xref: /freebsd/contrib/wpa/src/eap_peer/eap.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2019, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31 
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34 
35 #define EAP_MAX_AUTH_ROUNDS 100
36 #define EAP_MAX_AUTH_ROUNDS_SHORT 50
37 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
38 
39 
40 static bool eap_sm_allowMethod(struct eap_sm *sm, int vendor,
41 			       enum eap_type method);
42 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
43 static void eap_sm_processIdentity(struct eap_sm *sm,
44 				   const struct wpabuf *req);
45 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
46 static struct wpabuf * eap_sm_buildNotify(int id);
47 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
48 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
49 static const char * eap_sm_method_state_txt(EapMethodState state);
50 static const char * eap_sm_decision_txt(EapDecision decision);
51 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
52 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
53 			   const char *msg, size_t msglen);
54 
55 
56 
57 static bool eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
58 {
59 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
60 }
61 
62 
63 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
64 			   bool value)
65 {
66 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
67 }
68 
69 
70 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
71 {
72 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
73 }
74 
75 
76 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
77 			  unsigned int value)
78 {
79 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
80 }
81 
82 
83 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
84 {
85 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
86 }
87 
88 
89 static void eap_notify_status(struct eap_sm *sm, const char *status,
90 				      const char *parameter)
91 {
92 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
93 		   status, parameter);
94 	if (sm->eapol_cb->notify_status)
95 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
96 }
97 
98 
99 static void eap_report_error(struct eap_sm *sm, int error_code)
100 {
101 	wpa_printf(MSG_DEBUG, "EAP: Error notification: %d", error_code);
102 	if (sm->eapol_cb->notify_eap_error)
103 		sm->eapol_cb->notify_eap_error(sm->eapol_ctx, error_code);
104 }
105 
106 
107 static void eap_sm_free_key(struct eap_sm *sm)
108 {
109 	if (sm->eapKeyData) {
110 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
111 		sm->eapKeyData = NULL;
112 	}
113 }
114 
115 
116 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
117 {
118 	ext_password_free(sm->ext_pw_buf);
119 	sm->ext_pw_buf = NULL;
120 
121 	if (sm->m == NULL || sm->eap_method_priv == NULL)
122 		return;
123 
124 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
125 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
126 	sm->m->deinit(sm, sm->eap_method_priv);
127 	sm->eap_method_priv = NULL;
128 	sm->m = NULL;
129 }
130 
131 
132 /**
133  * eap_config_allowed_method - Check whether EAP method is allowed
134  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
135  * @config: EAP configuration
136  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
137  * @method: EAP type
138  * Returns: 1 = allowed EAP method, 0 = not allowed
139  */
140 static int eap_config_allowed_method(struct eap_sm *sm,
141 				     struct eap_peer_config *config,
142 				     int vendor, u32 method)
143 {
144 	int i;
145 	struct eap_method_type *m;
146 
147 	if (config == NULL || config->eap_methods == NULL)
148 		return 1;
149 
150 	m = config->eap_methods;
151 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
152 		     m[i].method != EAP_TYPE_NONE; i++) {
153 		if (m[i].vendor == vendor && m[i].method == method)
154 			return 1;
155 	}
156 	return 0;
157 }
158 
159 
160 /**
161  * eap_allowed_method - Check whether EAP method is allowed
162  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
163  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
164  * @method: EAP type
165  * Returns: 1 = allowed EAP method, 0 = not allowed
166  */
167 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
168 {
169 	return eap_config_allowed_method(sm, eap_get_config(sm), vendor,
170 					 method);
171 }
172 
173 
174 #if defined(PCSC_FUNCS) || defined(CONFIG_EAP_PROXY)
175 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
176 				    size_t max_len, size_t *imsi_len,
177 				    int mnc_len)
178 {
179 	char *pos, mnc[4];
180 
181 	if (*imsi_len + 36 > max_len) {
182 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
183 		return -1;
184 	}
185 
186 	if (mnc_len != 2 && mnc_len != 3)
187 		mnc_len = 3;
188 
189 	if (mnc_len == 2) {
190 		mnc[0] = '0';
191 		mnc[1] = imsi[3];
192 		mnc[2] = imsi[4];
193 	} else if (mnc_len == 3) {
194 		mnc[0] = imsi[3];
195 		mnc[1] = imsi[4];
196 		mnc[2] = imsi[5];
197 	}
198 	mnc[3] = '\0';
199 
200 	pos = imsi + *imsi_len;
201 	pos += os_snprintf(pos, imsi + max_len - pos,
202 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
203 			   mnc, imsi[0], imsi[1], imsi[2]);
204 	*imsi_len = pos - imsi;
205 
206 	return 0;
207 }
208 #endif /* PCSC_FUNCS || CONFIG_EAP_PROXY */
209 
210 
211 /*
212  * This state initializes state machine variables when the machine is
213  * activated (portEnabled = true). This is also used when re-starting
214  * authentication (eapRestart == true).
215  */
216 SM_STATE(EAP, INITIALIZE)
217 {
218 	SM_ENTRY(EAP, INITIALIZE);
219 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
220 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
221 	    !sm->prev_failure &&
222 	    sm->last_config == eap_get_config(sm)) {
223 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
224 			   "fast reauthentication");
225 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
226 	} else {
227 		sm->last_config = eap_get_config(sm);
228 		eap_deinit_prev_method(sm, "INITIALIZE");
229 	}
230 	sm->selectedMethod = EAP_TYPE_NONE;
231 	sm->methodState = METHOD_NONE;
232 	sm->allowNotifications = true;
233 	sm->decision = DECISION_FAIL;
234 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
235 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
236 	eapol_set_bool(sm, EAPOL_eapSuccess, false);
237 	eapol_set_bool(sm, EAPOL_eapFail, false);
238 	eap_sm_free_key(sm);
239 	os_free(sm->eapSessionId);
240 	sm->eapSessionId = NULL;
241 	sm->eapKeyAvailable = false;
242 	eapol_set_bool(sm, EAPOL_eapRestart, false);
243 	sm->lastId = -1; /* new session - make sure this does not match with
244 			  * the first EAP-Packet */
245 	/*
246 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
247 	 * seemed to be able to trigger cases where both were set and if EAPOL
248 	 * state machine uses eapNoResp first, it may end up not sending a real
249 	 * reply correctly. This occurred when the workaround in FAIL state set
250 	 * eapNoResp = true.. Maybe that workaround needs to be fixed to do
251 	 * something else(?)
252 	 */
253 	eapol_set_bool(sm, EAPOL_eapResp, false);
254 	eapol_set_bool(sm, EAPOL_eapNoResp, false);
255 	/*
256 	 * RFC 4137 does not reset ignore here, but since it is possible for
257 	 * some method code paths to end up not setting ignore=false, clear the
258 	 * value here to avoid issues if a previous authentication attempt
259 	 * failed with ignore=true being left behind in the last
260 	 * m.check(eapReqData) operation.
261 	 */
262 	sm->ignore = 0;
263 	sm->num_rounds = 0;
264 	sm->num_rounds_short = 0;
265 	sm->prev_failure = 0;
266 	sm->expected_failure = 0;
267 	sm->reauthInit = false;
268 	sm->erp_seq = (u32) -1;
269 	sm->use_machine_cred = 0;
270 	sm->eap_fast_mschapv2 = false;
271 }
272 
273 
274 /*
275  * This state is reached whenever service from the lower layer is interrupted
276  * or unavailable (portEnabled == false). Immediate transition to INITIALIZE
277  * occurs when the port becomes enabled.
278  */
279 SM_STATE(EAP, DISABLED)
280 {
281 	SM_ENTRY(EAP, DISABLED);
282 	sm->num_rounds = 0;
283 	sm->num_rounds_short = 0;
284 	/*
285 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
286 	 * allows the timer tick to be stopped more quickly when EAP is not in
287 	 * use.
288 	 */
289 	eapol_set_int(sm, EAPOL_idleWhile, 0);
290 }
291 
292 
293 /*
294  * The state machine spends most of its time here, waiting for something to
295  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
296  * SEND_RESPONSE states.
297  */
298 SM_STATE(EAP, IDLE)
299 {
300 	SM_ENTRY(EAP, IDLE);
301 }
302 
303 
304 /*
305  * This state is entered when an EAP packet is received (eapReq == true) to
306  * parse the packet header.
307  */
308 SM_STATE(EAP, RECEIVED)
309 {
310 	const struct wpabuf *eapReqData;
311 
312 	SM_ENTRY(EAP, RECEIVED);
313 	eapReqData = eapol_get_eapReqData(sm);
314 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
315 	eap_sm_parseEapReq(sm, eapReqData);
316 	sm->num_rounds++;
317 	if (!eapReqData || wpabuf_len(eapReqData) < 20)
318 		sm->num_rounds_short++;
319 	else
320 		sm->num_rounds_short = 0;
321 }
322 
323 
324 /*
325  * This state is entered when a request for a new type comes in. Either the
326  * correct method is started, or a Nak response is built.
327  */
328 SM_STATE(EAP, GET_METHOD)
329 {
330 	int reinit;
331 	enum eap_type method;
332 	const struct eap_method *eap_method;
333 
334 	SM_ENTRY(EAP, GET_METHOD);
335 
336 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
337 		method = sm->reqVendorMethod;
338 	else
339 		method = sm->reqMethod;
340 
341 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
342 
343 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
344 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
345 			   sm->reqVendor, method);
346 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
347 			"vendor=%u method=%u -> NAK",
348 			sm->reqVendor, method);
349 		eap_notify_status(sm, "refuse proposed method",
350 				  eap_method ?  eap_method->name : "unknown");
351 		goto nak;
352 	}
353 
354 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
355 		"vendor=%u method=%u", sm->reqVendor, method);
356 
357 	eap_notify_status(sm, "accept proposed method",
358 			  eap_method ?  eap_method->name : "unknown");
359 	/*
360 	 * RFC 4137 does not define specific operation for fast
361 	 * re-authentication (session resumption). The design here is to allow
362 	 * the previously used method data to be maintained for
363 	 * re-authentication if the method support session resumption.
364 	 * Otherwise, the previously used method data is freed and a new method
365 	 * is allocated here.
366 	 */
367 	if (sm->fast_reauth &&
368 	    sm->m && sm->m->vendor == sm->reqVendor &&
369 	    sm->m->method == method &&
370 	    sm->m->has_reauth_data &&
371 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
372 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
373 			   " for fast re-authentication");
374 		reinit = 1;
375 	} else {
376 		eap_deinit_prev_method(sm, "GET_METHOD");
377 		reinit = 0;
378 	}
379 
380 	sm->selectedMethod = sm->reqMethod;
381 	if (sm->m == NULL)
382 		sm->m = eap_method;
383 	if (!sm->m) {
384 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
385 			   "vendor %d method %d",
386 			   sm->reqVendor, method);
387 		goto nak;
388 	}
389 
390 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
391 
392 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
393 		   "vendor %u method %u (%s)",
394 		   sm->reqVendor, method, sm->m->name);
395 	if (reinit) {
396 		sm->eap_method_priv = sm->m->init_for_reauth(
397 			sm, sm->eap_method_priv);
398 	} else {
399 		sm->waiting_ext_cert_check = 0;
400 		sm->ext_cert_check = 0;
401 		sm->eap_method_priv = sm->m->init(sm);
402 	}
403 
404 	if (sm->eap_method_priv == NULL) {
405 		struct eap_peer_config *config = eap_get_config(sm);
406 		wpa_msg(sm->msg_ctx, MSG_INFO,
407 			"EAP: Failed to initialize EAP method: vendor %u "
408 			"method %u (%s)",
409 			sm->reqVendor, method, sm->m->name);
410 		sm->m = NULL;
411 		sm->methodState = METHOD_NONE;
412 		sm->selectedMethod = EAP_TYPE_NONE;
413 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
414 		    (config->pending_req_pin ||
415 		     config->pending_req_passphrase)) {
416 			/*
417 			 * Return without generating Nak in order to allow
418 			 * entering of PIN code or passphrase to retry the
419 			 * current EAP packet.
420 			 */
421 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
422 				   "request - skip Nak");
423 			return;
424 		}
425 
426 		goto nak;
427 	}
428 
429 	sm->methodState = METHOD_INIT;
430 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
431 		"EAP vendor %u method %u (%s) selected",
432 		sm->reqVendor, method, sm->m->name);
433 	return;
434 
435 nak:
436 	wpabuf_free(sm->eapRespData);
437 	sm->eapRespData = NULL;
438 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
439 }
440 
441 
442 #ifdef CONFIG_ERP
443 
444 static char * eap_get_realm(struct eap_sm *sm, struct eap_peer_config *config)
445 {
446 	char *realm;
447 	size_t i, realm_len;
448 
449 	if (!config)
450 		return NULL;
451 
452 	if (config->identity) {
453 		for (i = 0; i < config->identity_len; i++) {
454 			if (config->identity[i] == '@')
455 				break;
456 		}
457 		if (i < config->identity_len) {
458 			realm_len = config->identity_len - i - 1;
459 			realm = os_malloc(realm_len + 1);
460 			if (realm == NULL)
461 				return NULL;
462 			os_memcpy(realm, &config->identity[i + 1], realm_len);
463 			realm[realm_len] = '\0';
464 			return realm;
465 		}
466 	}
467 
468 	if (config->anonymous_identity) {
469 		for (i = 0; i < config->anonymous_identity_len; i++) {
470 			if (config->anonymous_identity[i] == '@')
471 				break;
472 		}
473 		if (i < config->anonymous_identity_len) {
474 			realm_len = config->anonymous_identity_len - i - 1;
475 			realm = os_malloc(realm_len + 1);
476 			if (realm == NULL)
477 				return NULL;
478 			os_memcpy(realm, &config->anonymous_identity[i + 1],
479 				  realm_len);
480 			realm[realm_len] = '\0';
481 			return realm;
482 		}
483 	}
484 
485 #ifdef CONFIG_EAP_PROXY
486 	/* When identity is not provided in the config, build the realm from
487 	 * IMSI for eap_proxy based methods.
488 	 */
489 	if (!config->identity && !config->anonymous_identity &&
490 	    sm->eapol_cb->get_imsi &&
491 	    (eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
492 				       EAP_TYPE_SIM) ||
493 	     eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
494 				       EAP_TYPE_AKA) ||
495 	     eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
496 				       EAP_TYPE_AKA_PRIME))) {
497 		char imsi[100];
498 		size_t imsi_len;
499 		int mnc_len, pos;
500 
501 		wpa_printf(MSG_DEBUG, "EAP: Build realm from IMSI (eap_proxy)");
502 		mnc_len = sm->eapol_cb->get_imsi(sm->eapol_ctx, config->sim_num,
503 						 imsi, &imsi_len);
504 		if (mnc_len < 0)
505 			return NULL;
506 
507 		pos = imsi_len + 1; /* points to the beginning of the realm */
508 		if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
509 					     mnc_len) < 0) {
510 			wpa_printf(MSG_WARNING, "Could not append realm");
511 			return NULL;
512 		}
513 
514 		realm = os_strdup(&imsi[pos]);
515 		if (!realm)
516 			return NULL;
517 
518 		wpa_printf(MSG_DEBUG, "EAP: Generated realm '%s'", realm);
519 		return realm;
520 	}
521 #endif /* CONFIG_EAP_PROXY */
522 
523 	return NULL;
524 }
525 
526 
527 static char * eap_home_realm(struct eap_sm *sm)
528 {
529 	return eap_get_realm(sm, eap_get_config(sm));
530 }
531 
532 
533 static struct eap_erp_key *
534 eap_erp_get_key(struct eap_sm *sm, const char *realm)
535 {
536 	struct eap_erp_key *erp;
537 
538 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
539 		char *pos;
540 
541 		pos = os_strchr(erp->keyname_nai, '@');
542 		if (!pos)
543 			continue;
544 		pos++;
545 		if (os_strcmp(pos, realm) == 0)
546 			return erp;
547 	}
548 
549 	return NULL;
550 }
551 
552 
553 static struct eap_erp_key *
554 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
555 {
556 	struct eap_erp_key *erp;
557 
558 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
559 		if (os_strcmp(erp->keyname_nai, nai) == 0)
560 			return erp;
561 	}
562 
563 	return NULL;
564 }
565 
566 
567 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
568 {
569 	dl_list_del(&erp->list);
570 	bin_clear_free(erp, sizeof(*erp));
571 }
572 
573 
574 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
575 {
576 	struct eap_erp_key *erp;
577 
578 	while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
579 		wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
580 			   erp->keyname_nai);
581 		eap_peer_erp_free_key(erp);
582 	}
583 }
584 
585 
586 int eap_peer_update_erp_next_seq_num(struct eap_sm *sm, u16 next_seq_num)
587 {
588 	struct eap_erp_key *erp;
589 	char *home_realm;
590 
591 	home_realm = eap_home_realm(sm);
592 	if (!home_realm || os_strlen(home_realm) == 0) {
593 		os_free(home_realm);
594 		return -1;
595 	}
596 
597 	erp = eap_erp_get_key(sm, home_realm);
598 	if (!erp) {
599 		wpa_printf(MSG_DEBUG,
600 			   "EAP: Failed to find ERP key for realm: %s",
601 			   home_realm);
602 		os_free(home_realm);
603 		return -1;
604 	}
605 
606 	if ((u32) next_seq_num < erp->next_seq) {
607 		/* Sequence number has wrapped around, clear this ERP
608 		 * info and do a full auth next time.
609 		 */
610 		eap_peer_erp_free_key(erp);
611 	} else {
612 		erp->next_seq = (u32) next_seq_num;
613 	}
614 
615 	os_free(home_realm);
616 	return 0;
617 }
618 
619 
620 int eap_peer_get_erp_info(struct eap_sm *sm, struct eap_peer_config *config,
621 			  const u8 **username, size_t *username_len,
622 			  const u8 **realm, size_t *realm_len,
623 			  u16 *erp_next_seq_num, const u8 **rrk,
624 			  size_t *rrk_len)
625 {
626 	struct eap_erp_key *erp;
627 	char *home_realm;
628 	char *pos;
629 
630 	if (config)
631 		home_realm = eap_get_realm(sm, config);
632 	else
633 		home_realm = eap_home_realm(sm);
634 	if (!home_realm || os_strlen(home_realm) == 0) {
635 		os_free(home_realm);
636 		return -1;
637 	}
638 
639 	erp = eap_erp_get_key(sm, home_realm);
640 	os_free(home_realm);
641 	if (!erp)
642 		return -1;
643 
644 	if (erp->next_seq >= 65536)
645 		return -1; /* SEQ has range of 0..65535 */
646 
647 	pos = os_strchr(erp->keyname_nai, '@');
648 	if (!pos)
649 		return -1; /* this cannot really happen */
650 	*username_len = pos - erp->keyname_nai;
651 	*username = (u8 *) erp->keyname_nai;
652 
653 	pos++;
654 	*realm_len = os_strlen(pos);
655 	*realm = (u8 *) pos;
656 
657 	*erp_next_seq_num = (u16) erp->next_seq;
658 
659 	*rrk_len = erp->rRK_len;
660 	*rrk = erp->rRK;
661 
662 	if (*username_len == 0 || *realm_len == 0 || *rrk_len == 0)
663 		return -1;
664 
665 	return 0;
666 }
667 
668 #endif /* CONFIG_ERP */
669 
670 
671 void eap_peer_erp_free_keys(struct eap_sm *sm)
672 {
673 #ifdef CONFIG_ERP
674 	struct eap_erp_key *erp, *tmp;
675 
676 	dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
677 		eap_peer_erp_free_key(erp);
678 #endif /* CONFIG_ERP */
679 }
680 
681 
682 /* Note: If ext_session and/or ext_emsk are passed to this function, they are
683  * expected to point to allocated memory and those allocations will be freed
684  * unconditionally. */
685 void eap_peer_erp_init(struct eap_sm *sm, u8 *ext_session_id,
686 		       size_t ext_session_id_len, u8 *ext_emsk,
687 		       size_t ext_emsk_len)
688 {
689 #ifdef CONFIG_ERP
690 	u8 *emsk = NULL;
691 	size_t emsk_len = 0;
692 	u8 *session_id = NULL;
693 	size_t session_id_len = 0;
694 	u8 EMSKname[EAP_EMSK_NAME_LEN];
695 	u8 len[2], ctx[3];
696 	char *realm;
697 	size_t realm_len, nai_buf_len;
698 	struct eap_erp_key *erp = NULL;
699 	int pos;
700 
701 	realm = eap_home_realm(sm);
702 	if (!realm)
703 		goto fail;
704 	realm_len = os_strlen(realm);
705 	wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
706 	eap_erp_remove_keys_realm(sm, realm);
707 
708 	nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
709 	if (nai_buf_len > 253) {
710 		/*
711 		 * keyName-NAI has a maximum length of 253 octet to fit in
712 		 * RADIUS attributes.
713 		 */
714 		wpa_printf(MSG_DEBUG,
715 			   "EAP: Too long realm for ERP keyName-NAI maximum length");
716 		goto fail;
717 	}
718 	nai_buf_len++; /* null termination */
719 	erp = os_zalloc(sizeof(*erp) + nai_buf_len);
720 	if (erp == NULL)
721 		goto fail;
722 
723 	if (ext_emsk) {
724 		emsk = ext_emsk;
725 		emsk_len = ext_emsk_len;
726 	} else {
727 		emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
728 	}
729 
730 	if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
731 		wpa_printf(MSG_DEBUG,
732 			   "EAP: No suitable EMSK available for ERP");
733 		goto fail;
734 	}
735 
736 	wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
737 
738 	if (ext_session_id) {
739 		session_id = ext_session_id;
740 		session_id_len = ext_session_id_len;
741 	} else {
742 		session_id = sm->eapSessionId;
743 		session_id_len = sm->eapSessionIdLen;
744 	}
745 
746 	if (!session_id || session_id_len == 0) {
747 		wpa_printf(MSG_DEBUG,
748 			   "EAP: No suitable session id available for ERP");
749 		goto fail;
750 	}
751 
752 	WPA_PUT_BE16(len, EAP_EMSK_NAME_LEN);
753 	if (hmac_sha256_kdf(session_id, session_id_len, "EMSK", len,
754 			    sizeof(len), EMSKname, EAP_EMSK_NAME_LEN) < 0) {
755 		wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
756 		goto fail;
757 	}
758 	wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
759 
760 	pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
761 			       EMSKname, EAP_EMSK_NAME_LEN);
762 	erp->keyname_nai[pos] = '@';
763 	os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
764 
765 	WPA_PUT_BE16(len, emsk_len);
766 	if (hmac_sha256_kdf(emsk, emsk_len,
767 			    "EAP Re-authentication Root Key@ietf.org",
768 			    len, sizeof(len), erp->rRK, emsk_len) < 0) {
769 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
770 		goto fail;
771 	}
772 	erp->rRK_len = emsk_len;
773 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
774 
775 	ctx[0] = EAP_ERP_CS_HMAC_SHA256_128;
776 	WPA_PUT_BE16(&ctx[1], erp->rRK_len);
777 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
778 			    "Re-authentication Integrity Key@ietf.org",
779 			    ctx, sizeof(ctx), erp->rIK, erp->rRK_len) < 0) {
780 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
781 		goto fail;
782 	}
783 	erp->rIK_len = erp->rRK_len;
784 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
785 
786 	wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
787 	dl_list_add(&sm->erp_keys, &erp->list);
788 	erp = NULL;
789 fail:
790 	if (ext_emsk)
791 		bin_clear_free(ext_emsk, ext_emsk_len);
792 	else
793 		bin_clear_free(emsk, emsk_len);
794 	bin_clear_free(ext_session_id, ext_session_id_len);
795 	bin_clear_free(erp, sizeof(*erp));
796 	os_free(realm);
797 #endif /* CONFIG_ERP */
798 }
799 
800 
801 #ifdef CONFIG_ERP
802 struct wpabuf * eap_peer_build_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
803 {
804 	char *realm;
805 	struct eap_erp_key *erp;
806 	struct wpabuf *msg;
807 	u8 hash[SHA256_MAC_LEN];
808 
809 	realm = eap_home_realm(sm);
810 	if (!realm)
811 		return NULL;
812 
813 	erp = eap_erp_get_key(sm, realm);
814 	os_free(realm);
815 	realm = NULL;
816 	if (!erp)
817 		return NULL;
818 
819 	if (erp->next_seq >= 65536)
820 		return NULL; /* SEQ has range of 0..65535 */
821 
822 	/* TODO: check rRK lifetime expiration */
823 
824 	wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
825 		   erp->keyname_nai, erp->next_seq);
826 
827 	msg = eap_msg_alloc(EAP_VENDOR_IETF,
828 			    (enum eap_type) EAP_ERP_TYPE_REAUTH,
829 			    1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
830 			    EAP_CODE_INITIATE, eap_id);
831 	if (msg == NULL)
832 		return NULL;
833 
834 	wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
835 	wpabuf_put_be16(msg, erp->next_seq);
836 
837 	wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
838 	wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
839 	wpabuf_put_str(msg, erp->keyname_nai);
840 
841 	wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
842 
843 	if (hmac_sha256(erp->rIK, erp->rIK_len,
844 			wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
845 		wpabuf_free(msg);
846 		return NULL;
847 	}
848 	wpabuf_put_data(msg, hash, 16);
849 
850 	sm->erp_seq = erp->next_seq;
851 	erp->next_seq++;
852 
853 	wpa_hexdump_buf(MSG_DEBUG, "ERP: EAP-Initiate/Re-auth", msg);
854 
855 	return msg;
856 }
857 
858 
859 static int eap_peer_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
860 {
861 	struct wpabuf *msg;
862 
863 	msg = eap_peer_build_erp_reauth_start(sm, eap_id);
864 	if (!msg)
865 		return -1;
866 
867 	wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
868 	wpabuf_free(sm->eapRespData);
869 	sm->eapRespData = msg;
870 	sm->reauthInit = true;
871 	return 0;
872 }
873 #endif /* CONFIG_ERP */
874 
875 
876 /*
877  * The method processing happens here. The request from the authenticator is
878  * processed, and an appropriate response packet is built.
879  */
880 SM_STATE(EAP, METHOD)
881 {
882 	struct wpabuf *eapReqData;
883 	struct eap_method_ret ret;
884 	int min_len = 1;
885 
886 	SM_ENTRY(EAP, METHOD);
887 	if (sm->m == NULL) {
888 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
889 		return;
890 	}
891 
892 	eapReqData = eapol_get_eapReqData(sm);
893 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
894 		min_len = 0; /* LEAP uses EAP-Success without payload */
895 	if (!eap_hdr_len_valid(eapReqData, min_len))
896 		return;
897 
898 	/*
899 	 * Get ignore, methodState, decision, allowNotifications, and
900 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
901 	 * process, and buildResp) in this state. These have been combined into
902 	 * a single function call to m->process() in order to optimize EAP
903 	 * method implementation interface a bit. These procedures are only
904 	 * used from within this METHOD state, so there is no need to keep
905 	 * these as separate C functions.
906 	 *
907 	 * The RFC 4137 procedures return values as follows:
908 	 * ignore = m.check(eapReqData)
909 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
910 	 * eapRespData = m.buildResp(reqId)
911 	 */
912 	os_memset(&ret, 0, sizeof(ret));
913 	ret.ignore = sm->ignore;
914 	ret.methodState = sm->methodState;
915 	ret.decision = sm->decision;
916 	ret.allowNotifications = sm->allowNotifications;
917 	wpabuf_free(sm->eapRespData);
918 	sm->eapRespData = NULL;
919 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
920 					 eapReqData);
921 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
922 		   "methodState=%s decision=%s eapRespData=%p",
923 		   ret.ignore ? "TRUE" : "FALSE",
924 		   eap_sm_method_state_txt(ret.methodState),
925 		   eap_sm_decision_txt(ret.decision),
926 		   sm->eapRespData);
927 
928 	sm->ignore = ret.ignore;
929 	if (sm->ignore)
930 		return;
931 	sm->methodState = ret.methodState;
932 	sm->decision = ret.decision;
933 	sm->allowNotifications = ret.allowNotifications;
934 
935 	if (sm->m->isKeyAvailable && sm->m->getKey &&
936 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
937 		eap_sm_free_key(sm);
938 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
939 					       &sm->eapKeyDataLen);
940 		os_free(sm->eapSessionId);
941 		sm->eapSessionId = NULL;
942 		if (sm->m->getSessionId) {
943 			sm->eapSessionId = sm->m->getSessionId(
944 				sm, sm->eap_method_priv,
945 				&sm->eapSessionIdLen);
946 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
947 				    sm->eapSessionId, sm->eapSessionIdLen);
948 		}
949 	}
950 }
951 
952 
953 /*
954  * This state signals the lower layer that a response packet is ready to be
955  * sent.
956  */
957 SM_STATE(EAP, SEND_RESPONSE)
958 {
959 	SM_ENTRY(EAP, SEND_RESPONSE);
960 	wpabuf_free(sm->lastRespData);
961 	if (sm->eapRespData) {
962 		if (wpabuf_len(sm->eapRespData) >= 20)
963 			sm->num_rounds_short = 0;
964 		if (sm->workaround)
965 			os_memcpy(sm->last_sha1, sm->req_sha1, 20);
966 		sm->lastId = sm->reqId;
967 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
968 		eapol_set_bool(sm, EAPOL_eapResp, true);
969 	} else {
970 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
971 		sm->lastRespData = NULL;
972 	}
973 	eapol_set_bool(sm, EAPOL_eapReq, false);
974 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
975 	sm->reauthInit = false;
976 }
977 
978 
979 /*
980  * This state signals the lower layer that the request was discarded, and no
981  * response packet will be sent at this time.
982  */
983 SM_STATE(EAP, DISCARD)
984 {
985 	SM_ENTRY(EAP, DISCARD);
986 	eapol_set_bool(sm, EAPOL_eapReq, false);
987 	eapol_set_bool(sm, EAPOL_eapNoResp, true);
988 }
989 
990 
991 /*
992  * Handles requests for Identity method and builds a response.
993  */
994 SM_STATE(EAP, IDENTITY)
995 {
996 	const struct wpabuf *eapReqData;
997 
998 	SM_ENTRY(EAP, IDENTITY);
999 	eapReqData = eapol_get_eapReqData(sm);
1000 	if (!eap_hdr_len_valid(eapReqData, 1))
1001 		return;
1002 	eap_sm_processIdentity(sm, eapReqData);
1003 	wpabuf_free(sm->eapRespData);
1004 	sm->eapRespData = NULL;
1005 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
1006 }
1007 
1008 
1009 /*
1010  * Handles requests for Notification method and builds a response.
1011  */
1012 SM_STATE(EAP, NOTIFICATION)
1013 {
1014 	const struct wpabuf *eapReqData;
1015 
1016 	SM_ENTRY(EAP, NOTIFICATION);
1017 	eapReqData = eapol_get_eapReqData(sm);
1018 	if (!eap_hdr_len_valid(eapReqData, 1))
1019 		return;
1020 	eap_sm_processNotify(sm, eapReqData);
1021 	wpabuf_free(sm->eapRespData);
1022 	sm->eapRespData = NULL;
1023 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
1024 }
1025 
1026 
1027 /*
1028  * This state retransmits the previous response packet.
1029  */
1030 SM_STATE(EAP, RETRANSMIT)
1031 {
1032 	SM_ENTRY(EAP, RETRANSMIT);
1033 	wpabuf_free(sm->eapRespData);
1034 	if (sm->lastRespData)
1035 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
1036 	else
1037 		sm->eapRespData = NULL;
1038 }
1039 
1040 
1041 /*
1042  * This state is entered in case of a successful completion of authentication
1043  * and state machine waits here until port is disabled or EAP authentication is
1044  * restarted.
1045  */
1046 SM_STATE(EAP, SUCCESS)
1047 {
1048 	struct eap_peer_config *config = eap_get_config(sm);
1049 
1050 	SM_ENTRY(EAP, SUCCESS);
1051 	if (sm->eapKeyData != NULL)
1052 		sm->eapKeyAvailable = true;
1053 	eapol_set_bool(sm, EAPOL_eapSuccess, true);
1054 
1055 	/*
1056 	 * RFC 4137 does not clear eapReq here, but this seems to be required
1057 	 * to avoid processing the same request twice when state machine is
1058 	 * initialized.
1059 	 */
1060 	eapol_set_bool(sm, EAPOL_eapReq, false);
1061 
1062 	/*
1063 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
1064 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
1065 	 * addition, either eapResp or eapNoResp is required to be set after
1066 	 * processing the received EAP frame.
1067 	 */
1068 	eapol_set_bool(sm, EAPOL_eapNoResp, true);
1069 
1070 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1071 		"EAP authentication completed successfully");
1072 
1073 	if (!config || !sm->m) {
1074 		/*
1075 		 * This should not happen under normal conditions, but be more
1076 		 * careful here since there was an earlier case where
1077 		 * EAP-Success could end up getting delivered to the state
1078 		 * machine for processing after the state had been cleaned with
1079 		 * a call to eap_invalidate_cached_session() (and also
1080 		 * eapol_sm_notify_config() having been used to clear EAP
1081 		 * configuration in the EAPOL state machine).
1082 		 */
1083 		wpa_printf(MSG_DEBUG,
1084 			   "EAP: State machine not configured - cannot initialize ERP");
1085 		return;
1086 	}
1087 	if (config->erp && sm->m->get_emsk && sm->eapSessionId &&
1088 	    sm->m->isKeyAvailable &&
1089 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv))
1090 		eap_peer_erp_init(sm, NULL, 0, NULL, 0);
1091 }
1092 
1093 
1094 /*
1095  * This state is entered in case of a failure and state machine waits here
1096  * until port is disabled or EAP authentication is restarted.
1097  */
1098 SM_STATE(EAP, FAILURE)
1099 {
1100 	SM_ENTRY(EAP, FAILURE);
1101 	eapol_set_bool(sm, EAPOL_eapFail, true);
1102 
1103 	/*
1104 	 * RFC 4137 does not clear eapReq here, but this seems to be required
1105 	 * to avoid processing the same request twice when state machine is
1106 	 * initialized.
1107 	 */
1108 	eapol_set_bool(sm, EAPOL_eapReq, false);
1109 
1110 	/*
1111 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
1112 	 * eapNoResp is required to be set after processing the received EAP
1113 	 * frame.
1114 	 */
1115 	eapol_set_bool(sm, EAPOL_eapNoResp, true);
1116 
1117 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1118 		"EAP authentication failed");
1119 
1120 	sm->prev_failure = 1;
1121 }
1122 
1123 
1124 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
1125 {
1126 	/*
1127 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
1128 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
1129 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
1130 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
1131 	 *
1132 	 * Accept this kind of Id if EAP workarounds are enabled. These are
1133 	 * unauthenticated plaintext messages, so this should have minimal
1134 	 * security implications (bit easier to fake EAP-Success/Failure).
1135 	 */
1136 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
1137 			       reqId == ((lastId + 2) & 0xff))) {
1138 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
1139 			   "identifier field in EAP Success: "
1140 			   "reqId=%d lastId=%d (these are supposed to be "
1141 			   "same)", reqId, lastId);
1142 		return 1;
1143 	}
1144 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
1145 		   "lastId=%d", reqId, lastId);
1146 	return 0;
1147 }
1148 
1149 
1150 /*
1151  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
1152  */
1153 
1154 static void eap_peer_sm_step_idle(struct eap_sm *sm)
1155 {
1156 	/*
1157 	 * The first three transitions are from RFC 4137. The last two are
1158 	 * local additions to handle special cases with LEAP and PEAP server
1159 	 * not sending EAP-Success in some cases.
1160 	 */
1161 	if (eapol_get_bool(sm, EAPOL_eapReq))
1162 		SM_ENTER(EAP, RECEIVED);
1163 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
1164 		  sm->decision != DECISION_FAIL) ||
1165 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1166 		  sm->decision == DECISION_UNCOND_SUCC))
1167 		SM_ENTER(EAP, SUCCESS);
1168 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
1169 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1170 		  sm->decision != DECISION_UNCOND_SUCC) ||
1171 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
1172 		  sm->methodState != METHOD_CONT &&
1173 		  sm->decision == DECISION_FAIL))
1174 		SM_ENTER(EAP, FAILURE);
1175 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1176 		 sm->leap_done && sm->decision != DECISION_FAIL &&
1177 		 sm->methodState == METHOD_DONE)
1178 		SM_ENTER(EAP, SUCCESS);
1179 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
1180 		 sm->peap_done && sm->decision != DECISION_FAIL &&
1181 		 sm->methodState == METHOD_DONE)
1182 		SM_ENTER(EAP, SUCCESS);
1183 }
1184 
1185 
1186 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
1187 {
1188 	int duplicate;
1189 
1190 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
1191 	if (sm->workaround && duplicate &&
1192 	    os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
1193 		/*
1194 		 * RFC 4137 uses (reqId == lastId) as the only verification for
1195 		 * duplicate EAP requests. However, this misses cases where the
1196 		 * AS is incorrectly using the same id again; and
1197 		 * unfortunately, such implementations exist. Use SHA1 hash as
1198 		 * an extra verification for the packets being duplicate to
1199 		 * workaround these issues.
1200 		 */
1201 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
1202 			   "EAP packets were not identical");
1203 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
1204 			   "duplicate packet");
1205 		duplicate = 0;
1206 	}
1207 
1208 	return duplicate;
1209 }
1210 
1211 
1212 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
1213 {
1214 	struct eap_peer_config *config = eap_get_config(sm);
1215 
1216 	return config && config->phase1 &&
1217 		os_strstr(config->phase1, "allow_canned_success=1");
1218 }
1219 
1220 
1221 static void eap_peer_sm_step_received(struct eap_sm *sm)
1222 {
1223 	int duplicate = eap_peer_req_is_duplicate(sm);
1224 
1225 	/*
1226 	 * Two special cases below for LEAP are local additions to work around
1227 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
1228 	 * then swapped roles). Other transitions are based on RFC 4137.
1229 	 */
1230 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
1231 	    (sm->reqId == sm->lastId ||
1232 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
1233 		SM_ENTER(EAP, SUCCESS);
1234 	else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
1235 		 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
1236 		SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
1237 	else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
1238 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
1239 		 eap_peer_sm_allow_canned(sm))
1240 		SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
1241 	else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
1242 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
1243 		 eap_peer_sm_allow_canned(sm))
1244 		SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
1245 	else if (sm->methodState != METHOD_CONT &&
1246 		 ((sm->rxFailure &&
1247 		   sm->decision != DECISION_UNCOND_SUCC) ||
1248 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
1249 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
1250 		    sm->methodState != METHOD_MAY_CONT))) &&
1251 		 (sm->reqId == sm->lastId ||
1252 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
1253 		SM_ENTER(EAP, FAILURE);
1254 	else if (sm->rxReq && duplicate)
1255 		SM_ENTER(EAP, RETRANSMIT);
1256 	else if (sm->rxReq && !duplicate &&
1257 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
1258 		 sm->allowNotifications)
1259 		SM_ENTER(EAP, NOTIFICATION);
1260 	else if (sm->rxReq && !duplicate &&
1261 		 sm->selectedMethod == EAP_TYPE_NONE &&
1262 		 sm->reqMethod == EAP_TYPE_IDENTITY)
1263 		SM_ENTER(EAP, IDENTITY);
1264 	else if (sm->rxReq && !duplicate &&
1265 		 sm->selectedMethod == EAP_TYPE_NONE &&
1266 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
1267 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
1268 		SM_ENTER(EAP, GET_METHOD);
1269 	else if (sm->rxReq && !duplicate &&
1270 		 sm->reqMethod == sm->selectedMethod &&
1271 		 sm->methodState != METHOD_DONE)
1272 		SM_ENTER(EAP, METHOD);
1273 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1274 		 (sm->rxSuccess || sm->rxResp))
1275 		SM_ENTER(EAP, METHOD);
1276 	else if (sm->reauthInit)
1277 		SM_ENTER(EAP, SEND_RESPONSE);
1278 	else
1279 		SM_ENTER(EAP, DISCARD);
1280 }
1281 
1282 
1283 static void eap_peer_sm_step_local(struct eap_sm *sm)
1284 {
1285 	switch (sm->EAP_state) {
1286 	case EAP_INITIALIZE:
1287 		SM_ENTER(EAP, IDLE);
1288 		break;
1289 	case EAP_DISABLED:
1290 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1291 		    !sm->force_disabled)
1292 			SM_ENTER(EAP, INITIALIZE);
1293 		break;
1294 	case EAP_IDLE:
1295 		eap_peer_sm_step_idle(sm);
1296 		break;
1297 	case EAP_RECEIVED:
1298 		eap_peer_sm_step_received(sm);
1299 		break;
1300 	case EAP_GET_METHOD:
1301 		if (sm->selectedMethod == sm->reqMethod)
1302 			SM_ENTER(EAP, METHOD);
1303 		else
1304 			SM_ENTER(EAP, SEND_RESPONSE);
1305 		break;
1306 	case EAP_METHOD:
1307 		/*
1308 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1309 		 * as the condition. eapRespData == NULL here is used to allow
1310 		 * final EAP method response to be sent without having to change
1311 		 * all methods to either use methodState MAY_CONT or leaving
1312 		 * decision to something else than FAIL in cases where the only
1313 		 * expected response is EAP-Failure.
1314 		 */
1315 		if (sm->ignore)
1316 			SM_ENTER(EAP, DISCARD);
1317 		else if (sm->methodState == METHOD_DONE &&
1318 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
1319 			SM_ENTER(EAP, FAILURE);
1320 		else
1321 			SM_ENTER(EAP, SEND_RESPONSE);
1322 		break;
1323 	case EAP_SEND_RESPONSE:
1324 		SM_ENTER(EAP, IDLE);
1325 		break;
1326 	case EAP_DISCARD:
1327 		SM_ENTER(EAP, IDLE);
1328 		break;
1329 	case EAP_IDENTITY:
1330 		SM_ENTER(EAP, SEND_RESPONSE);
1331 		break;
1332 	case EAP_NOTIFICATION:
1333 		SM_ENTER(EAP, SEND_RESPONSE);
1334 		break;
1335 	case EAP_RETRANSMIT:
1336 		SM_ENTER(EAP, SEND_RESPONSE);
1337 		break;
1338 	case EAP_SUCCESS:
1339 		break;
1340 	case EAP_FAILURE:
1341 		break;
1342 	}
1343 }
1344 
1345 
1346 SM_STEP(EAP)
1347 {
1348 	/* Global transitions */
1349 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1350 	    eapol_get_bool(sm, EAPOL_portEnabled))
1351 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
1352 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1353 		SM_ENTER_GLOBAL(EAP, DISABLED);
1354 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1355 		/* RFC 4137 does not place any limit on number of EAP messages
1356 		 * in an authentication session. However, some error cases have
1357 		 * ended up in a state were EAP messages were sent between the
1358 		 * peer and server in a loop (e.g., TLS ACK frame in both
1359 		 * direction). Since this is quite undesired outcome, limit the
1360 		 * total number of EAP round-trips and abort authentication if
1361 		 * this limit is exceeded.
1362 		 */
1363 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1364 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1365 				"authentication rounds - abort",
1366 				EAP_MAX_AUTH_ROUNDS);
1367 			sm->num_rounds++;
1368 			SM_ENTER_GLOBAL(EAP, FAILURE);
1369 		}
1370 	} else if (sm->num_rounds_short > EAP_MAX_AUTH_ROUNDS_SHORT) {
1371 		if (sm->num_rounds_short == EAP_MAX_AUTH_ROUNDS_SHORT + 1) {
1372 			wpa_msg(sm->msg_ctx, MSG_INFO,
1373 				"EAP: more than %d authentication rounds (short) - abort",
1374 				EAP_MAX_AUTH_ROUNDS_SHORT);
1375 			sm->num_rounds_short++;
1376 			SM_ENTER_GLOBAL(EAP, FAILURE);
1377 		}
1378 	} else {
1379 		/* Local transitions */
1380 		eap_peer_sm_step_local(sm);
1381 	}
1382 }
1383 
1384 
1385 static bool eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1386 			       enum eap_type method)
1387 {
1388 	if (!eap_allowed_method(sm, vendor, method)) {
1389 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1390 			   "vendor %u method %u", vendor, method);
1391 		return false;
1392 	}
1393 	if (eap_peer_get_eap_method(vendor, method))
1394 		return true;
1395 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1396 		   "vendor %u method %u", vendor, method);
1397 	return false;
1398 }
1399 
1400 
1401 static struct wpabuf * eap_sm_build_expanded_nak(
1402 	struct eap_sm *sm, int id, const struct eap_method *methods,
1403 	size_t count)
1404 {
1405 	struct wpabuf *resp;
1406 	int found = 0;
1407 	const struct eap_method *m;
1408 
1409 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1410 
1411 	/* RFC 3748 - 5.3.2: Expanded Nak */
1412 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1413 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1414 	if (resp == NULL)
1415 		return NULL;
1416 
1417 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1418 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
1419 
1420 	for (m = methods; m; m = m->next) {
1421 		if (sm->reqVendor == m->vendor &&
1422 		    sm->reqVendorMethod == m->method)
1423 			continue; /* do not allow the current method again */
1424 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1425 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1426 				   "vendor=%u method=%u",
1427 				   m->vendor, m->method);
1428 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1429 			wpabuf_put_be24(resp, m->vendor);
1430 			wpabuf_put_be32(resp, m->method);
1431 
1432 			found++;
1433 		}
1434 	}
1435 	if (!found) {
1436 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1437 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1438 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1439 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
1440 	}
1441 
1442 	eap_update_len(resp);
1443 
1444 	return resp;
1445 }
1446 
1447 
1448 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1449 {
1450 	struct wpabuf *resp;
1451 	u8 *start;
1452 	int found = 0, expanded_found = 0;
1453 	size_t count;
1454 	const struct eap_method *methods, *m;
1455 
1456 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1457 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
1458 		   sm->reqVendor, sm->reqVendorMethod);
1459 	methods = eap_peer_get_methods(&count);
1460 	if (methods == NULL)
1461 		return NULL;
1462 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
1463 		return eap_sm_build_expanded_nak(sm, id, methods, count);
1464 
1465 	/* RFC 3748 - 5.3.1: Legacy Nak */
1466 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1467 			     sizeof(struct eap_hdr) + 1 + count + 1,
1468 			     EAP_CODE_RESPONSE, id);
1469 	if (resp == NULL)
1470 		return NULL;
1471 
1472 	start = wpabuf_put(resp, 0);
1473 	for (m = methods; m; m = m->next) {
1474 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1475 			continue; /* do not allow the current method again */
1476 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1477 			if (m->vendor != EAP_VENDOR_IETF) {
1478 				if (expanded_found)
1479 					continue;
1480 				expanded_found = 1;
1481 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1482 			} else
1483 				wpabuf_put_u8(resp, m->method);
1484 			found++;
1485 		}
1486 	}
1487 	if (!found)
1488 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
1489 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1490 
1491 	eap_update_len(resp);
1492 
1493 	return resp;
1494 }
1495 
1496 
1497 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1498 {
1499 	const u8 *pos;
1500 	size_t msg_len;
1501 
1502 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1503 		"EAP authentication started");
1504 	eap_notify_status(sm, "started", "");
1505 
1506 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1507 			       &msg_len);
1508 	if (pos == NULL)
1509 		return;
1510 
1511 	/*
1512 	 * RFC 3748 - 5.1: Identity
1513 	 * Data field may contain a displayable message in UTF-8. If this
1514 	 * includes NUL-character, only the data before that should be
1515 	 * displayed. Some EAP implementasitons may piggy-back additional
1516 	 * options after the NUL.
1517 	 */
1518 	/* TODO: could save displayable message so that it can be shown to the
1519 	 * user in case of interaction is required */
1520 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1521 			  pos, msg_len);
1522 }
1523 
1524 
1525 #ifdef PCSC_FUNCS
1526 
1527 /*
1528  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1529  * include MNC length field.
1530  */
1531 static int mnc_len_from_imsi(const char *imsi)
1532 {
1533 	char mcc_str[4];
1534 	unsigned int mcc;
1535 
1536 	os_memcpy(mcc_str, imsi, 3);
1537 	mcc_str[3] = '\0';
1538 	mcc = atoi(mcc_str);
1539 
1540 	if (mcc == 228)
1541 		return 2; /* Networks in Switzerland use 2-digit MNC */
1542 	if (mcc == 244)
1543 		return 2; /* Networks in Finland use 2-digit MNC */
1544 
1545 	return -1;
1546 }
1547 
1548 
1549 static int eap_sm_imsi_identity(struct eap_sm *sm,
1550 				struct eap_peer_config *conf)
1551 {
1552 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1553 	char imsi[100];
1554 	size_t imsi_len;
1555 	struct eap_method_type *m = conf->eap_methods;
1556 	int i, mnc_len;
1557 
1558 	imsi_len = sizeof(imsi);
1559 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1560 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1561 		return -1;
1562 	}
1563 
1564 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1565 
1566 	if (imsi_len < 7) {
1567 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1568 		return -1;
1569 	}
1570 
1571 	/* MNC (2 or 3 digits) */
1572 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
1573 	if (mnc_len < 0)
1574 		mnc_len = mnc_len_from_imsi(imsi);
1575 	if (mnc_len < 0) {
1576 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1577 			   "assuming 3");
1578 		mnc_len = 3;
1579 	}
1580 
1581 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
1582 				     mnc_len) < 0) {
1583 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1584 		return -1;
1585 	}
1586 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1587 
1588 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1589 			  m[i].method != EAP_TYPE_NONE); i++) {
1590 		if (m[i].vendor == EAP_VENDOR_IETF &&
1591 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1592 			method = EAP_SM_AKA_PRIME;
1593 			break;
1594 		}
1595 
1596 		if (m[i].vendor == EAP_VENDOR_IETF &&
1597 		    m[i].method == EAP_TYPE_AKA) {
1598 			method = EAP_SM_AKA;
1599 			break;
1600 		}
1601 	}
1602 
1603 	os_free(conf->identity);
1604 	conf->identity = os_malloc(1 + imsi_len);
1605 	if (conf->identity == NULL) {
1606 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1607 			   "IMSI-based identity");
1608 		return -1;
1609 	}
1610 
1611 	switch (method) {
1612 	case EAP_SM_SIM:
1613 		conf->identity[0] = '1';
1614 		break;
1615 	case EAP_SM_AKA:
1616 		conf->identity[0] = '0';
1617 		break;
1618 	case EAP_SM_AKA_PRIME:
1619 		conf->identity[0] = '6';
1620 		break;
1621 	}
1622 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1623 	conf->identity_len = 1 + imsi_len;
1624 
1625 	return 0;
1626 }
1627 
1628 
1629 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1630 				struct eap_peer_config *conf)
1631 {
1632 	if (scard_set_pin(sm->scard_ctx, conf->cert.pin)) {
1633 		/*
1634 		 * Make sure the same PIN is not tried again in order to avoid
1635 		 * blocking SIM.
1636 		 */
1637 		os_free(conf->cert.pin);
1638 		conf->cert.pin = NULL;
1639 
1640 		wpa_printf(MSG_WARNING, "PIN validation failed");
1641 		eap_sm_request_pin(sm);
1642 		return -1;
1643 	}
1644 	return 0;
1645 }
1646 
1647 
1648 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1649 				     struct eap_peer_config *conf)
1650 {
1651 	if (eap_sm_set_scard_pin(sm, conf))
1652 		return -1;
1653 
1654 	return eap_sm_imsi_identity(sm, conf);
1655 }
1656 
1657 #endif /* PCSC_FUNCS */
1658 
1659 
1660 /**
1661  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1662  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1663  * @id: EAP identifier for the packet
1664  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1665  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1666  * failure
1667  *
1668  * This function allocates and builds an EAP-Identity/Response packet for the
1669  * current network. The caller is responsible for freeing the returned data.
1670  */
1671 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1672 {
1673 	struct eap_peer_config *config = eap_get_config(sm);
1674 	struct wpabuf *resp;
1675 	const u8 *identity;
1676 	size_t identity_len;
1677 	struct wpabuf *privacy_identity = NULL;
1678 
1679 	if (config == NULL) {
1680 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1681 			   "was not available");
1682 		return NULL;
1683 	}
1684 
1685 	if (sm->m && sm->m->get_identity &&
1686 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1687 					    &identity_len)) != NULL) {
1688 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1689 				  "identity", identity, identity_len);
1690 	} else if (!encrypted && config->anonymous_identity) {
1691 		identity = config->anonymous_identity;
1692 		identity_len = config->anonymous_identity_len;
1693 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1694 				  identity, identity_len);
1695 	} else if (sm->use_machine_cred) {
1696 		identity = config->machine_identity;
1697 		identity_len = config->machine_identity_len;
1698 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using machine identity",
1699 				  identity, identity_len);
1700 	} else if (config->imsi_privacy_cert && config->identity &&
1701 		   config->identity_len > 0) {
1702 		const u8 *pos = config->identity;
1703 		const u8 *end = config->identity + config->identity_len;
1704 
1705 		privacy_identity = wpabuf_alloc(9 + config->identity_len);
1706 		if (!privacy_identity)
1707 			return NULL;
1708 
1709 		/* Include method prefix */
1710 		if (*pos == '0' || *pos == '1' || *pos == '6')
1711 			wpabuf_put_u8(privacy_identity, *pos);
1712 		wpabuf_put_str(privacy_identity, "anonymous");
1713 
1714 		/* Include realm */
1715 		while (pos < end && *pos != '@')
1716 			pos++;
1717 		wpabuf_put_data(privacy_identity, pos, end - pos);
1718 
1719 		identity = wpabuf_head(privacy_identity);
1720 		identity_len = wpabuf_len(privacy_identity);
1721 		wpa_hexdump_ascii(MSG_DEBUG,
1722 				  "EAP: using IMSI privacy anonymous identity",
1723 				  identity, identity_len);
1724 	} else {
1725 		identity = config->identity;
1726 		identity_len = config->identity_len;
1727 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1728 				  identity, identity_len);
1729 	}
1730 
1731 	if (config->pcsc) {
1732 #ifdef PCSC_FUNCS
1733 		if (!identity) {
1734 			if (eap_sm_get_scard_identity(sm, config) < 0)
1735 				return NULL;
1736 			identity = config->identity;
1737 			identity_len = config->identity_len;
1738 			wpa_hexdump_ascii(MSG_DEBUG,
1739 					  "permanent identity from IMSI",
1740 					  identity, identity_len);
1741 		} else if (eap_sm_set_scard_pin(sm, config) < 0) {
1742 			return NULL;
1743 		}
1744 #else /* PCSC_FUNCS */
1745 		return NULL;
1746 #endif /* PCSC_FUNCS */
1747 	} else if (!identity) {
1748 		wpa_printf(MSG_WARNING,
1749 			"EAP: buildIdentity: identity configuration was not available");
1750 		eap_sm_request_identity(sm);
1751 		return NULL;
1752 	}
1753 
1754 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1755 			     EAP_CODE_RESPONSE, id);
1756 	if (resp == NULL)
1757 		return NULL;
1758 
1759 	wpabuf_put_data(resp, identity, identity_len);
1760 
1761 	os_free(sm->identity);
1762 	sm->identity = os_memdup(identity, identity_len);
1763 	sm->identity_len = identity_len;
1764 
1765 	wpabuf_free(privacy_identity);
1766 
1767 	return resp;
1768 }
1769 
1770 
1771 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1772 {
1773 	const u8 *pos;
1774 	char *msg;
1775 	size_t i, msg_len;
1776 
1777 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1778 			       &msg_len);
1779 	if (pos == NULL)
1780 		return;
1781 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1782 			  pos, msg_len);
1783 
1784 	msg = os_malloc(msg_len + 1);
1785 	if (msg == NULL)
1786 		return;
1787 	for (i = 0; i < msg_len; i++)
1788 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1789 	msg[msg_len] = '\0';
1790 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1791 		WPA_EVENT_EAP_NOTIFICATION, msg);
1792 	os_free(msg);
1793 }
1794 
1795 
1796 static struct wpabuf * eap_sm_buildNotify(int id)
1797 {
1798 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1799 	return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1800 			EAP_CODE_RESPONSE, id);
1801 }
1802 
1803 
1804 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1805 			      size_t len)
1806 {
1807 #ifdef CONFIG_ERP
1808 	const u8 *pos = (const u8 *) (hdr + 1);
1809 	const u8 *end = ((const u8 *) hdr) + len;
1810 	struct erp_tlvs parse;
1811 
1812 	if (len < sizeof(*hdr) + 1) {
1813 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1814 		return;
1815 	}
1816 
1817 	if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1818 		wpa_printf(MSG_DEBUG,
1819 			   "EAP: Ignored unexpected EAP-Initiate Type=%u",
1820 			   *pos);
1821 		return;
1822 	}
1823 
1824 	pos++;
1825 	if (pos >= end) {
1826 		wpa_printf(MSG_DEBUG,
1827 			   "EAP: Too short EAP-Initiate/Re-auth-Start");
1828 		return;
1829 	}
1830 	pos++; /* Reserved */
1831 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1832 		    pos, end - pos);
1833 
1834 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1835 		goto invalid;
1836 
1837 	if (parse.domain) {
1838 		wpa_hexdump_ascii(MSG_DEBUG,
1839 				  "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1840 				  parse.domain, parse.domain_len);
1841 		/* TODO: Derivation of domain specific keys for local ER */
1842 	}
1843 
1844 	if (eap_peer_erp_reauth_start(sm, hdr->identifier) == 0)
1845 		return;
1846 
1847 invalid:
1848 #endif /* CONFIG_ERP */
1849 	wpa_printf(MSG_DEBUG,
1850 		   "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1851 	eapol_set_bool(sm, EAPOL_eapTriggerStart, true);
1852 }
1853 
1854 
1855 void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr, size_t len)
1856 {
1857 #ifdef CONFIG_ERP
1858 	const u8 *pos = (const u8 *) (hdr + 1);
1859 	const u8 *end = ((const u8 *) hdr) + len;
1860 	const u8 *start;
1861 	struct erp_tlvs parse;
1862 	u8 flags;
1863 	u16 seq;
1864 	u8 hash[SHA256_MAC_LEN];
1865 	size_t hash_len;
1866 	struct eap_erp_key *erp;
1867 	int max_len;
1868 	char nai[254];
1869 	u8 seed[4];
1870 	int auth_tag_ok = 0;
1871 
1872 	if (len < sizeof(*hdr) + 1) {
1873 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1874 		return;
1875 	}
1876 
1877 	if (*pos != EAP_ERP_TYPE_REAUTH) {
1878 		wpa_printf(MSG_DEBUG,
1879 			   "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1880 		return;
1881 	}
1882 
1883 	if (len < sizeof(*hdr) + 4) {
1884 		wpa_printf(MSG_DEBUG,
1885 			   "EAP: Ignored too short EAP-Finish/Re-auth");
1886 		return;
1887 	}
1888 
1889 	pos++;
1890 	flags = *pos++;
1891 	seq = WPA_GET_BE16(pos);
1892 	pos += 2;
1893 	wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1894 
1895 	if (seq != sm->erp_seq) {
1896 		wpa_printf(MSG_DEBUG,
1897 			   "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1898 		return;
1899 	}
1900 
1901 	/*
1902 	 * Parse TVs/TLVs. Since we do not yet know the length of the
1903 	 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1904 	 * just try to find the keyName-NAI first so that we can check the
1905 	 * Authentication Tag.
1906 	 */
1907 	if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1908 		return;
1909 
1910 	if (!parse.keyname) {
1911 		wpa_printf(MSG_DEBUG,
1912 			   "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1913 		return;
1914 	}
1915 
1916 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1917 			  parse.keyname, parse.keyname_len);
1918 	if (parse.keyname_len > 253) {
1919 		wpa_printf(MSG_DEBUG,
1920 			   "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1921 		return;
1922 	}
1923 	os_memcpy(nai, parse.keyname, parse.keyname_len);
1924 	nai[parse.keyname_len] = '\0';
1925 
1926 	erp = eap_erp_get_key_nai(sm, nai);
1927 	if (!erp) {
1928 		wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1929 			   nai);
1930 		return;
1931 	}
1932 
1933 	/* Is there enough room for Cryptosuite and Authentication Tag? */
1934 	start = parse.keyname + parse.keyname_len;
1935 	max_len = end - start;
1936 	hash_len = 16;
1937 	if (max_len < 1 + (int) hash_len) {
1938 		wpa_printf(MSG_DEBUG,
1939 			   "EAP: Not enough room for Authentication Tag");
1940 		if (flags & 0x80)
1941 			goto no_auth_tag;
1942 		return;
1943 	}
1944 	if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1945 		wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1946 		if (flags & 0x80)
1947 			goto no_auth_tag;
1948 		return;
1949 	}
1950 
1951 	if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1952 			end - ((const u8 *) hdr) - hash_len, hash) < 0)
1953 		return;
1954 	if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1955 		wpa_printf(MSG_DEBUG,
1956 			   "EAP: Authentication Tag mismatch");
1957 		return;
1958 	}
1959 	auth_tag_ok = 1;
1960 	end -= 1 + hash_len;
1961 
1962 no_auth_tag:
1963 	/*
1964 	 * Parse TVs/TLVs again now that we know the exact part of the buffer
1965 	 * that contains them.
1966 	 */
1967 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1968 		    pos, end - pos);
1969 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1970 		return;
1971 
1972 	if (flags & 0x80 || !auth_tag_ok) {
1973 		wpa_printf(MSG_DEBUG,
1974 			   "EAP: EAP-Finish/Re-auth indicated failure");
1975 		eapol_set_bool(sm, EAPOL_eapFail, true);
1976 		eapol_set_bool(sm, EAPOL_eapReq, false);
1977 		eapol_set_bool(sm, EAPOL_eapNoResp, true);
1978 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1979 			"EAP authentication failed");
1980 		sm->prev_failure = 1;
1981 		wpa_printf(MSG_DEBUG,
1982 			   "EAP: Drop ERP key to try full authentication on next attempt");
1983 		eap_peer_erp_free_key(erp);
1984 		return;
1985 	}
1986 
1987 	eap_sm_free_key(sm);
1988 	sm->eapKeyDataLen = 0;
1989 	sm->eapKeyData = os_malloc(erp->rRK_len);
1990 	if (!sm->eapKeyData)
1991 		return;
1992 	sm->eapKeyDataLen = erp->rRK_len;
1993 
1994 	WPA_PUT_BE16(seed, seq);
1995 	WPA_PUT_BE16(&seed[2], erp->rRK_len);
1996 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1997 			    "Re-authentication Master Session Key@ietf.org",
1998 			    seed, sizeof(seed),
1999 			    sm->eapKeyData, erp->rRK_len) < 0) {
2000 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
2001 		eap_sm_free_key(sm);
2002 		return;
2003 	}
2004 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
2005 			sm->eapKeyData, sm->eapKeyDataLen);
2006 	sm->eapKeyAvailable = true;
2007 	eapol_set_bool(sm, EAPOL_eapSuccess, true);
2008 	eapol_set_bool(sm, EAPOL_eapReq, false);
2009 	eapol_set_bool(sm, EAPOL_eapNoResp, true);
2010 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2011 		"EAP re-authentication completed successfully");
2012 #endif /* CONFIG_ERP */
2013 }
2014 
2015 
2016 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
2017 {
2018 	const struct eap_hdr *hdr;
2019 	size_t plen;
2020 	const u8 *pos;
2021 
2022 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = false;
2023 	sm->reqId = 0;
2024 	sm->reqMethod = EAP_TYPE_NONE;
2025 	sm->reqVendor = EAP_VENDOR_IETF;
2026 	sm->reqVendorMethod = EAP_TYPE_NONE;
2027 
2028 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
2029 		return;
2030 
2031 	hdr = wpabuf_head(req);
2032 	plen = be_to_host16(hdr->length);
2033 	if (plen > wpabuf_len(req)) {
2034 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
2035 			   "(len=%lu plen=%lu)",
2036 			   (unsigned long) wpabuf_len(req),
2037 			   (unsigned long) plen);
2038 		return;
2039 	}
2040 
2041 	sm->reqId = hdr->identifier;
2042 
2043 	if (sm->workaround) {
2044 		const u8 *addr[1];
2045 		addr[0] = wpabuf_head(req);
2046 		sha1_vector(1, addr, &plen, sm->req_sha1);
2047 	}
2048 
2049 	switch (hdr->code) {
2050 	case EAP_CODE_REQUEST:
2051 		if (plen < sizeof(*hdr) + 1) {
2052 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
2053 				   "no Type field");
2054 			return;
2055 		}
2056 		sm->rxReq = true;
2057 		pos = (const u8 *) (hdr + 1);
2058 		sm->reqMethod = *pos++;
2059 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
2060 			if (plen < sizeof(*hdr) + 8) {
2061 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
2062 					   "expanded EAP-Packet (plen=%lu)",
2063 					   (unsigned long) plen);
2064 				return;
2065 			}
2066 			sm->reqVendor = WPA_GET_BE24(pos);
2067 			pos += 3;
2068 			sm->reqVendorMethod = WPA_GET_BE32(pos);
2069 		}
2070 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
2071 			   "method=%u vendor=%u vendorMethod=%u",
2072 			   sm->reqId, sm->reqMethod, sm->reqVendor,
2073 			   sm->reqVendorMethod);
2074 		break;
2075 	case EAP_CODE_RESPONSE:
2076 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
2077 			/*
2078 			 * LEAP differs from RFC 4137 by using reversed roles
2079 			 * for mutual authentication and because of this, we
2080 			 * need to accept EAP-Response frames if LEAP is used.
2081 			 */
2082 			if (plen < sizeof(*hdr) + 1) {
2083 				wpa_printf(MSG_DEBUG, "EAP: Too short "
2084 					   "EAP-Response - no Type field");
2085 				return;
2086 			}
2087 			sm->rxResp = true;
2088 			pos = (const u8 *) (hdr + 1);
2089 			sm->reqMethod = *pos;
2090 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
2091 				   "LEAP method=%d id=%d",
2092 				   sm->reqMethod, sm->reqId);
2093 			break;
2094 		}
2095 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
2096 		break;
2097 	case EAP_CODE_SUCCESS:
2098 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
2099 		eap_notify_status(sm, "completion", "success");
2100 		sm->rxSuccess = true;
2101 		break;
2102 	case EAP_CODE_FAILURE:
2103 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
2104 		eap_notify_status(sm, "completion", "failure");
2105 
2106 		/* Get the error code from method */
2107 		if (sm->m && sm->m->get_error_code) {
2108 			int error_code;
2109 
2110 			error_code = sm->m->get_error_code(sm->eap_method_priv);
2111 			if (error_code != NO_EAP_METHOD_ERROR)
2112 				eap_report_error(sm, error_code);
2113 		}
2114 		sm->rxFailure = true;
2115 		break;
2116 	case EAP_CODE_INITIATE:
2117 		eap_peer_initiate(sm, hdr, plen);
2118 		break;
2119 	case EAP_CODE_FINISH:
2120 		eap_peer_finish(sm, hdr, plen);
2121 		break;
2122 	default:
2123 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
2124 			   "code %d", hdr->code);
2125 		break;
2126 	}
2127 }
2128 
2129 
2130 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
2131 				  union tls_event_data *data)
2132 {
2133 	struct eap_sm *sm = ctx;
2134 	char *hash_hex = NULL;
2135 
2136 	switch (ev) {
2137 	case TLS_CERT_CHAIN_SUCCESS:
2138 		eap_notify_status(sm, "remote certificate verification",
2139 				  "success");
2140 		if (sm->ext_cert_check) {
2141 			sm->waiting_ext_cert_check = 1;
2142 			eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
2143 				       NULL, 0);
2144 		}
2145 		break;
2146 	case TLS_CERT_CHAIN_FAILURE:
2147 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
2148 			"reason=%d depth=%d subject='%s' err='%s'",
2149 			data->cert_fail.reason,
2150 			data->cert_fail.depth,
2151 			data->cert_fail.subject,
2152 			data->cert_fail.reason_txt);
2153 		eap_notify_status(sm, "remote certificate verification",
2154 				  data->cert_fail.reason_txt);
2155 		break;
2156 	case TLS_PEER_CERTIFICATE:
2157 		if (!sm->eapol_cb->notify_cert)
2158 			break;
2159 
2160 		if (data->peer_cert.hash) {
2161 			size_t len = data->peer_cert.hash_len * 2 + 1;
2162 			hash_hex = os_malloc(len);
2163 			if (hash_hex) {
2164 				wpa_snprintf_hex(hash_hex, len,
2165 						 data->peer_cert.hash,
2166 						 data->peer_cert.hash_len);
2167 			}
2168 		}
2169 
2170 		sm->eapol_cb->notify_cert(sm->eapol_ctx, &data->peer_cert,
2171 					  hash_hex);
2172 		break;
2173 	case TLS_ALERT:
2174 		if (data->alert.is_local)
2175 			eap_notify_status(sm, "local TLS alert",
2176 					  data->alert.description);
2177 		else
2178 			eap_notify_status(sm, "remote TLS alert",
2179 					  data->alert.description);
2180 		break;
2181 	case TLS_UNSAFE_RENEGOTIATION_DISABLED:
2182 		wpa_printf(MSG_INFO,
2183 			   "TLS handshake failed due to the server not supporting safe renegotiation (RFC 5746); phase1 parameter allow_unsafe_renegotiation=1 can be used to work around this");
2184 		eap_notify_status(sm, "unsafe server renegotiation", "failure");
2185 		break;
2186 	}
2187 
2188 	os_free(hash_hex);
2189 }
2190 
2191 
2192 /**
2193  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
2194  * @eapol_ctx: Context data to be used with eapol_cb calls
2195  * @eapol_cb: Pointer to EAPOL callback functions
2196  * @msg_ctx: Context data for wpa_msg() calls
2197  * @conf: EAP configuration
2198  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
2199  *
2200  * This function allocates and initializes an EAP state machine. In addition,
2201  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
2202  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
2203  * state machine. Consequently, the caller must make sure that this data
2204  * structure remains alive while the EAP state machine is active.
2205  */
2206 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
2207 				 const struct eapol_callbacks *eapol_cb,
2208 				 void *msg_ctx, struct eap_config *conf)
2209 {
2210 	struct eap_sm *sm;
2211 	struct tls_config tlsconf;
2212 
2213 	sm = os_zalloc(sizeof(*sm));
2214 	if (sm == NULL)
2215 		return NULL;
2216 	sm->eapol_ctx = eapol_ctx;
2217 	sm->eapol_cb = eapol_cb;
2218 	sm->msg_ctx = msg_ctx;
2219 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
2220 	sm->wps = conf->wps;
2221 	dl_list_init(&sm->erp_keys);
2222 
2223 	os_memset(&tlsconf, 0, sizeof(tlsconf));
2224 #ifndef CONFIG_OPENSC_ENGINE_PATH
2225 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
2226 #endif /* CONFIG_OPENSC_ENGINE_PATH */
2227 #ifndef CONFIG_PKCS11_ENGINE_PATH
2228 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
2229 #endif /* CONFIG_PKCS11_ENGINE_PATH */
2230 #ifndef CONFIG_PKCS11_MODULE_PATH
2231 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
2232 #endif /* CONFIG_PKCS11_MODULE_PATH */
2233 	tlsconf.openssl_ciphers = conf->openssl_ciphers;
2234 #ifdef CONFIG_FIPS
2235 	tlsconf.fips_mode = 1;
2236 #endif /* CONFIG_FIPS */
2237 	tlsconf.event_cb = eap_peer_sm_tls_event;
2238 	tlsconf.cb_ctx = sm;
2239 	tlsconf.cert_in_cb = conf->cert_in_cb;
2240 	sm->ssl_ctx = tls_init(&tlsconf);
2241 	if (sm->ssl_ctx == NULL) {
2242 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
2243 			   "context.");
2244 		os_free(sm);
2245 		return NULL;
2246 	}
2247 
2248 	sm->ssl_ctx2 = tls_init(&tlsconf);
2249 	if (sm->ssl_ctx2 == NULL) {
2250 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
2251 			   "context (2).");
2252 		/* Run without separate TLS context within TLS tunnel */
2253 	}
2254 
2255 	return sm;
2256 }
2257 
2258 
2259 /**
2260  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
2261  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2262  *
2263  * This function deinitializes EAP state machine and frees all allocated
2264  * resources.
2265  */
2266 void eap_peer_sm_deinit(struct eap_sm *sm)
2267 {
2268 	if (sm == NULL)
2269 		return;
2270 	eap_deinit_prev_method(sm, "EAP deinit");
2271 	eap_sm_abort(sm);
2272 	if (sm->ssl_ctx2)
2273 		tls_deinit(sm->ssl_ctx2);
2274 	tls_deinit(sm->ssl_ctx);
2275 	eap_peer_erp_free_keys(sm);
2276 	os_free(sm->identity);
2277 	os_free(sm);
2278 }
2279 
2280 
2281 /**
2282  * eap_peer_sm_step - Step EAP peer state machine
2283  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2284  * Returns: 1 if EAP state was changed or 0 if not
2285  *
2286  * This function advances EAP state machine to a new state to match with the
2287  * current variables. This should be called whenever variables used by the EAP
2288  * state machine have changed.
2289  */
2290 int eap_peer_sm_step(struct eap_sm *sm)
2291 {
2292 	int res = 0;
2293 	do {
2294 		sm->changed = false;
2295 		SM_STEP_RUN(EAP);
2296 		if (sm->changed)
2297 			res = 1;
2298 	} while (sm->changed);
2299 	return res;
2300 }
2301 
2302 
2303 /**
2304  * eap_sm_abort - Abort EAP authentication
2305  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2306  *
2307  * Release system resources that have been allocated for the authentication
2308  * session without fully deinitializing the EAP state machine.
2309  */
2310 void eap_sm_abort(struct eap_sm *sm)
2311 {
2312 	wpabuf_free(sm->lastRespData);
2313 	sm->lastRespData = NULL;
2314 	wpabuf_free(sm->eapRespData);
2315 	sm->eapRespData = NULL;
2316 	eap_sm_free_key(sm);
2317 	os_free(sm->eapSessionId);
2318 	sm->eapSessionId = NULL;
2319 
2320 	/* This is not clearly specified in the EAP statemachines draft, but
2321 	 * it seems necessary to make sure that some of the EAPOL variables get
2322 	 * cleared for the next authentication. */
2323 	eapol_set_bool(sm, EAPOL_eapSuccess, false);
2324 }
2325 
2326 
2327 #ifdef CONFIG_CTRL_IFACE
2328 static const char * eap_sm_state_txt(int state)
2329 {
2330 	switch (state) {
2331 	case EAP_INITIALIZE:
2332 		return "INITIALIZE";
2333 	case EAP_DISABLED:
2334 		return "DISABLED";
2335 	case EAP_IDLE:
2336 		return "IDLE";
2337 	case EAP_RECEIVED:
2338 		return "RECEIVED";
2339 	case EAP_GET_METHOD:
2340 		return "GET_METHOD";
2341 	case EAP_METHOD:
2342 		return "METHOD";
2343 	case EAP_SEND_RESPONSE:
2344 		return "SEND_RESPONSE";
2345 	case EAP_DISCARD:
2346 		return "DISCARD";
2347 	case EAP_IDENTITY:
2348 		return "IDENTITY";
2349 	case EAP_NOTIFICATION:
2350 		return "NOTIFICATION";
2351 	case EAP_RETRANSMIT:
2352 		return "RETRANSMIT";
2353 	case EAP_SUCCESS:
2354 		return "SUCCESS";
2355 	case EAP_FAILURE:
2356 		return "FAILURE";
2357 	default:
2358 		return "UNKNOWN";
2359 	}
2360 }
2361 #endif /* CONFIG_CTRL_IFACE */
2362 
2363 
2364 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2365 static const char * eap_sm_method_state_txt(EapMethodState state)
2366 {
2367 	switch (state) {
2368 	case METHOD_NONE:
2369 		return "NONE";
2370 	case METHOD_INIT:
2371 		return "INIT";
2372 	case METHOD_CONT:
2373 		return "CONT";
2374 	case METHOD_MAY_CONT:
2375 		return "MAY_CONT";
2376 	case METHOD_DONE:
2377 		return "DONE";
2378 	default:
2379 		return "UNKNOWN";
2380 	}
2381 }
2382 
2383 
2384 static const char * eap_sm_decision_txt(EapDecision decision)
2385 {
2386 	switch (decision) {
2387 	case DECISION_FAIL:
2388 		return "FAIL";
2389 	case DECISION_COND_SUCC:
2390 		return "COND_SUCC";
2391 	case DECISION_UNCOND_SUCC:
2392 		return "UNCOND_SUCC";
2393 	default:
2394 		return "UNKNOWN";
2395 	}
2396 }
2397 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2398 
2399 
2400 #ifdef CONFIG_CTRL_IFACE
2401 
2402 /**
2403  * eap_sm_get_status - Get EAP state machine status
2404  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2405  * @buf: Buffer for status information
2406  * @buflen: Maximum buffer length
2407  * @verbose: Whether to include verbose status information
2408  * Returns: Number of bytes written to buf.
2409  *
2410  * Query EAP state machine for status information. This function fills in a
2411  * text area with current status information from the EAPOL state machine. If
2412  * the buffer (buf) is not large enough, status information will be truncated
2413  * to fit the buffer.
2414  */
2415 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2416 {
2417 	int len, ret;
2418 
2419 	if (sm == NULL)
2420 		return 0;
2421 
2422 	len = os_snprintf(buf, buflen,
2423 			  "EAP state=%s\n",
2424 			  eap_sm_state_txt(sm->EAP_state));
2425 	if (os_snprintf_error(buflen, len))
2426 		return 0;
2427 
2428 	if (sm->selectedMethod != EAP_TYPE_NONE) {
2429 		const char *name;
2430 		if (sm->m) {
2431 			name = sm->m->name;
2432 		} else {
2433 			const struct eap_method *m =
2434 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
2435 							sm->selectedMethod);
2436 			if (m)
2437 				name = m->name;
2438 			else
2439 				name = "?";
2440 		}
2441 		ret = os_snprintf(buf + len, buflen - len,
2442 				  "selectedMethod=%d (EAP-%s)\n",
2443 				  sm->selectedMethod, name);
2444 		if (os_snprintf_error(buflen - len, ret))
2445 			return len;
2446 		len += ret;
2447 
2448 		if (sm->m && sm->m->get_status) {
2449 			len += sm->m->get_status(sm, sm->eap_method_priv,
2450 						 buf + len, buflen - len,
2451 						 verbose);
2452 		}
2453 	}
2454 
2455 	if (verbose) {
2456 		ret = os_snprintf(buf + len, buflen - len,
2457 				  "reqMethod=%d\n"
2458 				  "methodState=%s\n"
2459 				  "decision=%s\n"
2460 				  "ClientTimeout=%d\n",
2461 				  sm->reqMethod,
2462 				  eap_sm_method_state_txt(sm->methodState),
2463 				  eap_sm_decision_txt(sm->decision),
2464 				  sm->ClientTimeout);
2465 		if (os_snprintf_error(buflen - len, ret))
2466 			return len;
2467 		len += ret;
2468 	}
2469 
2470 	return len;
2471 }
2472 #endif /* CONFIG_CTRL_IFACE */
2473 
2474 
2475 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2476 			   const char *msg, size_t msglen)
2477 {
2478 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2479 	struct eap_peer_config *config;
2480 	const char *txt = NULL;
2481 	char *tmp;
2482 
2483 	if (sm == NULL)
2484 		return;
2485 	config = eap_get_config(sm);
2486 	if (config == NULL)
2487 		return;
2488 
2489 	switch (field) {
2490 	case WPA_CTRL_REQ_EAP_IDENTITY:
2491 		config->pending_req_identity++;
2492 		break;
2493 	case WPA_CTRL_REQ_EAP_PASSWORD:
2494 		config->pending_req_password++;
2495 		break;
2496 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2497 		config->pending_req_new_password++;
2498 		break;
2499 	case WPA_CTRL_REQ_EAP_PIN:
2500 		config->pending_req_pin++;
2501 		break;
2502 	case WPA_CTRL_REQ_EAP_OTP:
2503 		if (msg) {
2504 			tmp = os_malloc(msglen + 3);
2505 			if (tmp == NULL)
2506 				return;
2507 			tmp[0] = '[';
2508 			os_memcpy(tmp + 1, msg, msglen);
2509 			tmp[msglen + 1] = ']';
2510 			tmp[msglen + 2] = '\0';
2511 			txt = tmp;
2512 			os_free(config->pending_req_otp);
2513 			config->pending_req_otp = tmp;
2514 			config->pending_req_otp_len = msglen + 3;
2515 		} else {
2516 			if (config->pending_req_otp == NULL)
2517 				return;
2518 			txt = config->pending_req_otp;
2519 		}
2520 		break;
2521 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
2522 		config->pending_req_passphrase++;
2523 		break;
2524 	case WPA_CTRL_REQ_SIM:
2525 		config->pending_req_sim++;
2526 		txt = msg;
2527 		break;
2528 	case WPA_CTRL_REQ_EXT_CERT_CHECK:
2529 		break;
2530 	default:
2531 		return;
2532 	}
2533 
2534 	if (sm->eapol_cb->eap_param_needed)
2535 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2536 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2537 }
2538 
2539 
2540 const char * eap_sm_get_method_name(struct eap_sm *sm)
2541 {
2542 	if (sm->m == NULL)
2543 		return "UNKNOWN";
2544 	return sm->m->name;
2545 }
2546 
2547 
2548 /**
2549  * eap_sm_request_identity - Request identity from user (ctrl_iface)
2550  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2551  *
2552  * EAP methods can call this function to request identity information for the
2553  * current network. This is normally called when the identity is not included
2554  * in the network configuration. The request will be sent to monitor programs
2555  * through the control interface.
2556  */
2557 void eap_sm_request_identity(struct eap_sm *sm)
2558 {
2559 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2560 }
2561 
2562 
2563 /**
2564  * eap_sm_request_password - Request password from user (ctrl_iface)
2565  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2566  *
2567  * EAP methods can call this function to request password information for the
2568  * current network. This is normally called when the password is not included
2569  * in the network configuration. The request will be sent to monitor programs
2570  * through the control interface.
2571  */
2572 void eap_sm_request_password(struct eap_sm *sm)
2573 {
2574 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2575 }
2576 
2577 
2578 /**
2579  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2580  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2581  *
2582  * EAP methods can call this function to request new password information for
2583  * the current network. This is normally called when the EAP method indicates
2584  * that the current password has expired and password change is required. The
2585  * request will be sent to monitor programs through the control interface.
2586  */
2587 void eap_sm_request_new_password(struct eap_sm *sm)
2588 {
2589 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2590 }
2591 
2592 
2593 /**
2594  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2595  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2596  *
2597  * EAP methods can call this function to request SIM or smart card PIN
2598  * information for the current network. This is normally called when the PIN is
2599  * not included in the network configuration. The request will be sent to
2600  * monitor programs through the control interface.
2601  */
2602 void eap_sm_request_pin(struct eap_sm *sm)
2603 {
2604 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2605 }
2606 
2607 
2608 /**
2609  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2610  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2611  * @msg: Message to be displayed to the user when asking for OTP
2612  * @msg_len: Length of the user displayable message
2613  *
2614  * EAP methods can call this function to request open time password (OTP) for
2615  * the current network. The request will be sent to monitor programs through
2616  * the control interface.
2617  */
2618 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2619 {
2620 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2621 }
2622 
2623 
2624 /**
2625  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2626  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2627  *
2628  * EAP methods can call this function to request passphrase for a private key
2629  * for the current network. This is normally called when the passphrase is not
2630  * included in the network configuration. The request will be sent to monitor
2631  * programs through the control interface.
2632  */
2633 void eap_sm_request_passphrase(struct eap_sm *sm)
2634 {
2635 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2636 }
2637 
2638 
2639 /**
2640  * eap_sm_request_sim - Request external SIM processing
2641  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2642  * @req: EAP method specific request
2643  */
2644 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2645 {
2646 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2647 }
2648 
2649 
2650 /**
2651  * eap_sm_notify_ctrl_attached - Notification of attached monitor
2652  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2653  *
2654  * Notify EAP state machines that a monitor was attached to the control
2655  * interface to trigger re-sending of pending requests for user input.
2656  */
2657 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2658 {
2659 	struct eap_peer_config *config = eap_get_config(sm);
2660 
2661 	if (config == NULL)
2662 		return;
2663 
2664 	/* Re-send any pending requests for user data since a new control
2665 	 * interface was added. This handles cases where the EAP authentication
2666 	 * starts immediately after system startup when the user interface is
2667 	 * not yet running. */
2668 	if (config->pending_req_identity)
2669 		eap_sm_request_identity(sm);
2670 	if (config->pending_req_password)
2671 		eap_sm_request_password(sm);
2672 	if (config->pending_req_new_password)
2673 		eap_sm_request_new_password(sm);
2674 	if (config->pending_req_otp)
2675 		eap_sm_request_otp(sm, NULL, 0);
2676 	if (config->pending_req_pin)
2677 		eap_sm_request_pin(sm);
2678 	if (config->pending_req_passphrase)
2679 		eap_sm_request_passphrase(sm);
2680 }
2681 
2682 
2683 static int eap_allowed_phase2_type(int vendor, int type)
2684 {
2685 	if (vendor == EAP_VENDOR_HOSTAP)
2686 		return 1;
2687 	if (vendor != EAP_VENDOR_IETF)
2688 		return 0;
2689 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2690 		type != EAP_TYPE_FAST && type != EAP_TYPE_TEAP;
2691 }
2692 
2693 
2694 /**
2695  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2696  * @name: EAP method name, e.g., MD5
2697  * @vendor: Buffer for returning EAP Vendor-Id
2698  * Returns: EAP method type or %EAP_TYPE_NONE if not found
2699  *
2700  * This function maps EAP type names into EAP type numbers that are allowed for
2701  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2702  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2703  */
2704 u32 eap_get_phase2_type(const char *name, int *vendor)
2705 {
2706 	int v;
2707 	u32 type = eap_peer_get_type(name, &v);
2708 	if (eap_allowed_phase2_type(v, type)) {
2709 		*vendor = v;
2710 		return type;
2711 	}
2712 	*vendor = EAP_VENDOR_IETF;
2713 	return EAP_TYPE_NONE;
2714 }
2715 
2716 
2717 /**
2718  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2719  * @config: Pointer to a network configuration
2720  * @count: Pointer to a variable to be filled with number of returned EAP types
2721  * Returns: Pointer to allocated type list or %NULL on failure
2722  *
2723  * This function generates an array of allowed EAP phase 2 (tunneled) types for
2724  * the given network configuration.
2725  */
2726 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2727 					      size_t *count)
2728 {
2729 	struct eap_method_type *buf;
2730 	u32 method;
2731 	int vendor;
2732 	size_t mcount;
2733 	const struct eap_method *methods, *m;
2734 
2735 	methods = eap_peer_get_methods(&mcount);
2736 	if (methods == NULL)
2737 		return NULL;
2738 	*count = 0;
2739 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
2740 	if (buf == NULL)
2741 		return NULL;
2742 
2743 	for (m = methods; m; m = m->next) {
2744 		vendor = m->vendor;
2745 		method = m->method;
2746 		if (eap_allowed_phase2_type(vendor, method)) {
2747 			if (vendor == EAP_VENDOR_IETF &&
2748 			    method == EAP_TYPE_TLS && config &&
2749 			    !config->phase2_cert.private_key)
2750 				continue;
2751 			buf[*count].vendor = vendor;
2752 			buf[*count].method = method;
2753 			(*count)++;
2754 		}
2755 	}
2756 
2757 	return buf;
2758 }
2759 
2760 
2761 /**
2762  * eap_set_fast_reauth - Update fast_reauth setting
2763  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2764  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2765  */
2766 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2767 {
2768 	sm->fast_reauth = enabled;
2769 }
2770 
2771 
2772 /**
2773  * eap_set_workaround - Update EAP workarounds setting
2774  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2775  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2776  */
2777 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2778 {
2779 	sm->workaround = workaround;
2780 }
2781 
2782 
2783 /**
2784  * eap_get_config - Get current network configuration
2785  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2786  * Returns: Pointer to the current network configuration or %NULL if not found
2787  *
2788  * EAP peer methods should avoid using this function if they can use other
2789  * access functions, like eap_get_config_identity() and
2790  * eap_get_config_password(), that do not require direct access to
2791  * struct eap_peer_config.
2792  */
2793 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2794 {
2795 	return sm->eapol_cb->get_config(sm->eapol_ctx);
2796 }
2797 
2798 
2799 /**
2800  * eap_get_config_identity - Get identity from the network configuration
2801  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2802  * @len: Buffer for the length of the identity
2803  * Returns: Pointer to the identity or %NULL if not found
2804  */
2805 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2806 {
2807 	struct eap_peer_config *config = eap_get_config(sm);
2808 
2809 	if (!config)
2810 		return NULL;
2811 
2812 	if (sm->use_machine_cred) {
2813 		*len = config->machine_identity_len;
2814 		return config->machine_identity;
2815 	}
2816 
2817 	*len = config->identity_len;
2818 	return config->identity;
2819 }
2820 
2821 
2822 static int eap_get_ext_password(struct eap_sm *sm,
2823 				struct eap_peer_config *config)
2824 {
2825 	char *name;
2826 	const u8 *password;
2827 	size_t password_len;
2828 
2829 	if (sm->use_machine_cred) {
2830 		password = config->machine_password;
2831 		password_len = config->machine_password_len;
2832 	} else {
2833 		password = config->password;
2834 		password_len = config->password_len;
2835 	}
2836 
2837 	if (!password)
2838 		return -1;
2839 
2840 	name = os_zalloc(password_len + 1);
2841 	if (!name)
2842 		return -1;
2843 	os_memcpy(name, password, password_len);
2844 
2845 	ext_password_free(sm->ext_pw_buf);
2846 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2847 	os_free(name);
2848 
2849 	return sm->ext_pw_buf == NULL ? -1 : 0;
2850 }
2851 
2852 
2853 /**
2854  * eap_get_config_password - Get password from the network configuration
2855  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2856  * @len: Buffer for the length of the password
2857  * Returns: Pointer to the password or %NULL if not found
2858  */
2859 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2860 {
2861 	struct eap_peer_config *config = eap_get_config(sm);
2862 
2863 	if (!config)
2864 		return NULL;
2865 
2866 	if ((sm->use_machine_cred &&
2867 	     (config->flags & EAP_CONFIG_FLAGS_EXT_MACHINE_PASSWORD)) ||
2868 	    (!sm->use_machine_cred &&
2869 	     (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD))) {
2870 		if (eap_get_ext_password(sm, config) < 0)
2871 			return NULL;
2872 		*len = wpabuf_len(sm->ext_pw_buf);
2873 		return wpabuf_head(sm->ext_pw_buf);
2874 	}
2875 
2876 	if (sm->use_machine_cred) {
2877 		*len = config->machine_password_len;
2878 		return config->machine_password;
2879 	}
2880 
2881 	*len = config->password_len;
2882 	return config->password;
2883 }
2884 
2885 
2886 /**
2887  * eap_get_config_password2 - Get password from the network configuration
2888  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2889  * @len: Buffer for the length of the password
2890  * @hash: Buffer for returning whether the password is stored as a
2891  * NtPasswordHash instead of plaintext password; can be %NULL if this
2892  * information is not needed
2893  * Returns: Pointer to the password or %NULL if not found
2894  */
2895 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2896 {
2897 	struct eap_peer_config *config = eap_get_config(sm);
2898 
2899 	if (!config)
2900 		return NULL;
2901 
2902 	if ((sm->use_machine_cred &&
2903 	     (config->flags & EAP_CONFIG_FLAGS_EXT_MACHINE_PASSWORD)) ||
2904 	    (!sm->use_machine_cred &&
2905 	     (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD))) {
2906 		if (eap_get_ext_password(sm, config) < 0)
2907 			return NULL;
2908 		if (hash)
2909 			*hash = 0;
2910 		*len = wpabuf_len(sm->ext_pw_buf);
2911 		return wpabuf_head(sm->ext_pw_buf);
2912 	}
2913 
2914 	if (sm->use_machine_cred) {
2915 		*len = config->machine_password_len;
2916 		if (hash)
2917 			*hash = !!(config->flags &
2918 				   EAP_CONFIG_FLAGS_MACHINE_PASSWORD_NTHASH);
2919 		return config->machine_password;
2920 	}
2921 
2922 	*len = config->password_len;
2923 	if (hash)
2924 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2925 	return config->password;
2926 }
2927 
2928 
2929 /**
2930  * eap_get_config_new_password - Get new password from network configuration
2931  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2932  * @len: Buffer for the length of the new password
2933  * Returns: Pointer to the new password or %NULL if not found
2934  */
2935 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2936 {
2937 	struct eap_peer_config *config = eap_get_config(sm);
2938 	if (config == NULL)
2939 		return NULL;
2940 	*len = config->new_password_len;
2941 	return config->new_password;
2942 }
2943 
2944 
2945 /**
2946  * eap_get_config_otp - Get one-time password from the network configuration
2947  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2948  * @len: Buffer for the length of the one-time password
2949  * Returns: Pointer to the one-time password or %NULL if not found
2950  */
2951 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2952 {
2953 	struct eap_peer_config *config = eap_get_config(sm);
2954 	if (config == NULL)
2955 		return NULL;
2956 	*len = config->otp_len;
2957 	return config->otp;
2958 }
2959 
2960 
2961 /**
2962  * eap_clear_config_otp - Clear used one-time password
2963  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2964  *
2965  * This function clears a used one-time password (OTP) from the current network
2966  * configuration. This should be called when the OTP has been used and is not
2967  * needed anymore.
2968  */
2969 void eap_clear_config_otp(struct eap_sm *sm)
2970 {
2971 	struct eap_peer_config *config = eap_get_config(sm);
2972 	if (config == NULL)
2973 		return;
2974 	os_memset(config->otp, 0, config->otp_len);
2975 	os_free(config->otp);
2976 	config->otp = NULL;
2977 	config->otp_len = 0;
2978 }
2979 
2980 
2981 /**
2982  * eap_get_config_phase1 - Get phase1 data from the network configuration
2983  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2984  * Returns: Pointer to the phase1 data or %NULL if not found
2985  */
2986 const char * eap_get_config_phase1(struct eap_sm *sm)
2987 {
2988 	struct eap_peer_config *config = eap_get_config(sm);
2989 	if (config == NULL)
2990 		return NULL;
2991 	return config->phase1;
2992 }
2993 
2994 
2995 /**
2996  * eap_get_config_phase2 - Get phase2 data from the network configuration
2997  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2998  * Returns: Pointer to the phase1 data or %NULL if not found
2999  */
3000 const char * eap_get_config_phase2(struct eap_sm *sm)
3001 {
3002 	struct eap_peer_config *config = eap_get_config(sm);
3003 	if (config == NULL)
3004 		return NULL;
3005 	return config->phase2;
3006 }
3007 
3008 
3009 int eap_get_config_fragment_size(struct eap_sm *sm)
3010 {
3011 	struct eap_peer_config *config = eap_get_config(sm);
3012 	if (config == NULL)
3013 		return -1;
3014 	return config->fragment_size;
3015 }
3016 
3017 
3018 /**
3019  * eap_key_available - Get key availability (eapKeyAvailable variable)
3020  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3021  * Returns: 1 if EAP keying material is available, 0 if not
3022  */
3023 int eap_key_available(struct eap_sm *sm)
3024 {
3025 	return sm ? sm->eapKeyAvailable : 0;
3026 }
3027 
3028 
3029 /**
3030  * eap_notify_success - Notify EAP state machine about external success trigger
3031  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3032  *
3033  * This function is called when external event, e.g., successful completion of
3034  * WPA-PSK key handshake, is indicating that EAP state machine should move to
3035  * success state. This is mainly used with security modes that do not use EAP
3036  * state machine (e.g., WPA-PSK).
3037  */
3038 void eap_notify_success(struct eap_sm *sm)
3039 {
3040 	if (sm) {
3041 		sm->decision = DECISION_COND_SUCC;
3042 		sm->EAP_state = EAP_SUCCESS;
3043 	}
3044 }
3045 
3046 
3047 /**
3048  * eap_notify_lower_layer_success - Notification of lower layer success
3049  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3050  *
3051  * Notify EAP state machines that a lower layer has detected a successful
3052  * authentication. This is used to recover from dropped EAP-Success messages.
3053  */
3054 void eap_notify_lower_layer_success(struct eap_sm *sm)
3055 {
3056 	if (sm == NULL)
3057 		return;
3058 
3059 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
3060 	    sm->decision == DECISION_FAIL ||
3061 	    (sm->methodState != METHOD_MAY_CONT &&
3062 	     sm->methodState != METHOD_DONE))
3063 		return;
3064 
3065 	if (sm->eapKeyData != NULL)
3066 		sm->eapKeyAvailable = true;
3067 	eapol_set_bool(sm, EAPOL_eapSuccess, true);
3068 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
3069 		"EAP authentication completed successfully (based on lower "
3070 		"layer success)");
3071 }
3072 
3073 
3074 /**
3075  * eap_get_eapSessionId - Get Session-Id from EAP state machine
3076  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3077  * @len: Pointer to variable that will be set to number of bytes in the session
3078  * Returns: Pointer to the EAP Session-Id or %NULL on failure
3079  *
3080  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
3081  * only after a successful authentication. EAP state machine continues to manage
3082  * the Session-Id and the caller must not change or free the returned data.
3083  */
3084 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
3085 {
3086 	if (sm == NULL || sm->eapSessionId == NULL) {
3087 		*len = 0;
3088 		return NULL;
3089 	}
3090 
3091 	*len = sm->eapSessionIdLen;
3092 	return sm->eapSessionId;
3093 }
3094 
3095 
3096 /**
3097  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
3098  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3099  * @len: Pointer to variable that will be set to number of bytes in the key
3100  * Returns: Pointer to the EAP keying data or %NULL on failure
3101  *
3102  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
3103  * key is available only after a successful authentication. EAP state machine
3104  * continues to manage the key data and the caller must not change or free the
3105  * returned data.
3106  */
3107 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
3108 {
3109 	if (sm == NULL || sm->eapKeyData == NULL) {
3110 		*len = 0;
3111 		return NULL;
3112 	}
3113 
3114 	*len = sm->eapKeyDataLen;
3115 	return sm->eapKeyData;
3116 }
3117 
3118 
3119 /**
3120  * eap_get_eapKeyData - Get EAP response data
3121  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3122  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
3123  *
3124  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
3125  * available when EAP state machine has processed an incoming EAP request. The
3126  * EAP state machine does not maintain a reference to the response after this
3127  * function is called and the caller is responsible for freeing the data.
3128  */
3129 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
3130 {
3131 	struct wpabuf *resp;
3132 
3133 	if (sm == NULL || sm->eapRespData == NULL)
3134 		return NULL;
3135 
3136 	resp = sm->eapRespData;
3137 	sm->eapRespData = NULL;
3138 
3139 	return resp;
3140 }
3141 
3142 
3143 /**
3144  * eap_sm_register_scard_ctx - Notification of smart card context
3145  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3146  * @ctx: Context data for smart card operations
3147  *
3148  * Notify EAP state machines of context data for smart card operations. This
3149  * context data will be used as a parameter for scard_*() functions.
3150  */
3151 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
3152 {
3153 	if (sm)
3154 		sm->scard_ctx = ctx;
3155 }
3156 
3157 
3158 /**
3159  * eap_set_config_blob - Set or add a named configuration blob
3160  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3161  * @blob: New value for the blob
3162  *
3163  * Adds a new configuration blob or replaces the current value of an existing
3164  * blob.
3165  */
3166 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
3167 {
3168 #ifndef CONFIG_NO_CONFIG_BLOBS
3169 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
3170 #endif /* CONFIG_NO_CONFIG_BLOBS */
3171 }
3172 
3173 
3174 /**
3175  * eap_get_config_blob - Get a named configuration blob
3176  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3177  * @name: Name of the blob
3178  * Returns: Pointer to blob data or %NULL if not found
3179  */
3180 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
3181 						   const char *name)
3182 {
3183 #ifndef CONFIG_NO_CONFIG_BLOBS
3184 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
3185 #else /* CONFIG_NO_CONFIG_BLOBS */
3186 	return NULL;
3187 #endif /* CONFIG_NO_CONFIG_BLOBS */
3188 }
3189 
3190 
3191 /**
3192  * eap_set_force_disabled - Set force_disabled flag
3193  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3194  * @disabled: 1 = EAP disabled, 0 = EAP enabled
3195  *
3196  * This function is used to force EAP state machine to be disabled when it is
3197  * not in use (e.g., with WPA-PSK or plaintext connections).
3198  */
3199 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
3200 {
3201 	sm->force_disabled = disabled;
3202 }
3203 
3204 
3205 /**
3206  * eap_set_external_sim - Set external_sim flag
3207  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3208  * @external_sim: Whether external SIM/USIM processing is used
3209  */
3210 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
3211 {
3212 	sm->external_sim = external_sim;
3213 }
3214 
3215 
3216  /**
3217  * eap_notify_pending - Notify that EAP method is ready to re-process a request
3218  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3219  *
3220  * An EAP method can perform a pending operation (e.g., to get a response from
3221  * an external process). Once the response is available, this function can be
3222  * used to request EAPOL state machine to retry delivering the previously
3223  * received (and still unanswered) EAP request to EAP state machine.
3224  */
3225 void eap_notify_pending(struct eap_sm *sm)
3226 {
3227 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
3228 }
3229 
3230 
3231 /**
3232  * eap_invalidate_cached_session - Mark cached session data invalid
3233  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3234  */
3235 void eap_invalidate_cached_session(struct eap_sm *sm)
3236 {
3237 	if (sm)
3238 		eap_deinit_prev_method(sm, "invalidate");
3239 }
3240 
3241 
3242 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
3243 {
3244 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3245 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3246 		return 0; /* Not a WPS Enrollee */
3247 
3248 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
3249 		return 0; /* Not using PBC */
3250 
3251 	return 1;
3252 }
3253 
3254 
3255 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
3256 {
3257 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3258 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3259 		return 0; /* Not a WPS Enrollee */
3260 
3261 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
3262 		return 0; /* Not using PIN */
3263 
3264 	return 1;
3265 }
3266 
3267 
3268 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
3269 {
3270 	ext_password_free(sm->ext_pw_buf);
3271 	sm->ext_pw_buf = NULL;
3272 	sm->ext_pw = ext;
3273 }
3274 
3275 
3276 /**
3277  * eap_set_anon_id - Set or add anonymous identity
3278  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3279  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
3280  * @len: Length of anonymous identity in octets
3281  */
3282 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
3283 {
3284 	if (sm->eapol_cb->set_anon_id)
3285 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
3286 }
3287 
3288 
3289 int eap_peer_was_failure_expected(struct eap_sm *sm)
3290 {
3291 	return sm->expected_failure;
3292 }
3293