xref: /freebsd/contrib/wpa/src/tls/libtommath.c (revision 276da39af92f48350aa01091a2b8b3e735217eea)
1 /*
2  * Minimal code for RSA support from LibTomMath 0.41
3  * http://libtom.org/
4  * http://libtom.org/files/ltm-0.41.tar.bz2
5  * This library was released in public domain by Tom St Denis.
6  *
7  * The combination in this file may not use all of the optimized algorithms
8  * from LibTomMath and may be considerable slower than the LibTomMath with its
9  * default settings. The main purpose of having this version here is to make it
10  * easier to build bignum.c wrapper without having to install and build an
11  * external library.
12  *
13  * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14  * libtommath.c file instead of using the external LibTomMath library.
15  */
16 
17 #ifndef CHAR_BIT
18 #define CHAR_BIT 8
19 #endif
20 
21 #define BN_MP_INVMOD_C
22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23 			   * require BN_MP_EXPTMOD_FAST_C instead */
24 #define BN_S_MP_MUL_DIGS_C
25 #define BN_MP_INVMOD_SLOW_C
26 #define BN_S_MP_SQR_C
27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28 				 * would require other than mp_reduce */
29 
30 #ifdef LTM_FAST
31 
32 /* Use faster div at the cost of about 1 kB */
33 #define BN_MP_MUL_D_C
34 
35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36 #define BN_MP_EXPTMOD_FAST_C
37 #define BN_MP_MONTGOMERY_SETUP_C
38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C
39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
40 #define BN_MP_MUL_2_C
41 
42 /* Include faster sqr at the cost of about 0.5 kB in code */
43 #define BN_FAST_S_MP_SQR_C
44 
45 /* About 0.25 kB of code, but ~1.7kB of stack space! */
46 #define BN_FAST_S_MP_MUL_DIGS_C
47 
48 #else /* LTM_FAST */
49 
50 #define BN_MP_DIV_SMALL
51 #define BN_MP_INIT_MULTI_C
52 #define BN_MP_CLEAR_MULTI_C
53 #define BN_MP_ABS_C
54 #endif /* LTM_FAST */
55 
56 /* Current uses do not require support for negative exponent in exptmod, so we
57  * can save about 1.5 kB in leaving out invmod. */
58 #define LTM_NO_NEG_EXP
59 
60 /* from tommath.h */
61 
62 #ifndef MIN
63    #define MIN(x,y) ((x)<(y)?(x):(y))
64 #endif
65 
66 #ifndef MAX
67    #define MAX(x,y) ((x)>(y)?(x):(y))
68 #endif
69 
70 #define  OPT_CAST(x)
71 
72 #ifdef __x86_64__
73 typedef unsigned long mp_digit;
74 typedef unsigned long mp_word __attribute__((mode(TI)));
75 
76 #define DIGIT_BIT 60
77 #define MP_64BIT
78 #else
79 typedef unsigned long mp_digit;
80 typedef u64 mp_word;
81 
82 #define DIGIT_BIT          28
83 #define MP_28BIT
84 #endif
85 
86 
87 #define XMALLOC  os_malloc
88 #define XFREE    os_free
89 #define XREALLOC os_realloc
90 
91 
92 #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
93 
94 #define MP_LT        -1   /* less than */
95 #define MP_EQ         0   /* equal to */
96 #define MP_GT         1   /* greater than */
97 
98 #define MP_ZPOS       0   /* positive integer */
99 #define MP_NEG        1   /* negative */
100 
101 #define MP_OKAY       0   /* ok result */
102 #define MP_MEM        -2  /* out of mem */
103 #define MP_VAL        -3  /* invalid input */
104 
105 #define MP_YES        1   /* yes response */
106 #define MP_NO         0   /* no response */
107 
108 typedef int           mp_err;
109 
110 /* define this to use lower memory usage routines (exptmods mostly) */
111 #define MP_LOW_MEM
112 
113 /* default precision */
114 #ifndef MP_PREC
115    #ifndef MP_LOW_MEM
116       #define MP_PREC                 32     /* default digits of precision */
117    #else
118       #define MP_PREC                 8      /* default digits of precision */
119    #endif
120 #endif
121 
122 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
123 #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
124 
125 /* the infamous mp_int structure */
126 typedef struct  {
127     int used, alloc, sign;
128     mp_digit *dp;
129 } mp_int;
130 
131 
132 /* ---> Basic Manipulations <--- */
133 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
134 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
135 #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
136 
137 
138 /* prototypes for copied functions */
139 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
140 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
141 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
142 static int s_mp_sqr(mp_int * a, mp_int * b);
143 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
144 
145 #ifdef BN_FAST_S_MP_MUL_DIGS_C
146 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
147 #endif
148 
149 #ifdef BN_MP_INIT_MULTI_C
150 static int mp_init_multi(mp_int *mp, ...);
151 #endif
152 #ifdef BN_MP_CLEAR_MULTI_C
153 static void mp_clear_multi(mp_int *mp, ...);
154 #endif
155 static int mp_lshd(mp_int * a, int b);
156 static void mp_set(mp_int * a, mp_digit b);
157 static void mp_clamp(mp_int * a);
158 static void mp_exch(mp_int * a, mp_int * b);
159 static void mp_rshd(mp_int * a, int b);
160 static void mp_zero(mp_int * a);
161 static int mp_mod_2d(mp_int * a, int b, mp_int * c);
162 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
163 static int mp_init_copy(mp_int * a, mp_int * b);
164 static int mp_mul_2d(mp_int * a, int b, mp_int * c);
165 #ifndef LTM_NO_NEG_EXP
166 static int mp_div_2(mp_int * a, mp_int * b);
167 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
168 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
169 #endif /* LTM_NO_NEG_EXP */
170 static int mp_copy(mp_int * a, mp_int * b);
171 static int mp_count_bits(mp_int * a);
172 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
173 static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
174 static int mp_grow(mp_int * a, int size);
175 static int mp_cmp_mag(mp_int * a, mp_int * b);
176 #ifdef BN_MP_ABS_C
177 static int mp_abs(mp_int * a, mp_int * b);
178 #endif
179 static int mp_sqr(mp_int * a, mp_int * b);
180 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
181 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
182 static int mp_2expt(mp_int * a, int b);
183 static int mp_reduce_setup(mp_int * a, mp_int * b);
184 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
185 static int mp_init_size(mp_int * a, int size);
186 #ifdef BN_MP_EXPTMOD_FAST_C
187 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
188 #endif /* BN_MP_EXPTMOD_FAST_C */
189 #ifdef BN_FAST_S_MP_SQR_C
190 static int fast_s_mp_sqr (mp_int * a, mp_int * b);
191 #endif /* BN_FAST_S_MP_SQR_C */
192 #ifdef BN_MP_MUL_D_C
193 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
194 #endif /* BN_MP_MUL_D_C */
195 
196 
197 
198 /* functions from bn_<func name>.c */
199 
200 
201 /* reverse an array, used for radix code */
202 static void bn_reverse (unsigned char *s, int len)
203 {
204   int     ix, iy;
205   unsigned char t;
206 
207   ix = 0;
208   iy = len - 1;
209   while (ix < iy) {
210     t     = s[ix];
211     s[ix] = s[iy];
212     s[iy] = t;
213     ++ix;
214     --iy;
215   }
216 }
217 
218 
219 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
220 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
221 {
222   mp_int *x;
223   int     olduse, res, min, max;
224 
225   /* find sizes, we let |a| <= |b| which means we have to sort
226    * them.  "x" will point to the input with the most digits
227    */
228   if (a->used > b->used) {
229     min = b->used;
230     max = a->used;
231     x = a;
232   } else {
233     min = a->used;
234     max = b->used;
235     x = b;
236   }
237 
238   /* init result */
239   if (c->alloc < max + 1) {
240     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
241       return res;
242     }
243   }
244 
245   /* get old used digit count and set new one */
246   olduse = c->used;
247   c->used = max + 1;
248 
249   {
250     register mp_digit u, *tmpa, *tmpb, *tmpc;
251     register int i;
252 
253     /* alias for digit pointers */
254 
255     /* first input */
256     tmpa = a->dp;
257 
258     /* second input */
259     tmpb = b->dp;
260 
261     /* destination */
262     tmpc = c->dp;
263 
264     /* zero the carry */
265     u = 0;
266     for (i = 0; i < min; i++) {
267       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
268       *tmpc = *tmpa++ + *tmpb++ + u;
269 
270       /* U = carry bit of T[i] */
271       u = *tmpc >> ((mp_digit)DIGIT_BIT);
272 
273       /* take away carry bit from T[i] */
274       *tmpc++ &= MP_MASK;
275     }
276 
277     /* now copy higher words if any, that is in A+B
278      * if A or B has more digits add those in
279      */
280     if (min != max) {
281       for (; i < max; i++) {
282         /* T[i] = X[i] + U */
283         *tmpc = x->dp[i] + u;
284 
285         /* U = carry bit of T[i] */
286         u = *tmpc >> ((mp_digit)DIGIT_BIT);
287 
288         /* take away carry bit from T[i] */
289         *tmpc++ &= MP_MASK;
290       }
291     }
292 
293     /* add carry */
294     *tmpc++ = u;
295 
296     /* clear digits above oldused */
297     for (i = c->used; i < olduse; i++) {
298       *tmpc++ = 0;
299     }
300   }
301 
302   mp_clamp (c);
303   return MP_OKAY;
304 }
305 
306 
307 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
308 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
309 {
310   int     olduse, res, min, max;
311 
312   /* find sizes */
313   min = b->used;
314   max = a->used;
315 
316   /* init result */
317   if (c->alloc < max) {
318     if ((res = mp_grow (c, max)) != MP_OKAY) {
319       return res;
320     }
321   }
322   olduse = c->used;
323   c->used = max;
324 
325   {
326     register mp_digit u, *tmpa, *tmpb, *tmpc;
327     register int i;
328 
329     /* alias for digit pointers */
330     tmpa = a->dp;
331     tmpb = b->dp;
332     tmpc = c->dp;
333 
334     /* set carry to zero */
335     u = 0;
336     for (i = 0; i < min; i++) {
337       /* T[i] = A[i] - B[i] - U */
338       *tmpc = *tmpa++ - *tmpb++ - u;
339 
340       /* U = carry bit of T[i]
341        * Note this saves performing an AND operation since
342        * if a carry does occur it will propagate all the way to the
343        * MSB.  As a result a single shift is enough to get the carry
344        */
345       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
346 
347       /* Clear carry from T[i] */
348       *tmpc++ &= MP_MASK;
349     }
350 
351     /* now copy higher words if any, e.g. if A has more digits than B  */
352     for (; i < max; i++) {
353       /* T[i] = A[i] - U */
354       *tmpc = *tmpa++ - u;
355 
356       /* U = carry bit of T[i] */
357       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
358 
359       /* Clear carry from T[i] */
360       *tmpc++ &= MP_MASK;
361     }
362 
363     /* clear digits above used (since we may not have grown result above) */
364     for (i = c->used; i < olduse; i++) {
365       *tmpc++ = 0;
366     }
367   }
368 
369   mp_clamp (c);
370   return MP_OKAY;
371 }
372 
373 
374 /* init a new mp_int */
375 static int mp_init (mp_int * a)
376 {
377   int i;
378 
379   /* allocate memory required and clear it */
380   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
381   if (a->dp == NULL) {
382     return MP_MEM;
383   }
384 
385   /* set the digits to zero */
386   for (i = 0; i < MP_PREC; i++) {
387       a->dp[i] = 0;
388   }
389 
390   /* set the used to zero, allocated digits to the default precision
391    * and sign to positive */
392   a->used  = 0;
393   a->alloc = MP_PREC;
394   a->sign  = MP_ZPOS;
395 
396   return MP_OKAY;
397 }
398 
399 
400 /* clear one (frees)  */
401 static void mp_clear (mp_int * a)
402 {
403   int i;
404 
405   /* only do anything if a hasn't been freed previously */
406   if (a->dp != NULL) {
407     /* first zero the digits */
408     for (i = 0; i < a->used; i++) {
409         a->dp[i] = 0;
410     }
411 
412     /* free ram */
413     XFREE(a->dp);
414 
415     /* reset members to make debugging easier */
416     a->dp    = NULL;
417     a->alloc = a->used = 0;
418     a->sign  = MP_ZPOS;
419   }
420 }
421 
422 
423 /* high level addition (handles signs) */
424 static int mp_add (mp_int * a, mp_int * b, mp_int * c)
425 {
426   int     sa, sb, res;
427 
428   /* get sign of both inputs */
429   sa = a->sign;
430   sb = b->sign;
431 
432   /* handle two cases, not four */
433   if (sa == sb) {
434     /* both positive or both negative */
435     /* add their magnitudes, copy the sign */
436     c->sign = sa;
437     res = s_mp_add (a, b, c);
438   } else {
439     /* one positive, the other negative */
440     /* subtract the one with the greater magnitude from */
441     /* the one of the lesser magnitude.  The result gets */
442     /* the sign of the one with the greater magnitude. */
443     if (mp_cmp_mag (a, b) == MP_LT) {
444       c->sign = sb;
445       res = s_mp_sub (b, a, c);
446     } else {
447       c->sign = sa;
448       res = s_mp_sub (a, b, c);
449     }
450   }
451   return res;
452 }
453 
454 
455 /* high level subtraction (handles signs) */
456 static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
457 {
458   int     sa, sb, res;
459 
460   sa = a->sign;
461   sb = b->sign;
462 
463   if (sa != sb) {
464     /* subtract a negative from a positive, OR */
465     /* subtract a positive from a negative. */
466     /* In either case, ADD their magnitudes, */
467     /* and use the sign of the first number. */
468     c->sign = sa;
469     res = s_mp_add (a, b, c);
470   } else {
471     /* subtract a positive from a positive, OR */
472     /* subtract a negative from a negative. */
473     /* First, take the difference between their */
474     /* magnitudes, then... */
475     if (mp_cmp_mag (a, b) != MP_LT) {
476       /* Copy the sign from the first */
477       c->sign = sa;
478       /* The first has a larger or equal magnitude */
479       res = s_mp_sub (a, b, c);
480     } else {
481       /* The result has the *opposite* sign from */
482       /* the first number. */
483       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
484       /* The second has a larger magnitude */
485       res = s_mp_sub (b, a, c);
486     }
487   }
488   return res;
489 }
490 
491 
492 /* high level multiplication (handles sign) */
493 static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
494 {
495   int     res, neg;
496   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
497 
498   /* use Toom-Cook? */
499 #ifdef BN_MP_TOOM_MUL_C
500   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
501     res = mp_toom_mul(a, b, c);
502   } else
503 #endif
504 #ifdef BN_MP_KARATSUBA_MUL_C
505   /* use Karatsuba? */
506   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
507     res = mp_karatsuba_mul (a, b, c);
508   } else
509 #endif
510   {
511     /* can we use the fast multiplier?
512      *
513      * The fast multiplier can be used if the output will
514      * have less than MP_WARRAY digits and the number of
515      * digits won't affect carry propagation
516      */
517 #ifdef BN_FAST_S_MP_MUL_DIGS_C
518     int     digs = a->used + b->used + 1;
519 
520     if ((digs < MP_WARRAY) &&
521         MIN(a->used, b->used) <=
522         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
523       res = fast_s_mp_mul_digs (a, b, c, digs);
524     } else
525 #endif
526 #ifdef BN_S_MP_MUL_DIGS_C
527       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
528 #else
529 #error mp_mul could fail
530       res = MP_VAL;
531 #endif
532 
533   }
534   c->sign = (c->used > 0) ? neg : MP_ZPOS;
535   return res;
536 }
537 
538 
539 /* d = a * b (mod c) */
540 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
541 {
542   int     res;
543   mp_int  t;
544 
545   if ((res = mp_init (&t)) != MP_OKAY) {
546     return res;
547   }
548 
549   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
550     mp_clear (&t);
551     return res;
552   }
553   res = mp_mod (&t, c, d);
554   mp_clear (&t);
555   return res;
556 }
557 
558 
559 /* c = a mod b, 0 <= c < b */
560 static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
561 {
562   mp_int  t;
563   int     res;
564 
565   if ((res = mp_init (&t)) != MP_OKAY) {
566     return res;
567   }
568 
569   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
570     mp_clear (&t);
571     return res;
572   }
573 
574   if (t.sign != b->sign) {
575     res = mp_add (b, &t, c);
576   } else {
577     res = MP_OKAY;
578     mp_exch (&t, c);
579   }
580 
581   mp_clear (&t);
582   return res;
583 }
584 
585 
586 /* this is a shell function that calls either the normal or Montgomery
587  * exptmod functions.  Originally the call to the montgomery code was
588  * embedded in the normal function but that wasted a lot of stack space
589  * for nothing (since 99% of the time the Montgomery code would be called)
590  */
591 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
592 {
593   int dr;
594 
595   /* modulus P must be positive */
596   if (P->sign == MP_NEG) {
597      return MP_VAL;
598   }
599 
600   /* if exponent X is negative we have to recurse */
601   if (X->sign == MP_NEG) {
602 #ifdef LTM_NO_NEG_EXP
603         return MP_VAL;
604 #else /* LTM_NO_NEG_EXP */
605 #ifdef BN_MP_INVMOD_C
606      mp_int tmpG, tmpX;
607      int err;
608 
609      /* first compute 1/G mod P */
610      if ((err = mp_init(&tmpG)) != MP_OKAY) {
611         return err;
612      }
613      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
614         mp_clear(&tmpG);
615         return err;
616      }
617 
618      /* now get |X| */
619      if ((err = mp_init(&tmpX)) != MP_OKAY) {
620         mp_clear(&tmpG);
621         return err;
622      }
623      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
624         mp_clear_multi(&tmpG, &tmpX, NULL);
625         return err;
626      }
627 
628      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
629      err = mp_exptmod(&tmpG, &tmpX, P, Y);
630      mp_clear_multi(&tmpG, &tmpX, NULL);
631      return err;
632 #else
633 #error mp_exptmod would always fail
634      /* no invmod */
635      return MP_VAL;
636 #endif
637 #endif /* LTM_NO_NEG_EXP */
638   }
639 
640 /* modified diminished radix reduction */
641 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
642   if (mp_reduce_is_2k_l(P) == MP_YES) {
643      return s_mp_exptmod(G, X, P, Y, 1);
644   }
645 #endif
646 
647 #ifdef BN_MP_DR_IS_MODULUS_C
648   /* is it a DR modulus? */
649   dr = mp_dr_is_modulus(P);
650 #else
651   /* default to no */
652   dr = 0;
653 #endif
654 
655 #ifdef BN_MP_REDUCE_IS_2K_C
656   /* if not, is it a unrestricted DR modulus? */
657   if (dr == 0) {
658      dr = mp_reduce_is_2k(P) << 1;
659   }
660 #endif
661 
662   /* if the modulus is odd or dr != 0 use the montgomery method */
663 #ifdef BN_MP_EXPTMOD_FAST_C
664   if (mp_isodd (P) == 1 || dr !=  0) {
665     return mp_exptmod_fast (G, X, P, Y, dr);
666   } else {
667 #endif
668 #ifdef BN_S_MP_EXPTMOD_C
669     /* otherwise use the generic Barrett reduction technique */
670     return s_mp_exptmod (G, X, P, Y, 0);
671 #else
672 #error mp_exptmod could fail
673     /* no exptmod for evens */
674     return MP_VAL;
675 #endif
676 #ifdef BN_MP_EXPTMOD_FAST_C
677   }
678 #endif
679   if (dr == 0) {
680     /* avoid compiler warnings about possibly unused variable */
681   }
682 }
683 
684 
685 /* compare two ints (signed)*/
686 static int mp_cmp (mp_int * a, mp_int * b)
687 {
688   /* compare based on sign */
689   if (a->sign != b->sign) {
690      if (a->sign == MP_NEG) {
691         return MP_LT;
692      } else {
693         return MP_GT;
694      }
695   }
696 
697   /* compare digits */
698   if (a->sign == MP_NEG) {
699      /* if negative compare opposite direction */
700      return mp_cmp_mag(b, a);
701   } else {
702      return mp_cmp_mag(a, b);
703   }
704 }
705 
706 
707 /* compare a digit */
708 static int mp_cmp_d(mp_int * a, mp_digit b)
709 {
710   /* compare based on sign */
711   if (a->sign == MP_NEG) {
712     return MP_LT;
713   }
714 
715   /* compare based on magnitude */
716   if (a->used > 1) {
717     return MP_GT;
718   }
719 
720   /* compare the only digit of a to b */
721   if (a->dp[0] > b) {
722     return MP_GT;
723   } else if (a->dp[0] < b) {
724     return MP_LT;
725   } else {
726     return MP_EQ;
727   }
728 }
729 
730 
731 #ifndef LTM_NO_NEG_EXP
732 /* hac 14.61, pp608 */
733 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
734 {
735   /* b cannot be negative */
736   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
737     return MP_VAL;
738   }
739 
740 #ifdef BN_FAST_MP_INVMOD_C
741   /* if the modulus is odd we can use a faster routine instead */
742   if (mp_isodd (b) == 1) {
743     return fast_mp_invmod (a, b, c);
744   }
745 #endif
746 
747 #ifdef BN_MP_INVMOD_SLOW_C
748   return mp_invmod_slow(a, b, c);
749 #endif
750 
751 #ifndef BN_FAST_MP_INVMOD_C
752 #ifndef BN_MP_INVMOD_SLOW_C
753 #error mp_invmod would always fail
754 #endif
755 #endif
756   return MP_VAL;
757 }
758 #endif /* LTM_NO_NEG_EXP */
759 
760 
761 /* get the size for an unsigned equivalent */
762 static int mp_unsigned_bin_size (mp_int * a)
763 {
764   int     size = mp_count_bits (a);
765   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
766 }
767 
768 
769 #ifndef LTM_NO_NEG_EXP
770 /* hac 14.61, pp608 */
771 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
772 {
773   mp_int  x, y, u, v, A, B, C, D;
774   int     res;
775 
776   /* b cannot be negative */
777   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
778     return MP_VAL;
779   }
780 
781   /* init temps */
782   if ((res = mp_init_multi(&x, &y, &u, &v,
783                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
784      return res;
785   }
786 
787   /* x = a, y = b */
788   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
789       goto LBL_ERR;
790   }
791   if ((res = mp_copy (b, &y)) != MP_OKAY) {
792     goto LBL_ERR;
793   }
794 
795   /* 2. [modified] if x,y are both even then return an error! */
796   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
797     res = MP_VAL;
798     goto LBL_ERR;
799   }
800 
801   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
802   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
803     goto LBL_ERR;
804   }
805   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
806     goto LBL_ERR;
807   }
808   mp_set (&A, 1);
809   mp_set (&D, 1);
810 
811 top:
812   /* 4.  while u is even do */
813   while (mp_iseven (&u) == 1) {
814     /* 4.1 u = u/2 */
815     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
816       goto LBL_ERR;
817     }
818     /* 4.2 if A or B is odd then */
819     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
820       /* A = (A+y)/2, B = (B-x)/2 */
821       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
822          goto LBL_ERR;
823       }
824       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
825          goto LBL_ERR;
826       }
827     }
828     /* A = A/2, B = B/2 */
829     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
830       goto LBL_ERR;
831     }
832     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
833       goto LBL_ERR;
834     }
835   }
836 
837   /* 5.  while v is even do */
838   while (mp_iseven (&v) == 1) {
839     /* 5.1 v = v/2 */
840     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
841       goto LBL_ERR;
842     }
843     /* 5.2 if C or D is odd then */
844     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
845       /* C = (C+y)/2, D = (D-x)/2 */
846       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
847          goto LBL_ERR;
848       }
849       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
850          goto LBL_ERR;
851       }
852     }
853     /* C = C/2, D = D/2 */
854     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
855       goto LBL_ERR;
856     }
857     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
858       goto LBL_ERR;
859     }
860   }
861 
862   /* 6.  if u >= v then */
863   if (mp_cmp (&u, &v) != MP_LT) {
864     /* u = u - v, A = A - C, B = B - D */
865     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
866       goto LBL_ERR;
867     }
868 
869     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
870       goto LBL_ERR;
871     }
872 
873     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
874       goto LBL_ERR;
875     }
876   } else {
877     /* v - v - u, C = C - A, D = D - B */
878     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
879       goto LBL_ERR;
880     }
881 
882     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
883       goto LBL_ERR;
884     }
885 
886     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
887       goto LBL_ERR;
888     }
889   }
890 
891   /* if not zero goto step 4 */
892   if (mp_iszero (&u) == 0)
893     goto top;
894 
895   /* now a = C, b = D, gcd == g*v */
896 
897   /* if v != 1 then there is no inverse */
898   if (mp_cmp_d (&v, 1) != MP_EQ) {
899     res = MP_VAL;
900     goto LBL_ERR;
901   }
902 
903   /* if its too low */
904   while (mp_cmp_d(&C, 0) == MP_LT) {
905       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
906          goto LBL_ERR;
907       }
908   }
909 
910   /* too big */
911   while (mp_cmp_mag(&C, b) != MP_LT) {
912       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
913          goto LBL_ERR;
914       }
915   }
916 
917   /* C is now the inverse */
918   mp_exch (&C, c);
919   res = MP_OKAY;
920 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
921   return res;
922 }
923 #endif /* LTM_NO_NEG_EXP */
924 
925 
926 /* compare maginitude of two ints (unsigned) */
927 static int mp_cmp_mag (mp_int * a, mp_int * b)
928 {
929   int     n;
930   mp_digit *tmpa, *tmpb;
931 
932   /* compare based on # of non-zero digits */
933   if (a->used > b->used) {
934     return MP_GT;
935   }
936 
937   if (a->used < b->used) {
938     return MP_LT;
939   }
940 
941   /* alias for a */
942   tmpa = a->dp + (a->used - 1);
943 
944   /* alias for b */
945   tmpb = b->dp + (a->used - 1);
946 
947   /* compare based on digits  */
948   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
949     if (*tmpa > *tmpb) {
950       return MP_GT;
951     }
952 
953     if (*tmpa < *tmpb) {
954       return MP_LT;
955     }
956   }
957   return MP_EQ;
958 }
959 
960 
961 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
962 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
963 {
964   int     res;
965 
966   /* make sure there are at least two digits */
967   if (a->alloc < 2) {
968      if ((res = mp_grow(a, 2)) != MP_OKAY) {
969         return res;
970      }
971   }
972 
973   /* zero the int */
974   mp_zero (a);
975 
976   /* read the bytes in */
977   while (c-- > 0) {
978     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
979       return res;
980     }
981 
982 #ifndef MP_8BIT
983       a->dp[0] |= *b++;
984       a->used += 1;
985 #else
986       a->dp[0] = (*b & MP_MASK);
987       a->dp[1] |= ((*b++ >> 7U) & 1);
988       a->used += 2;
989 #endif
990   }
991   mp_clamp (a);
992   return MP_OKAY;
993 }
994 
995 
996 /* store in unsigned [big endian] format */
997 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
998 {
999   int     x, res;
1000   mp_int  t;
1001 
1002   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
1003     return res;
1004   }
1005 
1006   x = 0;
1007   while (mp_iszero (&t) == 0) {
1008 #ifndef MP_8BIT
1009       b[x++] = (unsigned char) (t.dp[0] & 255);
1010 #else
1011       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1012 #endif
1013     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1014       mp_clear (&t);
1015       return res;
1016     }
1017   }
1018   bn_reverse (b, x);
1019   mp_clear (&t);
1020   return MP_OKAY;
1021 }
1022 
1023 
1024 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1025 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1026 {
1027   mp_digit D, r, rr;
1028   int     x, res;
1029   mp_int  t;
1030 
1031 
1032   /* if the shift count is <= 0 then we do no work */
1033   if (b <= 0) {
1034     res = mp_copy (a, c);
1035     if (d != NULL) {
1036       mp_zero (d);
1037     }
1038     return res;
1039   }
1040 
1041   if ((res = mp_init (&t)) != MP_OKAY) {
1042     return res;
1043   }
1044 
1045   /* get the remainder */
1046   if (d != NULL) {
1047     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1048       mp_clear (&t);
1049       return res;
1050     }
1051   }
1052 
1053   /* copy */
1054   if ((res = mp_copy (a, c)) != MP_OKAY) {
1055     mp_clear (&t);
1056     return res;
1057   }
1058 
1059   /* shift by as many digits in the bit count */
1060   if (b >= (int)DIGIT_BIT) {
1061     mp_rshd (c, b / DIGIT_BIT);
1062   }
1063 
1064   /* shift any bit count < DIGIT_BIT */
1065   D = (mp_digit) (b % DIGIT_BIT);
1066   if (D != 0) {
1067     register mp_digit *tmpc, mask, shift;
1068 
1069     /* mask */
1070     mask = (((mp_digit)1) << D) - 1;
1071 
1072     /* shift for lsb */
1073     shift = DIGIT_BIT - D;
1074 
1075     /* alias */
1076     tmpc = c->dp + (c->used - 1);
1077 
1078     /* carry */
1079     r = 0;
1080     for (x = c->used - 1; x >= 0; x--) {
1081       /* get the lower  bits of this word in a temp */
1082       rr = *tmpc & mask;
1083 
1084       /* shift the current word and mix in the carry bits from the previous word */
1085       *tmpc = (*tmpc >> D) | (r << shift);
1086       --tmpc;
1087 
1088       /* set the carry to the carry bits of the current word found above */
1089       r = rr;
1090     }
1091   }
1092   mp_clamp (c);
1093   if (d != NULL) {
1094     mp_exch (&t, d);
1095   }
1096   mp_clear (&t);
1097   return MP_OKAY;
1098 }
1099 
1100 
1101 static int mp_init_copy (mp_int * a, mp_int * b)
1102 {
1103   int     res;
1104 
1105   if ((res = mp_init (a)) != MP_OKAY) {
1106     return res;
1107   }
1108   return mp_copy (b, a);
1109 }
1110 
1111 
1112 /* set to zero */
1113 static void mp_zero (mp_int * a)
1114 {
1115   int       n;
1116   mp_digit *tmp;
1117 
1118   a->sign = MP_ZPOS;
1119   a->used = 0;
1120 
1121   tmp = a->dp;
1122   for (n = 0; n < a->alloc; n++) {
1123      *tmp++ = 0;
1124   }
1125 }
1126 
1127 
1128 /* copy, b = a */
1129 static int mp_copy (mp_int * a, mp_int * b)
1130 {
1131   int     res, n;
1132 
1133   /* if dst == src do nothing */
1134   if (a == b) {
1135     return MP_OKAY;
1136   }
1137 
1138   /* grow dest */
1139   if (b->alloc < a->used) {
1140      if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1141         return res;
1142      }
1143   }
1144 
1145   /* zero b and copy the parameters over */
1146   {
1147     register mp_digit *tmpa, *tmpb;
1148 
1149     /* pointer aliases */
1150 
1151     /* source */
1152     tmpa = a->dp;
1153 
1154     /* destination */
1155     tmpb = b->dp;
1156 
1157     /* copy all the digits */
1158     for (n = 0; n < a->used; n++) {
1159       *tmpb++ = *tmpa++;
1160     }
1161 
1162     /* clear high digits */
1163     for (; n < b->used; n++) {
1164       *tmpb++ = 0;
1165     }
1166   }
1167 
1168   /* copy used count and sign */
1169   b->used = a->used;
1170   b->sign = a->sign;
1171   return MP_OKAY;
1172 }
1173 
1174 
1175 /* shift right a certain amount of digits */
1176 static void mp_rshd (mp_int * a, int b)
1177 {
1178   int     x;
1179 
1180   /* if b <= 0 then ignore it */
1181   if (b <= 0) {
1182     return;
1183   }
1184 
1185   /* if b > used then simply zero it and return */
1186   if (a->used <= b) {
1187     mp_zero (a);
1188     return;
1189   }
1190 
1191   {
1192     register mp_digit *bottom, *top;
1193 
1194     /* shift the digits down */
1195 
1196     /* bottom */
1197     bottom = a->dp;
1198 
1199     /* top [offset into digits] */
1200     top = a->dp + b;
1201 
1202     /* this is implemented as a sliding window where
1203      * the window is b-digits long and digits from
1204      * the top of the window are copied to the bottom
1205      *
1206      * e.g.
1207 
1208      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
1209                  /\                   |      ---->
1210                   \-------------------/      ---->
1211      */
1212     for (x = 0; x < (a->used - b); x++) {
1213       *bottom++ = *top++;
1214     }
1215 
1216     /* zero the top digits */
1217     for (; x < a->used; x++) {
1218       *bottom++ = 0;
1219     }
1220   }
1221 
1222   /* remove excess digits */
1223   a->used -= b;
1224 }
1225 
1226 
1227 /* swap the elements of two integers, for cases where you can't simply swap the
1228  * mp_int pointers around
1229  */
1230 static void mp_exch (mp_int * a, mp_int * b)
1231 {
1232   mp_int  t;
1233 
1234   t  = *a;
1235   *a = *b;
1236   *b = t;
1237 }
1238 
1239 
1240 /* trim unused digits
1241  *
1242  * This is used to ensure that leading zero digits are
1243  * trimed and the leading "used" digit will be non-zero
1244  * Typically very fast.  Also fixes the sign if there
1245  * are no more leading digits
1246  */
1247 static void mp_clamp (mp_int * a)
1248 {
1249   /* decrease used while the most significant digit is
1250    * zero.
1251    */
1252   while (a->used > 0 && a->dp[a->used - 1] == 0) {
1253     --(a->used);
1254   }
1255 
1256   /* reset the sign flag if used == 0 */
1257   if (a->used == 0) {
1258     a->sign = MP_ZPOS;
1259   }
1260 }
1261 
1262 
1263 /* grow as required */
1264 static int mp_grow (mp_int * a, int size)
1265 {
1266   int     i;
1267   mp_digit *tmp;
1268 
1269   /* if the alloc size is smaller alloc more ram */
1270   if (a->alloc < size) {
1271     /* ensure there are always at least MP_PREC digits extra on top */
1272     size += (MP_PREC * 2) - (size % MP_PREC);
1273 
1274     /* reallocate the array a->dp
1275      *
1276      * We store the return in a temporary variable
1277      * in case the operation failed we don't want
1278      * to overwrite the dp member of a.
1279      */
1280     tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1281     if (tmp == NULL) {
1282       /* reallocation failed but "a" is still valid [can be freed] */
1283       return MP_MEM;
1284     }
1285 
1286     /* reallocation succeeded so set a->dp */
1287     a->dp = tmp;
1288 
1289     /* zero excess digits */
1290     i        = a->alloc;
1291     a->alloc = size;
1292     for (; i < a->alloc; i++) {
1293       a->dp[i] = 0;
1294     }
1295   }
1296   return MP_OKAY;
1297 }
1298 
1299 
1300 #ifdef BN_MP_ABS_C
1301 /* b = |a|
1302  *
1303  * Simple function copies the input and fixes the sign to positive
1304  */
1305 static int mp_abs (mp_int * a, mp_int * b)
1306 {
1307   int     res;
1308 
1309   /* copy a to b */
1310   if (a != b) {
1311      if ((res = mp_copy (a, b)) != MP_OKAY) {
1312        return res;
1313      }
1314   }
1315 
1316   /* force the sign of b to positive */
1317   b->sign = MP_ZPOS;
1318 
1319   return MP_OKAY;
1320 }
1321 #endif
1322 
1323 
1324 /* set to a digit */
1325 static void mp_set (mp_int * a, mp_digit b)
1326 {
1327   mp_zero (a);
1328   a->dp[0] = b & MP_MASK;
1329   a->used  = (a->dp[0] != 0) ? 1 : 0;
1330 }
1331 
1332 
1333 #ifndef LTM_NO_NEG_EXP
1334 /* b = a/2 */
1335 static int mp_div_2(mp_int * a, mp_int * b)
1336 {
1337   int     x, res, oldused;
1338 
1339   /* copy */
1340   if (b->alloc < a->used) {
1341     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1342       return res;
1343     }
1344   }
1345 
1346   oldused = b->used;
1347   b->used = a->used;
1348   {
1349     register mp_digit r, rr, *tmpa, *tmpb;
1350 
1351     /* source alias */
1352     tmpa = a->dp + b->used - 1;
1353 
1354     /* dest alias */
1355     tmpb = b->dp + b->used - 1;
1356 
1357     /* carry */
1358     r = 0;
1359     for (x = b->used - 1; x >= 0; x--) {
1360       /* get the carry for the next iteration */
1361       rr = *tmpa & 1;
1362 
1363       /* shift the current digit, add in carry and store */
1364       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1365 
1366       /* forward carry to next iteration */
1367       r = rr;
1368     }
1369 
1370     /* zero excess digits */
1371     tmpb = b->dp + b->used;
1372     for (x = b->used; x < oldused; x++) {
1373       *tmpb++ = 0;
1374     }
1375   }
1376   b->sign = a->sign;
1377   mp_clamp (b);
1378   return MP_OKAY;
1379 }
1380 #endif /* LTM_NO_NEG_EXP */
1381 
1382 
1383 /* shift left by a certain bit count */
1384 static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1385 {
1386   mp_digit d;
1387   int      res;
1388 
1389   /* copy */
1390   if (a != c) {
1391      if ((res = mp_copy (a, c)) != MP_OKAY) {
1392        return res;
1393      }
1394   }
1395 
1396   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1397      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1398        return res;
1399      }
1400   }
1401 
1402   /* shift by as many digits in the bit count */
1403   if (b >= (int)DIGIT_BIT) {
1404     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1405       return res;
1406     }
1407   }
1408 
1409   /* shift any bit count < DIGIT_BIT */
1410   d = (mp_digit) (b % DIGIT_BIT);
1411   if (d != 0) {
1412     register mp_digit *tmpc, shift, mask, r, rr;
1413     register int x;
1414 
1415     /* bitmask for carries */
1416     mask = (((mp_digit)1) << d) - 1;
1417 
1418     /* shift for msbs */
1419     shift = DIGIT_BIT - d;
1420 
1421     /* alias */
1422     tmpc = c->dp;
1423 
1424     /* carry */
1425     r    = 0;
1426     for (x = 0; x < c->used; x++) {
1427       /* get the higher bits of the current word */
1428       rr = (*tmpc >> shift) & mask;
1429 
1430       /* shift the current word and OR in the carry */
1431       *tmpc = ((*tmpc << d) | r) & MP_MASK;
1432       ++tmpc;
1433 
1434       /* set the carry to the carry bits of the current word */
1435       r = rr;
1436     }
1437 
1438     /* set final carry */
1439     if (r != 0) {
1440        c->dp[(c->used)++] = r;
1441     }
1442   }
1443   mp_clamp (c);
1444   return MP_OKAY;
1445 }
1446 
1447 
1448 #ifdef BN_MP_INIT_MULTI_C
1449 static int mp_init_multi(mp_int *mp, ...)
1450 {
1451     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
1452     int n = 0;                 /* Number of ok inits */
1453     mp_int* cur_arg = mp;
1454     va_list args;
1455 
1456     va_start(args, mp);        /* init args to next argument from caller */
1457     while (cur_arg != NULL) {
1458         if (mp_init(cur_arg) != MP_OKAY) {
1459             /* Oops - error! Back-track and mp_clear what we already
1460                succeeded in init-ing, then return error.
1461             */
1462             va_list clean_args;
1463 
1464             /* end the current list */
1465             va_end(args);
1466 
1467             /* now start cleaning up */
1468             cur_arg = mp;
1469             va_start(clean_args, mp);
1470             while (n--) {
1471                 mp_clear(cur_arg);
1472                 cur_arg = va_arg(clean_args, mp_int*);
1473             }
1474             va_end(clean_args);
1475             res = MP_MEM;
1476             break;
1477         }
1478         n++;
1479         cur_arg = va_arg(args, mp_int*);
1480     }
1481     va_end(args);
1482     return res;                /* Assumed ok, if error flagged above. */
1483 }
1484 #endif
1485 
1486 
1487 #ifdef BN_MP_CLEAR_MULTI_C
1488 static void mp_clear_multi(mp_int *mp, ...)
1489 {
1490     mp_int* next_mp = mp;
1491     va_list args;
1492     va_start(args, mp);
1493     while (next_mp != NULL) {
1494         mp_clear(next_mp);
1495         next_mp = va_arg(args, mp_int*);
1496     }
1497     va_end(args);
1498 }
1499 #endif
1500 
1501 
1502 /* shift left a certain amount of digits */
1503 static int mp_lshd (mp_int * a, int b)
1504 {
1505   int     x, res;
1506 
1507   /* if its less than zero return */
1508   if (b <= 0) {
1509     return MP_OKAY;
1510   }
1511 
1512   /* grow to fit the new digits */
1513   if (a->alloc < a->used + b) {
1514      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1515        return res;
1516      }
1517   }
1518 
1519   {
1520     register mp_digit *top, *bottom;
1521 
1522     /* increment the used by the shift amount then copy upwards */
1523     a->used += b;
1524 
1525     /* top */
1526     top = a->dp + a->used - 1;
1527 
1528     /* base */
1529     bottom = a->dp + a->used - 1 - b;
1530 
1531     /* much like mp_rshd this is implemented using a sliding window
1532      * except the window goes the otherway around.  Copying from
1533      * the bottom to the top.  see bn_mp_rshd.c for more info.
1534      */
1535     for (x = a->used - 1; x >= b; x--) {
1536       *top-- = *bottom--;
1537     }
1538 
1539     /* zero the lower digits */
1540     top = a->dp;
1541     for (x = 0; x < b; x++) {
1542       *top++ = 0;
1543     }
1544   }
1545   return MP_OKAY;
1546 }
1547 
1548 
1549 /* returns the number of bits in an int */
1550 static int mp_count_bits (mp_int * a)
1551 {
1552   int     r;
1553   mp_digit q;
1554 
1555   /* shortcut */
1556   if (a->used == 0) {
1557     return 0;
1558   }
1559 
1560   /* get number of digits and add that */
1561   r = (a->used - 1) * DIGIT_BIT;
1562 
1563   /* take the last digit and count the bits in it */
1564   q = a->dp[a->used - 1];
1565   while (q > ((mp_digit) 0)) {
1566     ++r;
1567     q >>= ((mp_digit) 1);
1568   }
1569   return r;
1570 }
1571 
1572 
1573 /* calc a value mod 2**b */
1574 static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1575 {
1576   int     x, res;
1577 
1578   /* if b is <= 0 then zero the int */
1579   if (b <= 0) {
1580     mp_zero (c);
1581     return MP_OKAY;
1582   }
1583 
1584   /* if the modulus is larger than the value than return */
1585   if (b >= (int) (a->used * DIGIT_BIT)) {
1586     res = mp_copy (a, c);
1587     return res;
1588   }
1589 
1590   /* copy */
1591   if ((res = mp_copy (a, c)) != MP_OKAY) {
1592     return res;
1593   }
1594 
1595   /* zero digits above the last digit of the modulus */
1596   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1597     c->dp[x] = 0;
1598   }
1599   /* clear the digit that is not completely outside/inside the modulus */
1600   c->dp[b / DIGIT_BIT] &=
1601     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1602   mp_clamp (c);
1603   return MP_OKAY;
1604 }
1605 
1606 
1607 #ifdef BN_MP_DIV_SMALL
1608 
1609 /* slower bit-bang division... also smaller */
1610 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1611 {
1612    mp_int ta, tb, tq, q;
1613    int    res, n, n2;
1614 
1615   /* is divisor zero ? */
1616   if (mp_iszero (b) == 1) {
1617     return MP_VAL;
1618   }
1619 
1620   /* if a < b then q=0, r = a */
1621   if (mp_cmp_mag (a, b) == MP_LT) {
1622     if (d != NULL) {
1623       res = mp_copy (a, d);
1624     } else {
1625       res = MP_OKAY;
1626     }
1627     if (c != NULL) {
1628       mp_zero (c);
1629     }
1630     return res;
1631   }
1632 
1633   /* init our temps */
1634   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1635      return res;
1636   }
1637 
1638 
1639   mp_set(&tq, 1);
1640   n = mp_count_bits(a) - mp_count_bits(b);
1641   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1642       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1643       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1644       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1645       goto LBL_ERR;
1646   }
1647 
1648   while (n-- >= 0) {
1649      if (mp_cmp(&tb, &ta) != MP_GT) {
1650         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1651             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1652            goto LBL_ERR;
1653         }
1654      }
1655      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1656          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1657            goto LBL_ERR;
1658      }
1659   }
1660 
1661   /* now q == quotient and ta == remainder */
1662   n  = a->sign;
1663   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1664   if (c != NULL) {
1665      mp_exch(c, &q);
1666      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1667   }
1668   if (d != NULL) {
1669      mp_exch(d, &ta);
1670      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1671   }
1672 LBL_ERR:
1673    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1674    return res;
1675 }
1676 
1677 #else
1678 
1679 /* integer signed division.
1680  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1681  * HAC pp.598 Algorithm 14.20
1682  *
1683  * Note that the description in HAC is horribly
1684  * incomplete.  For example, it doesn't consider
1685  * the case where digits are removed from 'x' in
1686  * the inner loop.  It also doesn't consider the
1687  * case that y has fewer than three digits, etc..
1688  *
1689  * The overall algorithm is as described as
1690  * 14.20 from HAC but fixed to treat these cases.
1691 */
1692 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1693 {
1694   mp_int  q, x, y, t1, t2;
1695   int     res, n, t, i, norm, neg;
1696 
1697   /* is divisor zero ? */
1698   if (mp_iszero (b) == 1) {
1699     return MP_VAL;
1700   }
1701 
1702   /* if a < b then q=0, r = a */
1703   if (mp_cmp_mag (a, b) == MP_LT) {
1704     if (d != NULL) {
1705       res = mp_copy (a, d);
1706     } else {
1707       res = MP_OKAY;
1708     }
1709     if (c != NULL) {
1710       mp_zero (c);
1711     }
1712     return res;
1713   }
1714 
1715   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1716     return res;
1717   }
1718   q.used = a->used + 2;
1719 
1720   if ((res = mp_init (&t1)) != MP_OKAY) {
1721     goto LBL_Q;
1722   }
1723 
1724   if ((res = mp_init (&t2)) != MP_OKAY) {
1725     goto LBL_T1;
1726   }
1727 
1728   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1729     goto LBL_T2;
1730   }
1731 
1732   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1733     goto LBL_X;
1734   }
1735 
1736   /* fix the sign */
1737   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1738   x.sign = y.sign = MP_ZPOS;
1739 
1740   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1741   norm = mp_count_bits(&y) % DIGIT_BIT;
1742   if (norm < (int)(DIGIT_BIT-1)) {
1743      norm = (DIGIT_BIT-1) - norm;
1744      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1745        goto LBL_Y;
1746      }
1747      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1748        goto LBL_Y;
1749      }
1750   } else {
1751      norm = 0;
1752   }
1753 
1754   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1755   n = x.used - 1;
1756   t = y.used - 1;
1757 
1758   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1759   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1760     goto LBL_Y;
1761   }
1762 
1763   while (mp_cmp (&x, &y) != MP_LT) {
1764     ++(q.dp[n - t]);
1765     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1766       goto LBL_Y;
1767     }
1768   }
1769 
1770   /* reset y by shifting it back down */
1771   mp_rshd (&y, n - t);
1772 
1773   /* step 3. for i from n down to (t + 1) */
1774   for (i = n; i >= (t + 1); i--) {
1775     if (i > x.used) {
1776       continue;
1777     }
1778 
1779     /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1780      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1781     if (x.dp[i] == y.dp[t]) {
1782       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1783     } else {
1784       mp_word tmp;
1785       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1786       tmp |= ((mp_word) x.dp[i - 1]);
1787       tmp /= ((mp_word) y.dp[t]);
1788       if (tmp > (mp_word) MP_MASK)
1789         tmp = MP_MASK;
1790       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1791     }
1792 
1793     /* while (q{i-t-1} * (yt * b + y{t-1})) >
1794              xi * b**2 + xi-1 * b + xi-2
1795 
1796        do q{i-t-1} -= 1;
1797     */
1798     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1799     do {
1800       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1801 
1802       /* find left hand */
1803       mp_zero (&t1);
1804       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1805       t1.dp[1] = y.dp[t];
1806       t1.used = 2;
1807       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1808         goto LBL_Y;
1809       }
1810 
1811       /* find right hand */
1812       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1813       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1814       t2.dp[2] = x.dp[i];
1815       t2.used = 3;
1816     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1817 
1818     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1819     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1820       goto LBL_Y;
1821     }
1822 
1823     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1824       goto LBL_Y;
1825     }
1826 
1827     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1828       goto LBL_Y;
1829     }
1830 
1831     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1832     if (x.sign == MP_NEG) {
1833       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1834         goto LBL_Y;
1835       }
1836       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1837         goto LBL_Y;
1838       }
1839       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1840         goto LBL_Y;
1841       }
1842 
1843       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1844     }
1845   }
1846 
1847   /* now q is the quotient and x is the remainder
1848    * [which we have to normalize]
1849    */
1850 
1851   /* get sign before writing to c */
1852   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1853 
1854   if (c != NULL) {
1855     mp_clamp (&q);
1856     mp_exch (&q, c);
1857     c->sign = neg;
1858   }
1859 
1860   if (d != NULL) {
1861     mp_div_2d (&x, norm, &x, NULL);
1862     mp_exch (&x, d);
1863   }
1864 
1865   res = MP_OKAY;
1866 
1867 LBL_Y:mp_clear (&y);
1868 LBL_X:mp_clear (&x);
1869 LBL_T2:mp_clear (&t2);
1870 LBL_T1:mp_clear (&t1);
1871 LBL_Q:mp_clear (&q);
1872   return res;
1873 }
1874 
1875 #endif
1876 
1877 
1878 #ifdef MP_LOW_MEM
1879    #define TAB_SIZE 32
1880 #else
1881    #define TAB_SIZE 256
1882 #endif
1883 
1884 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1885 {
1886   mp_int  M[TAB_SIZE], res, mu;
1887   mp_digit buf;
1888   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1889   int (*redux)(mp_int*,mp_int*,mp_int*);
1890 
1891   /* find window size */
1892   x = mp_count_bits (X);
1893   if (x <= 7) {
1894     winsize = 2;
1895   } else if (x <= 36) {
1896     winsize = 3;
1897   } else if (x <= 140) {
1898     winsize = 4;
1899   } else if (x <= 450) {
1900     winsize = 5;
1901   } else if (x <= 1303) {
1902     winsize = 6;
1903   } else if (x <= 3529) {
1904     winsize = 7;
1905   } else {
1906     winsize = 8;
1907   }
1908 
1909 #ifdef MP_LOW_MEM
1910     if (winsize > 5) {
1911        winsize = 5;
1912     }
1913 #endif
1914 
1915   /* init M array */
1916   /* init first cell */
1917   if ((err = mp_init(&M[1])) != MP_OKAY) {
1918      return err;
1919   }
1920 
1921   /* now init the second half of the array */
1922   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1923     if ((err = mp_init(&M[x])) != MP_OKAY) {
1924       for (y = 1<<(winsize-1); y < x; y++) {
1925         mp_clear (&M[y]);
1926       }
1927       mp_clear(&M[1]);
1928       return err;
1929     }
1930   }
1931 
1932   /* create mu, used for Barrett reduction */
1933   if ((err = mp_init (&mu)) != MP_OKAY) {
1934     goto LBL_M;
1935   }
1936 
1937   if (redmode == 0) {
1938      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1939         goto LBL_MU;
1940      }
1941      redux = mp_reduce;
1942   } else {
1943      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1944         goto LBL_MU;
1945      }
1946      redux = mp_reduce_2k_l;
1947   }
1948 
1949   /* create M table
1950    *
1951    * The M table contains powers of the base,
1952    * e.g. M[x] = G**x mod P
1953    *
1954    * The first half of the table is not
1955    * computed though accept for M[0] and M[1]
1956    */
1957   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1958     goto LBL_MU;
1959   }
1960 
1961   /* compute the value at M[1<<(winsize-1)] by squaring
1962    * M[1] (winsize-1) times
1963    */
1964   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1965     goto LBL_MU;
1966   }
1967 
1968   for (x = 0; x < (winsize - 1); x++) {
1969     /* square it */
1970     if ((err = mp_sqr (&M[1 << (winsize - 1)],
1971                        &M[1 << (winsize - 1)])) != MP_OKAY) {
1972       goto LBL_MU;
1973     }
1974 
1975     /* reduce modulo P */
1976     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1977       goto LBL_MU;
1978     }
1979   }
1980 
1981   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1982    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1983    */
1984   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1985     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1986       goto LBL_MU;
1987     }
1988     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1989       goto LBL_MU;
1990     }
1991   }
1992 
1993   /* setup result */
1994   if ((err = mp_init (&res)) != MP_OKAY) {
1995     goto LBL_MU;
1996   }
1997   mp_set (&res, 1);
1998 
1999   /* set initial mode and bit cnt */
2000   mode   = 0;
2001   bitcnt = 1;
2002   buf    = 0;
2003   digidx = X->used - 1;
2004   bitcpy = 0;
2005   bitbuf = 0;
2006 
2007   for (;;) {
2008     /* grab next digit as required */
2009     if (--bitcnt == 0) {
2010       /* if digidx == -1 we are out of digits */
2011       if (digidx == -1) {
2012         break;
2013       }
2014       /* read next digit and reset the bitcnt */
2015       buf    = X->dp[digidx--];
2016       bitcnt = (int) DIGIT_BIT;
2017     }
2018 
2019     /* grab the next msb from the exponent */
2020     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2021     buf <<= (mp_digit)1;
2022 
2023     /* if the bit is zero and mode == 0 then we ignore it
2024      * These represent the leading zero bits before the first 1 bit
2025      * in the exponent.  Technically this opt is not required but it
2026      * does lower the # of trivial squaring/reductions used
2027      */
2028     if (mode == 0 && y == 0) {
2029       continue;
2030     }
2031 
2032     /* if the bit is zero and mode == 1 then we square */
2033     if (mode == 1 && y == 0) {
2034       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2035         goto LBL_RES;
2036       }
2037       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2038         goto LBL_RES;
2039       }
2040       continue;
2041     }
2042 
2043     /* else we add it to the window */
2044     bitbuf |= (y << (winsize - ++bitcpy));
2045     mode    = 2;
2046 
2047     if (bitcpy == winsize) {
2048       /* ok window is filled so square as required and multiply  */
2049       /* square first */
2050       for (x = 0; x < winsize; x++) {
2051         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2052           goto LBL_RES;
2053         }
2054         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2055           goto LBL_RES;
2056         }
2057       }
2058 
2059       /* then multiply */
2060       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2061         goto LBL_RES;
2062       }
2063       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2064         goto LBL_RES;
2065       }
2066 
2067       /* empty window and reset */
2068       bitcpy = 0;
2069       bitbuf = 0;
2070       mode   = 1;
2071     }
2072   }
2073 
2074   /* if bits remain then square/multiply */
2075   if (mode == 2 && bitcpy > 0) {
2076     /* square then multiply if the bit is set */
2077     for (x = 0; x < bitcpy; x++) {
2078       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2079         goto LBL_RES;
2080       }
2081       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2082         goto LBL_RES;
2083       }
2084 
2085       bitbuf <<= 1;
2086       if ((bitbuf & (1 << winsize)) != 0) {
2087         /* then multiply */
2088         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2089           goto LBL_RES;
2090         }
2091         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2092           goto LBL_RES;
2093         }
2094       }
2095     }
2096   }
2097 
2098   mp_exch (&res, Y);
2099   err = MP_OKAY;
2100 LBL_RES:mp_clear (&res);
2101 LBL_MU:mp_clear (&mu);
2102 LBL_M:
2103   mp_clear(&M[1]);
2104   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2105     mp_clear (&M[x]);
2106   }
2107   return err;
2108 }
2109 
2110 
2111 /* computes b = a*a */
2112 static int mp_sqr (mp_int * a, mp_int * b)
2113 {
2114   int     res;
2115 
2116 #ifdef BN_MP_TOOM_SQR_C
2117   /* use Toom-Cook? */
2118   if (a->used >= TOOM_SQR_CUTOFF) {
2119     res = mp_toom_sqr(a, b);
2120   /* Karatsuba? */
2121   } else
2122 #endif
2123 #ifdef BN_MP_KARATSUBA_SQR_C
2124 if (a->used >= KARATSUBA_SQR_CUTOFF) {
2125     res = mp_karatsuba_sqr (a, b);
2126   } else
2127 #endif
2128   {
2129 #ifdef BN_FAST_S_MP_SQR_C
2130     /* can we use the fast comba multiplier? */
2131     if ((a->used * 2 + 1) < MP_WARRAY &&
2132          a->used <
2133          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2134       res = fast_s_mp_sqr (a, b);
2135     } else
2136 #endif
2137 #ifdef BN_S_MP_SQR_C
2138       res = s_mp_sqr (a, b);
2139 #else
2140 #error mp_sqr could fail
2141       res = MP_VAL;
2142 #endif
2143   }
2144   b->sign = MP_ZPOS;
2145   return res;
2146 }
2147 
2148 
2149 /* reduces a modulo n where n is of the form 2**p - d
2150    This differs from reduce_2k since "d" can be larger
2151    than a single digit.
2152 */
2153 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2154 {
2155    mp_int q;
2156    int    p, res;
2157 
2158    if ((res = mp_init(&q)) != MP_OKAY) {
2159       return res;
2160    }
2161 
2162    p = mp_count_bits(n);
2163 top:
2164    /* q = a/2**p, a = a mod 2**p */
2165    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2166       goto ERR;
2167    }
2168 
2169    /* q = q * d */
2170    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2171       goto ERR;
2172    }
2173 
2174    /* a = a + q */
2175    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2176       goto ERR;
2177    }
2178 
2179    if (mp_cmp_mag(a, n) != MP_LT) {
2180       s_mp_sub(a, n, a);
2181       goto top;
2182    }
2183 
2184 ERR:
2185    mp_clear(&q);
2186    return res;
2187 }
2188 
2189 
2190 /* determines the setup value */
2191 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2192 {
2193    int    res;
2194    mp_int tmp;
2195 
2196    if ((res = mp_init(&tmp)) != MP_OKAY) {
2197       return res;
2198    }
2199 
2200    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2201       goto ERR;
2202    }
2203 
2204    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2205       goto ERR;
2206    }
2207 
2208 ERR:
2209    mp_clear(&tmp);
2210    return res;
2211 }
2212 
2213 
2214 /* computes a = 2**b
2215  *
2216  * Simple algorithm which zeroes the int, grows it then just sets one bit
2217  * as required.
2218  */
2219 static int mp_2expt (mp_int * a, int b)
2220 {
2221   int     res;
2222 
2223   /* zero a as per default */
2224   mp_zero (a);
2225 
2226   /* grow a to accommodate the single bit */
2227   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2228     return res;
2229   }
2230 
2231   /* set the used count of where the bit will go */
2232   a->used = b / DIGIT_BIT + 1;
2233 
2234   /* put the single bit in its place */
2235   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2236 
2237   return MP_OKAY;
2238 }
2239 
2240 
2241 /* pre-calculate the value required for Barrett reduction
2242  * For a given modulus "b" it calulates the value required in "a"
2243  */
2244 static int mp_reduce_setup (mp_int * a, mp_int * b)
2245 {
2246   int     res;
2247 
2248   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2249     return res;
2250   }
2251   return mp_div (a, b, a, NULL);
2252 }
2253 
2254 
2255 /* reduces x mod m, assumes 0 < x < m**2, mu is
2256  * precomputed via mp_reduce_setup.
2257  * From HAC pp.604 Algorithm 14.42
2258  */
2259 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2260 {
2261   mp_int  q;
2262   int     res, um = m->used;
2263 
2264   /* q = x */
2265   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2266     return res;
2267   }
2268 
2269   /* q1 = x / b**(k-1)  */
2270   mp_rshd (&q, um - 1);
2271 
2272   /* according to HAC this optimization is ok */
2273   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2274     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2275       goto CLEANUP;
2276     }
2277   } else {
2278 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2279     if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2280       goto CLEANUP;
2281     }
2282 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2283     if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2284       goto CLEANUP;
2285     }
2286 #else
2287     {
2288 #error mp_reduce would always fail
2289       res = MP_VAL;
2290       goto CLEANUP;
2291     }
2292 #endif
2293   }
2294 
2295   /* q3 = q2 / b**(k+1) */
2296   mp_rshd (&q, um + 1);
2297 
2298   /* x = x mod b**(k+1), quick (no division) */
2299   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2300     goto CLEANUP;
2301   }
2302 
2303   /* q = q * m mod b**(k+1), quick (no division) */
2304   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2305     goto CLEANUP;
2306   }
2307 
2308   /* x = x - q */
2309   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2310     goto CLEANUP;
2311   }
2312 
2313   /* If x < 0, add b**(k+1) to it */
2314   if (mp_cmp_d (x, 0) == MP_LT) {
2315     mp_set (&q, 1);
2316     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2317       goto CLEANUP;
2318     }
2319     if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2320       goto CLEANUP;
2321     }
2322   }
2323 
2324   /* Back off if it's too big */
2325   while (mp_cmp (x, m) != MP_LT) {
2326     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2327       goto CLEANUP;
2328     }
2329   }
2330 
2331 CLEANUP:
2332   mp_clear (&q);
2333 
2334   return res;
2335 }
2336 
2337 
2338 /* multiplies |a| * |b| and only computes up to digs digits of result
2339  * HAC pp. 595, Algorithm 14.12  Modified so you can control how
2340  * many digits of output are created.
2341  */
2342 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2343 {
2344   mp_int  t;
2345   int     res, pa, pb, ix, iy;
2346   mp_digit u;
2347   mp_word r;
2348   mp_digit tmpx, *tmpt, *tmpy;
2349 
2350 #ifdef BN_FAST_S_MP_MUL_DIGS_C
2351   /* can we use the fast multiplier? */
2352   if (((digs) < MP_WARRAY) &&
2353       MIN (a->used, b->used) <
2354           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2355     return fast_s_mp_mul_digs (a, b, c, digs);
2356   }
2357 #endif
2358 
2359   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2360     return res;
2361   }
2362   t.used = digs;
2363 
2364   /* compute the digits of the product directly */
2365   pa = a->used;
2366   for (ix = 0; ix < pa; ix++) {
2367     /* set the carry to zero */
2368     u = 0;
2369 
2370     /* limit ourselves to making digs digits of output */
2371     pb = MIN (b->used, digs - ix);
2372 
2373     /* setup some aliases */
2374     /* copy of the digit from a used within the nested loop */
2375     tmpx = a->dp[ix];
2376 
2377     /* an alias for the destination shifted ix places */
2378     tmpt = t.dp + ix;
2379 
2380     /* an alias for the digits of b */
2381     tmpy = b->dp;
2382 
2383     /* compute the columns of the output and propagate the carry */
2384     for (iy = 0; iy < pb; iy++) {
2385       /* compute the column as a mp_word */
2386       r       = ((mp_word)*tmpt) +
2387                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2388                 ((mp_word) u);
2389 
2390       /* the new column is the lower part of the result */
2391       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2392 
2393       /* get the carry word from the result */
2394       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2395     }
2396     /* set carry if it is placed below digs */
2397     if (ix + iy < digs) {
2398       *tmpt = u;
2399     }
2400   }
2401 
2402   mp_clamp (&t);
2403   mp_exch (&t, c);
2404 
2405   mp_clear (&t);
2406   return MP_OKAY;
2407 }
2408 
2409 
2410 #ifdef BN_FAST_S_MP_MUL_DIGS_C
2411 /* Fast (comba) multiplier
2412  *
2413  * This is the fast column-array [comba] multiplier.  It is
2414  * designed to compute the columns of the product first
2415  * then handle the carries afterwards.  This has the effect
2416  * of making the nested loops that compute the columns very
2417  * simple and schedulable on super-scalar processors.
2418  *
2419  * This has been modified to produce a variable number of
2420  * digits of output so if say only a half-product is required
2421  * you don't have to compute the upper half (a feature
2422  * required for fast Barrett reduction).
2423  *
2424  * Based on Algorithm 14.12 on pp.595 of HAC.
2425  *
2426  */
2427 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2428 {
2429   int     olduse, res, pa, ix, iz;
2430   mp_digit W[MP_WARRAY];
2431   register mp_word  _W;
2432 
2433   /* grow the destination as required */
2434   if (c->alloc < digs) {
2435     if ((res = mp_grow (c, digs)) != MP_OKAY) {
2436       return res;
2437     }
2438   }
2439 
2440   /* number of output digits to produce */
2441   pa = MIN(digs, a->used + b->used);
2442 
2443   /* clear the carry */
2444   _W = 0;
2445   for (ix = 0; ix < pa; ix++) {
2446       int      tx, ty;
2447       int      iy;
2448       mp_digit *tmpx, *tmpy;
2449 
2450       /* get offsets into the two bignums */
2451       ty = MIN(b->used-1, ix);
2452       tx = ix - ty;
2453 
2454       /* setup temp aliases */
2455       tmpx = a->dp + tx;
2456       tmpy = b->dp + ty;
2457 
2458       /* this is the number of times the loop will iterrate, essentially
2459          while (tx++ < a->used && ty-- >= 0) { ... }
2460        */
2461       iy = MIN(a->used-tx, ty+1);
2462 
2463       /* execute loop */
2464       for (iz = 0; iz < iy; ++iz) {
2465          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2466 
2467       }
2468 
2469       /* store term */
2470       W[ix] = ((mp_digit)_W) & MP_MASK;
2471 
2472       /* make next carry */
2473       _W = _W >> ((mp_word)DIGIT_BIT);
2474  }
2475 
2476   /* setup dest */
2477   olduse  = c->used;
2478   c->used = pa;
2479 
2480   {
2481     register mp_digit *tmpc;
2482     tmpc = c->dp;
2483     for (ix = 0; ix < pa+1; ix++) {
2484       /* now extract the previous digit [below the carry] */
2485       *tmpc++ = W[ix];
2486     }
2487 
2488     /* clear unused digits [that existed in the old copy of c] */
2489     for (; ix < olduse; ix++) {
2490       *tmpc++ = 0;
2491     }
2492   }
2493   mp_clamp (c);
2494   return MP_OKAY;
2495 }
2496 #endif /* BN_FAST_S_MP_MUL_DIGS_C */
2497 
2498 
2499 /* init an mp_init for a given size */
2500 static int mp_init_size (mp_int * a, int size)
2501 {
2502   int x;
2503 
2504   /* pad size so there are always extra digits */
2505   size += (MP_PREC * 2) - (size % MP_PREC);
2506 
2507   /* alloc mem */
2508   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2509   if (a->dp == NULL) {
2510     return MP_MEM;
2511   }
2512 
2513   /* set the members */
2514   a->used  = 0;
2515   a->alloc = size;
2516   a->sign  = MP_ZPOS;
2517 
2518   /* zero the digits */
2519   for (x = 0; x < size; x++) {
2520       a->dp[x] = 0;
2521   }
2522 
2523   return MP_OKAY;
2524 }
2525 
2526 
2527 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2528 static int s_mp_sqr (mp_int * a, mp_int * b)
2529 {
2530   mp_int  t;
2531   int     res, ix, iy, pa;
2532   mp_word r;
2533   mp_digit u, tmpx, *tmpt;
2534 
2535   pa = a->used;
2536   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2537     return res;
2538   }
2539 
2540   /* default used is maximum possible size */
2541   t.used = 2*pa + 1;
2542 
2543   for (ix = 0; ix < pa; ix++) {
2544     /* first calculate the digit at 2*ix */
2545     /* calculate double precision result */
2546     r = ((mp_word) t.dp[2*ix]) +
2547         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2548 
2549     /* store lower part in result */
2550     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2551 
2552     /* get the carry */
2553     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2554 
2555     /* left hand side of A[ix] * A[iy] */
2556     tmpx        = a->dp[ix];
2557 
2558     /* alias for where to store the results */
2559     tmpt        = t.dp + (2*ix + 1);
2560 
2561     for (iy = ix + 1; iy < pa; iy++) {
2562       /* first calculate the product */
2563       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2564 
2565       /* now calculate the double precision result, note we use
2566        * addition instead of *2 since it's easier to optimize
2567        */
2568       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2569 
2570       /* store lower part */
2571       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2572 
2573       /* get carry */
2574       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2575     }
2576     /* propagate upwards */
2577     while (u != ((mp_digit) 0)) {
2578       r       = ((mp_word) *tmpt) + ((mp_word) u);
2579       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2580       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2581     }
2582   }
2583 
2584   mp_clamp (&t);
2585   mp_exch (&t, b);
2586   mp_clear (&t);
2587   return MP_OKAY;
2588 }
2589 
2590 
2591 /* multiplies |a| * |b| and does not compute the lower digs digits
2592  * [meant to get the higher part of the product]
2593  */
2594 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2595 {
2596   mp_int  t;
2597   int     res, pa, pb, ix, iy;
2598   mp_digit u;
2599   mp_word r;
2600   mp_digit tmpx, *tmpt, *tmpy;
2601 
2602   /* can we use the fast multiplier? */
2603 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2604   if (((a->used + b->used + 1) < MP_WARRAY)
2605       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2606     return fast_s_mp_mul_high_digs (a, b, c, digs);
2607   }
2608 #endif
2609 
2610   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2611     return res;
2612   }
2613   t.used = a->used + b->used + 1;
2614 
2615   pa = a->used;
2616   pb = b->used;
2617   for (ix = 0; ix < pa; ix++) {
2618     /* clear the carry */
2619     u = 0;
2620 
2621     /* left hand side of A[ix] * B[iy] */
2622     tmpx = a->dp[ix];
2623 
2624     /* alias to the address of where the digits will be stored */
2625     tmpt = &(t.dp[digs]);
2626 
2627     /* alias for where to read the right hand side from */
2628     tmpy = b->dp + (digs - ix);
2629 
2630     for (iy = digs - ix; iy < pb; iy++) {
2631       /* calculate the double precision result */
2632       r       = ((mp_word)*tmpt) +
2633                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2634                 ((mp_word) u);
2635 
2636       /* get the lower part */
2637       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2638 
2639       /* carry the carry */
2640       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2641     }
2642     *tmpt = u;
2643   }
2644   mp_clamp (&t);
2645   mp_exch (&t, c);
2646   mp_clear (&t);
2647   return MP_OKAY;
2648 }
2649 
2650 
2651 #ifdef BN_MP_MONTGOMERY_SETUP_C
2652 /* setups the montgomery reduction stuff */
2653 static int
2654 mp_montgomery_setup (mp_int * n, mp_digit * rho)
2655 {
2656   mp_digit x, b;
2657 
2658 /* fast inversion mod 2**k
2659  *
2660  * Based on the fact that
2661  *
2662  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
2663  *                    =>  2*X*A - X*X*A*A = 1
2664  *                    =>  2*(1) - (1)     = 1
2665  */
2666   b = n->dp[0];
2667 
2668   if ((b & 1) == 0) {
2669     return MP_VAL;
2670   }
2671 
2672   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2673   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
2674 #if !defined(MP_8BIT)
2675   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
2676 #endif
2677 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2678   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
2679 #endif
2680 #ifdef MP_64BIT
2681   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
2682 #endif
2683 
2684   /* rho = -1/m mod b */
2685   *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2686 
2687   return MP_OKAY;
2688 }
2689 #endif
2690 
2691 
2692 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2693 /* computes xR**-1 == x (mod N) via Montgomery Reduction
2694  *
2695  * This is an optimized implementation of montgomery_reduce
2696  * which uses the comba method to quickly calculate the columns of the
2697  * reduction.
2698  *
2699  * Based on Algorithm 14.32 on pp.601 of HAC.
2700 */
2701 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
2702 {
2703   int     ix, res, olduse;
2704   mp_word W[MP_WARRAY];
2705 
2706   /* get old used count */
2707   olduse = x->used;
2708 
2709   /* grow a as required */
2710   if (x->alloc < n->used + 1) {
2711     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2712       return res;
2713     }
2714   }
2715 
2716   /* first we have to get the digits of the input into
2717    * an array of double precision words W[...]
2718    */
2719   {
2720     register mp_word *_W;
2721     register mp_digit *tmpx;
2722 
2723     /* alias for the W[] array */
2724     _W   = W;
2725 
2726     /* alias for the digits of  x*/
2727     tmpx = x->dp;
2728 
2729     /* copy the digits of a into W[0..a->used-1] */
2730     for (ix = 0; ix < x->used; ix++) {
2731       *_W++ = *tmpx++;
2732     }
2733 
2734     /* zero the high words of W[a->used..m->used*2] */
2735     for (; ix < n->used * 2 + 1; ix++) {
2736       *_W++ = 0;
2737     }
2738   }
2739 
2740   /* now we proceed to zero successive digits
2741    * from the least significant upwards
2742    */
2743   for (ix = 0; ix < n->used; ix++) {
2744     /* mu = ai * m' mod b
2745      *
2746      * We avoid a double precision multiplication (which isn't required)
2747      * by casting the value down to a mp_digit.  Note this requires
2748      * that W[ix-1] have  the carry cleared (see after the inner loop)
2749      */
2750     register mp_digit mu;
2751     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2752 
2753     /* a = a + mu * m * b**i
2754      *
2755      * This is computed in place and on the fly.  The multiplication
2756      * by b**i is handled by offseting which columns the results
2757      * are added to.
2758      *
2759      * Note the comba method normally doesn't handle carries in the
2760      * inner loop In this case we fix the carry from the previous
2761      * column since the Montgomery reduction requires digits of the
2762      * result (so far) [see above] to work.  This is
2763      * handled by fixing up one carry after the inner loop.  The
2764      * carry fixups are done in order so after these loops the
2765      * first m->used words of W[] have the carries fixed
2766      */
2767     {
2768       register int iy;
2769       register mp_digit *tmpn;
2770       register mp_word *_W;
2771 
2772       /* alias for the digits of the modulus */
2773       tmpn = n->dp;
2774 
2775       /* Alias for the columns set by an offset of ix */
2776       _W = W + ix;
2777 
2778       /* inner loop */
2779       for (iy = 0; iy < n->used; iy++) {
2780           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2781       }
2782     }
2783 
2784     /* now fix carry for next digit, W[ix+1] */
2785     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2786   }
2787 
2788   /* now we have to propagate the carries and
2789    * shift the words downward [all those least
2790    * significant digits we zeroed].
2791    */
2792   {
2793     register mp_digit *tmpx;
2794     register mp_word *_W, *_W1;
2795 
2796     /* nox fix rest of carries */
2797 
2798     /* alias for current word */
2799     _W1 = W + ix;
2800 
2801     /* alias for next word, where the carry goes */
2802     _W = W + ++ix;
2803 
2804     for (; ix <= n->used * 2 + 1; ix++) {
2805       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2806     }
2807 
2808     /* copy out, A = A/b**n
2809      *
2810      * The result is A/b**n but instead of converting from an
2811      * array of mp_word to mp_digit than calling mp_rshd
2812      * we just copy them in the right order
2813      */
2814 
2815     /* alias for destination word */
2816     tmpx = x->dp;
2817 
2818     /* alias for shifted double precision result */
2819     _W = W + n->used;
2820 
2821     for (ix = 0; ix < n->used + 1; ix++) {
2822       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2823     }
2824 
2825     /* zero oldused digits, if the input a was larger than
2826      * m->used+1 we'll have to clear the digits
2827      */
2828     for (; ix < olduse; ix++) {
2829       *tmpx++ = 0;
2830     }
2831   }
2832 
2833   /* set the max used and clamp */
2834   x->used = n->used + 1;
2835   mp_clamp (x);
2836 
2837   /* if A >= m then A = A - m */
2838   if (mp_cmp_mag (x, n) != MP_LT) {
2839     return s_mp_sub (x, n, x);
2840   }
2841   return MP_OKAY;
2842 }
2843 #endif
2844 
2845 
2846 #ifdef BN_MP_MUL_2_C
2847 /* b = a*2 */
2848 static int mp_mul_2(mp_int * a, mp_int * b)
2849 {
2850   int     x, res, oldused;
2851 
2852   /* grow to accommodate result */
2853   if (b->alloc < a->used + 1) {
2854     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2855       return res;
2856     }
2857   }
2858 
2859   oldused = b->used;
2860   b->used = a->used;
2861 
2862   {
2863     register mp_digit r, rr, *tmpa, *tmpb;
2864 
2865     /* alias for source */
2866     tmpa = a->dp;
2867 
2868     /* alias for dest */
2869     tmpb = b->dp;
2870 
2871     /* carry */
2872     r = 0;
2873     for (x = 0; x < a->used; x++) {
2874 
2875       /* get what will be the *next* carry bit from the
2876        * MSB of the current digit
2877        */
2878       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2879 
2880       /* now shift up this digit, add in the carry [from the previous] */
2881       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2882 
2883       /* copy the carry that would be from the source
2884        * digit into the next iteration
2885        */
2886       r = rr;
2887     }
2888 
2889     /* new leading digit? */
2890     if (r != 0) {
2891       /* add a MSB which is always 1 at this point */
2892       *tmpb = 1;
2893       ++(b->used);
2894     }
2895 
2896     /* now zero any excess digits on the destination
2897      * that we didn't write to
2898      */
2899     tmpb = b->dp + b->used;
2900     for (x = b->used; x < oldused; x++) {
2901       *tmpb++ = 0;
2902     }
2903   }
2904   b->sign = a->sign;
2905   return MP_OKAY;
2906 }
2907 #endif
2908 
2909 
2910 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2911 /*
2912  * shifts with subtractions when the result is greater than b.
2913  *
2914  * The method is slightly modified to shift B unconditionally up to just under
2915  * the leading bit of b.  This saves a lot of multiple precision shifting.
2916  */
2917 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2918 {
2919   int     x, bits, res;
2920 
2921   /* how many bits of last digit does b use */
2922   bits = mp_count_bits (b) % DIGIT_BIT;
2923 
2924   if (b->used > 1) {
2925      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2926         return res;
2927      }
2928   } else {
2929      mp_set(a, 1);
2930      bits = 1;
2931   }
2932 
2933 
2934   /* now compute C = A * B mod b */
2935   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2936     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2937       return res;
2938     }
2939     if (mp_cmp_mag (a, b) != MP_LT) {
2940       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2941         return res;
2942       }
2943     }
2944   }
2945 
2946   return MP_OKAY;
2947 }
2948 #endif
2949 
2950 
2951 #ifdef BN_MP_EXPTMOD_FAST_C
2952 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2953  *
2954  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2955  * The value of k changes based on the size of the exponent.
2956  *
2957  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2958  */
2959 
2960 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2961 {
2962   mp_int  M[TAB_SIZE], res;
2963   mp_digit buf, mp;
2964   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
2965 
2966   /* use a pointer to the reduction algorithm.  This allows us to use
2967    * one of many reduction algorithms without modding the guts of
2968    * the code with if statements everywhere.
2969    */
2970   int     (*redux)(mp_int*,mp_int*,mp_digit);
2971 
2972   /* find window size */
2973   x = mp_count_bits (X);
2974   if (x <= 7) {
2975     winsize = 2;
2976   } else if (x <= 36) {
2977     winsize = 3;
2978   } else if (x <= 140) {
2979     winsize = 4;
2980   } else if (x <= 450) {
2981     winsize = 5;
2982   } else if (x <= 1303) {
2983     winsize = 6;
2984   } else if (x <= 3529) {
2985     winsize = 7;
2986   } else {
2987     winsize = 8;
2988   }
2989 
2990 #ifdef MP_LOW_MEM
2991   if (winsize > 5) {
2992      winsize = 5;
2993   }
2994 #endif
2995 
2996   /* init M array */
2997   /* init first cell */
2998   if ((err = mp_init(&M[1])) != MP_OKAY) {
2999      return err;
3000   }
3001 
3002   /* now init the second half of the array */
3003   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3004     if ((err = mp_init(&M[x])) != MP_OKAY) {
3005       for (y = 1<<(winsize-1); y < x; y++) {
3006         mp_clear (&M[y]);
3007       }
3008       mp_clear(&M[1]);
3009       return err;
3010     }
3011   }
3012 
3013   /* determine and setup reduction code */
3014   if (redmode == 0) {
3015 #ifdef BN_MP_MONTGOMERY_SETUP_C
3016      /* now setup montgomery  */
3017      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3018         goto LBL_M;
3019      }
3020 #else
3021      err = MP_VAL;
3022      goto LBL_M;
3023 #endif
3024 
3025      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3026 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3027      if (((P->used * 2 + 1) < MP_WARRAY) &&
3028           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3029         redux = fast_mp_montgomery_reduce;
3030      } else
3031 #endif
3032      {
3033 #ifdef BN_MP_MONTGOMERY_REDUCE_C
3034         /* use slower baseline Montgomery method */
3035         redux = mp_montgomery_reduce;
3036 #else
3037         err = MP_VAL;
3038         goto LBL_M;
3039 #endif
3040      }
3041   } else if (redmode == 1) {
3042 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3043      /* setup DR reduction for moduli of the form B**k - b */
3044      mp_dr_setup(P, &mp);
3045      redux = mp_dr_reduce;
3046 #else
3047      err = MP_VAL;
3048      goto LBL_M;
3049 #endif
3050   } else {
3051 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3052      /* setup DR reduction for moduli of the form 2**k - b */
3053      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3054         goto LBL_M;
3055      }
3056      redux = mp_reduce_2k;
3057 #else
3058      err = MP_VAL;
3059      goto LBL_M;
3060 #endif
3061   }
3062 
3063   /* setup result */
3064   if ((err = mp_init (&res)) != MP_OKAY) {
3065     goto LBL_M;
3066   }
3067 
3068   /* create M table
3069    *
3070 
3071    *
3072    * The first half of the table is not computed though accept for M[0] and M[1]
3073    */
3074 
3075   if (redmode == 0) {
3076 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3077      /* now we need R mod m */
3078      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3079        goto LBL_RES;
3080      }
3081 #else
3082      err = MP_VAL;
3083      goto LBL_RES;
3084 #endif
3085 
3086      /* now set M[1] to G * R mod m */
3087      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3088        goto LBL_RES;
3089      }
3090   } else {
3091      mp_set(&res, 1);
3092      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3093         goto LBL_RES;
3094      }
3095   }
3096 
3097   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3098   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3099     goto LBL_RES;
3100   }
3101 
3102   for (x = 0; x < (winsize - 1); x++) {
3103     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3104       goto LBL_RES;
3105     }
3106     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3107       goto LBL_RES;
3108     }
3109   }
3110 
3111   /* create upper table */
3112   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3113     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3114       goto LBL_RES;
3115     }
3116     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3117       goto LBL_RES;
3118     }
3119   }
3120 
3121   /* set initial mode and bit cnt */
3122   mode   = 0;
3123   bitcnt = 1;
3124   buf    = 0;
3125   digidx = X->used - 1;
3126   bitcpy = 0;
3127   bitbuf = 0;
3128 
3129   for (;;) {
3130     /* grab next digit as required */
3131     if (--bitcnt == 0) {
3132       /* if digidx == -1 we are out of digits so break */
3133       if (digidx == -1) {
3134         break;
3135       }
3136       /* read next digit and reset bitcnt */
3137       buf    = X->dp[digidx--];
3138       bitcnt = (int)DIGIT_BIT;
3139     }
3140 
3141     /* grab the next msb from the exponent */
3142     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3143     buf <<= (mp_digit)1;
3144 
3145     /* if the bit is zero and mode == 0 then we ignore it
3146      * These represent the leading zero bits before the first 1 bit
3147      * in the exponent.  Technically this opt is not required but it
3148      * does lower the # of trivial squaring/reductions used
3149      */
3150     if (mode == 0 && y == 0) {
3151       continue;
3152     }
3153 
3154     /* if the bit is zero and mode == 1 then we square */
3155     if (mode == 1 && y == 0) {
3156       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3157         goto LBL_RES;
3158       }
3159       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3160         goto LBL_RES;
3161       }
3162       continue;
3163     }
3164 
3165     /* else we add it to the window */
3166     bitbuf |= (y << (winsize - ++bitcpy));
3167     mode    = 2;
3168 
3169     if (bitcpy == winsize) {
3170       /* ok window is filled so square as required and multiply  */
3171       /* square first */
3172       for (x = 0; x < winsize; x++) {
3173         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3174           goto LBL_RES;
3175         }
3176         if ((err = redux (&res, P, mp)) != MP_OKAY) {
3177           goto LBL_RES;
3178         }
3179       }
3180 
3181       /* then multiply */
3182       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3183         goto LBL_RES;
3184       }
3185       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3186         goto LBL_RES;
3187       }
3188 
3189       /* empty window and reset */
3190       bitcpy = 0;
3191       bitbuf = 0;
3192       mode   = 1;
3193     }
3194   }
3195 
3196   /* if bits remain then square/multiply */
3197   if (mode == 2 && bitcpy > 0) {
3198     /* square then multiply if the bit is set */
3199     for (x = 0; x < bitcpy; x++) {
3200       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3201         goto LBL_RES;
3202       }
3203       if ((err = redux (&res, P, mp)) != MP_OKAY) {
3204         goto LBL_RES;
3205       }
3206 
3207       /* get next bit of the window */
3208       bitbuf <<= 1;
3209       if ((bitbuf & (1 << winsize)) != 0) {
3210         /* then multiply */
3211         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3212           goto LBL_RES;
3213         }
3214         if ((err = redux (&res, P, mp)) != MP_OKAY) {
3215           goto LBL_RES;
3216         }
3217       }
3218     }
3219   }
3220 
3221   if (redmode == 0) {
3222      /* fixup result if Montgomery reduction is used
3223       * recall that any value in a Montgomery system is
3224       * actually multiplied by R mod n.  So we have
3225       * to reduce one more time to cancel out the factor
3226       * of R.
3227       */
3228      if ((err = redux(&res, P, mp)) != MP_OKAY) {
3229        goto LBL_RES;
3230      }
3231   }
3232 
3233   /* swap res with Y */
3234   mp_exch (&res, Y);
3235   err = MP_OKAY;
3236 LBL_RES:mp_clear (&res);
3237 LBL_M:
3238   mp_clear(&M[1]);
3239   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3240     mp_clear (&M[x]);
3241   }
3242   return err;
3243 }
3244 #endif
3245 
3246 
3247 #ifdef BN_FAST_S_MP_SQR_C
3248 /* the jist of squaring...
3249  * you do like mult except the offset of the tmpx [one that
3250  * starts closer to zero] can't equal the offset of tmpy.
3251  * So basically you set up iy like before then you min it with
3252  * (ty-tx) so that it never happens.  You double all those
3253  * you add in the inner loop
3254 
3255 After that loop you do the squares and add them in.
3256 */
3257 
3258 static int fast_s_mp_sqr (mp_int * a, mp_int * b)
3259 {
3260   int       olduse, res, pa, ix, iz;
3261   mp_digit   W[MP_WARRAY], *tmpx;
3262   mp_word   W1;
3263 
3264   /* grow the destination as required */
3265   pa = a->used + a->used;
3266   if (b->alloc < pa) {
3267     if ((res = mp_grow (b, pa)) != MP_OKAY) {
3268       return res;
3269     }
3270   }
3271 
3272   /* number of output digits to produce */
3273   W1 = 0;
3274   for (ix = 0; ix < pa; ix++) {
3275       int      tx, ty, iy;
3276       mp_word  _W;
3277       mp_digit *tmpy;
3278 
3279       /* clear counter */
3280       _W = 0;
3281 
3282       /* get offsets into the two bignums */
3283       ty = MIN(a->used-1, ix);
3284       tx = ix - ty;
3285 
3286       /* setup temp aliases */
3287       tmpx = a->dp + tx;
3288       tmpy = a->dp + ty;
3289 
3290       /* this is the number of times the loop will iterrate, essentially
3291          while (tx++ < a->used && ty-- >= 0) { ... }
3292        */
3293       iy = MIN(a->used-tx, ty+1);
3294 
3295       /* now for squaring tx can never equal ty
3296        * we halve the distance since they approach at a rate of 2x
3297        * and we have to round because odd cases need to be executed
3298        */
3299       iy = MIN(iy, (ty-tx+1)>>1);
3300 
3301       /* execute loop */
3302       for (iz = 0; iz < iy; iz++) {
3303          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3304       }
3305 
3306       /* double the inner product and add carry */
3307       _W = _W + _W + W1;
3308 
3309       /* even columns have the square term in them */
3310       if ((ix&1) == 0) {
3311          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3312       }
3313 
3314       /* store it */
3315       W[ix] = (mp_digit)(_W & MP_MASK);
3316 
3317       /* make next carry */
3318       W1 = _W >> ((mp_word)DIGIT_BIT);
3319   }
3320 
3321   /* setup dest */
3322   olduse  = b->used;
3323   b->used = a->used+a->used;
3324 
3325   {
3326     mp_digit *tmpb;
3327     tmpb = b->dp;
3328     for (ix = 0; ix < pa; ix++) {
3329       *tmpb++ = W[ix] & MP_MASK;
3330     }
3331 
3332     /* clear unused digits [that existed in the old copy of c] */
3333     for (; ix < olduse; ix++) {
3334       *tmpb++ = 0;
3335     }
3336   }
3337   mp_clamp (b);
3338   return MP_OKAY;
3339 }
3340 #endif
3341 
3342 
3343 #ifdef BN_MP_MUL_D_C
3344 /* multiply by a digit */
3345 static int
3346 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3347 {
3348   mp_digit u, *tmpa, *tmpc;
3349   mp_word  r;
3350   int      ix, res, olduse;
3351 
3352   /* make sure c is big enough to hold a*b */
3353   if (c->alloc < a->used + 1) {
3354     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3355       return res;
3356     }
3357   }
3358 
3359   /* get the original destinations used count */
3360   olduse = c->used;
3361 
3362   /* set the sign */
3363   c->sign = a->sign;
3364 
3365   /* alias for a->dp [source] */
3366   tmpa = a->dp;
3367 
3368   /* alias for c->dp [dest] */
3369   tmpc = c->dp;
3370 
3371   /* zero carry */
3372   u = 0;
3373 
3374   /* compute columns */
3375   for (ix = 0; ix < a->used; ix++) {
3376     /* compute product and carry sum for this term */
3377     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3378 
3379     /* mask off higher bits to get a single digit */
3380     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3381 
3382     /* send carry into next iteration */
3383     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3384   }
3385 
3386   /* store final carry [if any] and increment ix offset  */
3387   *tmpc++ = u;
3388   ++ix;
3389 
3390   /* now zero digits above the top */
3391   while (ix++ < olduse) {
3392      *tmpc++ = 0;
3393   }
3394 
3395   /* set used count */
3396   c->used = a->used + 1;
3397   mp_clamp(c);
3398 
3399   return MP_OKAY;
3400 }
3401 #endif
3402