ++bitcpy));
3155     mode    = 2;
3156 
3157     if (bitcpy == winsize) {
3158       /* ok window is filled so square as required and multiply  */
3159       /* square first */
3160       for (x = 0; x < winsize; x++) {
3161         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3162           goto LBL_RES;
3163         }
3164         if ((err = redux (&res, P, mp)) != MP_OKAY) {
3165           goto LBL_RES;
3166         }
3167       }
3168 
3169       /* then multiply */
3170       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3171         goto LBL_RES;
3172       }
3173       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3174         goto LBL_RES;
3175       }
3176 
3177       /* empty window and reset */
3178       bitcpy = 0;
3179       bitbuf = 0;
3180       mode   = 1;
3181     }
3182   }
3183 
3184   /* if bits remain then square/multiply */
3185   if (mode == 2 && bitcpy > 0) {
3186     /* square then multiply if the bit is set */
3187     for (x = 0; x < bitcpy; x++) {
3188       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3189         goto LBL_RES;
3190       }
3191       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3192         goto LBL_RES;
3193       }
3194 
3195       /* get next bit of the window */
3196       bitbuf <<= 1;
3197       if ((bitbuf & (1 << winsize)) != 0) {
3198         /* then multiply */
3199         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3200           goto LBL_RES;
3201         }
3202         if ((err = redux (&res, P, mp)) != MP_OKAY) {
3203           goto LBL_RES;
3204         }
3205       }
3206     }
3207   }
3208 
3209   if (redmode == 0) {
3210      /* fixup result if Montgomery reduction is used
3211       * recall that any value in a Montgomery system is
3212       * actually multiplied by R mod n.  So we have
3213       * to reduce one more time to cancel out the factor
3214       * of R.
3215       */
3216      if ((err = redux(&res, P, mp)) != MP_OKAY) {
3217        goto LBL_RES;
3218      }
3219   }
3220 
3221   /* swap res with Y */
3222   mp_exch (&res, Y);
3223   err = MP_OKAY;
3224 LBL_RES:mp_clear (&res);
3225 LBL_M:
3226   mp_clear(&M[1]);
3227   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3228     mp_clear (&M[x]);
3229   }
3230   return err;
3231 }
3232 #endif
3233 
3234 
3235 #ifdef BN_FAST_S_MP_SQR_C
3236 /* the jist of squaring...
3237  * you do like mult except the offset of the tmpx [one that
3238  * starts closer to zero] can't equal the offset of tmpy.
3239  * So basically you set up iy like before then you min it with
3240  * (ty-tx) so that it never happens.  You double all those
3241  * you add in the inner loop
3242 
3243 After that loop you do the squares and add them in.
3244 */
3245 
3246 static int fast_s_mp_sqr (mp_int * a, mp_int * b)
3247 {
3248   int       olduse, res, pa, ix, iz;
3249   mp_digit   W[MP_WARRAY], *tmpx;
3250   mp_word   W1;
3251 
3252   /* grow the destination as required */
3253   pa = a->used + a->used;
3254   if (b->alloc < pa) {
3255     if ((res = mp_grow (b, pa)) != MP_OKAY) {
3256       return res;
3257     }
3258   }
3259 
3260   /* number of output digits to produce */
3261   W1 = 0;
3262   for (ix = 0; ix < pa; ix++) {
3263       int      tx, ty, iy;
3264       mp_word  _W;
3265       mp_digit *tmpy;
3266 
3267       /* clear counter */
3268       _W = 0;
3269 
3270       /* get offsets into the two bignums */
3271       ty = MIN(a->used-1, ix);
3272       tx = ix - ty;
3273 
3274       /* setup temp aliases */
3275       tmpx = a->dp + tx;
3276       tmpy = a->dp + ty;
3277 
3278       /* this is the number of times the loop will iterrate, essentially
3279          while (tx++ < a->used && ty-- >= 0) { ... }
3280        */
3281       iy = MIN(a->used-tx, ty+1);
3282 
3283       /* now for squaring tx can never equal ty
3284        * we halve the distance since they approach at a rate of 2x
3285        * and we have to round because odd cases need to be executed
3286        */
3287       iy = MIN(iy, (ty-tx+1)>>1);
3288 
3289       /* execute loop */
3290       for (iz = 0; iz < iy; iz++) {
3291          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3292       }
3293 
3294       /* double the inner product and add carry */
3295       _W = _W + _W + W1;
3296 
3297       /* even columns have the square term in them */
3298       if ((ix&1) == 0) {
3299          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3300       }
3301 
3302       /* store it */
3303       W[ix] = (mp_digit)(_W & MP_MASK);
3304 
3305       /* make next carry */
3306       W1 = _W >> ((mp_word)DIGIT_BIT);
3307   }
3308 
3309   /* setup dest */
3310   olduse  = b->used;
3311   b->used = a->used+a->used;
3312 
3313   {
3314     mp_digit *tmpb;
3315     tmpb = b->dp;
3316     for (ix = 0; ix < pa; ix++) {
3317       *tmpb++ = W[ix] & MP_MASK;
3318     }
3319 
3320     /* clear unused digits [that existed in the old copy of c] */
3321     for (; ix < olduse; ix++) {
3322       *tmpb++ = 0;
3323     }
3324   }
3325   mp_clamp (b);
3326   return MP_OKAY;
3327 }
3328 #endif
3329 
3330 
3331 #ifdef BN_MP_MUL_D_C
3332 /* multiply by a digit */
3333 static int
3334 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3335 {
3336   mp_digit u, *tmpa, *tmpc;
3337   mp_word  r;
3338   int      ix, res, olduse;
3339 
3340   /* make sure c is big enough to hold a*b */
3341   if (c->alloc < a->used + 1) {
3342     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3343       return res;
3344     }
3345   }
3346 
3347   /* get the original destinations used count */
3348   olduse = c->used;
3349 
3350   /* set the sign */
3351   c->sign = a->sign;
3352 
3353   /* alias for a->dp [source] */
3354   tmpa = a->dp;
3355 
3356   /* alias for c->dp [dest] */
3357   tmpc = c->dp;
3358 
3359   /* zero carry */
3360   u = 0;
3361 
3362   /* compute columns */
3363   for (ix = 0; ix < a->used; ix++) {
3364     /* compute product and carry sum for this term */
3365     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3366 
3367     /* mask off higher bits to get a single digit */
3368     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3369 
3370     /* send carry into next iteration */
3371     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3372   }
3373 
3374   /* store final carry [if any] and increment ix offset  */
3375   *tmpc++ = u;
3376   ++ix;
3377 
3378   /* now zero digits above the top */
3379   while (ix++ < olduse) {
3380      *tmpc++ = 0;
3381   }
3382 
3383   /* set used count */
3384   c->used = a->used + 1;
3385   mp_clamp(c);
3386 
3387   return MP_OKAY;
3388 }
3389 #endif
3390