xref: /freebsd/contrib/wpa/src/eap_peer/eap.c (revision b37f6c9805edb4b89f0a8c2b78f78a3dcfc0647b)
1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31 
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34 
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37 
38 
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 				  EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 				   const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51 
52 
53 
54 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
55 {
56 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
57 }
58 
59 
60 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
61 			   Boolean value)
62 {
63 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
64 }
65 
66 
67 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
68 {
69 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
70 }
71 
72 
73 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
74 			  unsigned int value)
75 {
76 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
77 }
78 
79 
80 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
81 {
82 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
83 }
84 
85 
86 static void eap_notify_status(struct eap_sm *sm, const char *status,
87 				      const char *parameter)
88 {
89 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
90 		   status, parameter);
91 	if (sm->eapol_cb->notify_status)
92 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
93 }
94 
95 
96 static void eap_sm_free_key(struct eap_sm *sm)
97 {
98 	if (sm->eapKeyData) {
99 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
100 		sm->eapKeyData = NULL;
101 	}
102 }
103 
104 
105 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
106 {
107 	ext_password_free(sm->ext_pw_buf);
108 	sm->ext_pw_buf = NULL;
109 
110 	if (sm->m == NULL || sm->eap_method_priv == NULL)
111 		return;
112 
113 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
114 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
115 	sm->m->deinit(sm, sm->eap_method_priv);
116 	sm->eap_method_priv = NULL;
117 	sm->m = NULL;
118 }
119 
120 
121 /**
122  * eap_allowed_method - Check whether EAP method is allowed
123  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
124  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
125  * @method: EAP type
126  * Returns: 1 = allowed EAP method, 0 = not allowed
127  */
128 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
129 {
130 	struct eap_peer_config *config = eap_get_config(sm);
131 	int i;
132 	struct eap_method_type *m;
133 
134 	if (config == NULL || config->eap_methods == NULL)
135 		return 1;
136 
137 	m = config->eap_methods;
138 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
139 		     m[i].method != EAP_TYPE_NONE; i++) {
140 		if (m[i].vendor == vendor && m[i].method == method)
141 			return 1;
142 	}
143 	return 0;
144 }
145 
146 
147 /*
148  * This state initializes state machine variables when the machine is
149  * activated (portEnabled = TRUE). This is also used when re-starting
150  * authentication (eapRestart == TRUE).
151  */
152 SM_STATE(EAP, INITIALIZE)
153 {
154 	SM_ENTRY(EAP, INITIALIZE);
155 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
156 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
157 	    !sm->prev_failure &&
158 	    sm->last_config == eap_get_config(sm)) {
159 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
160 			   "fast reauthentication");
161 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
162 	} else {
163 		sm->last_config = eap_get_config(sm);
164 		eap_deinit_prev_method(sm, "INITIALIZE");
165 	}
166 	sm->selectedMethod = EAP_TYPE_NONE;
167 	sm->methodState = METHOD_NONE;
168 	sm->allowNotifications = TRUE;
169 	sm->decision = DECISION_FAIL;
170 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
171 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
172 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
173 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
174 	eap_sm_free_key(sm);
175 	os_free(sm->eapSessionId);
176 	sm->eapSessionId = NULL;
177 	sm->eapKeyAvailable = FALSE;
178 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
179 	sm->lastId = -1; /* new session - make sure this does not match with
180 			  * the first EAP-Packet */
181 	/*
182 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
183 	 * seemed to be able to trigger cases where both were set and if EAPOL
184 	 * state machine uses eapNoResp first, it may end up not sending a real
185 	 * reply correctly. This occurred when the workaround in FAIL state set
186 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
187 	 * something else(?)
188 	 */
189 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
190 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
191 	sm->num_rounds = 0;
192 	sm->prev_failure = 0;
193 	sm->expected_failure = 0;
194 	sm->reauthInit = FALSE;
195 	sm->erp_seq = (u32) -1;
196 }
197 
198 
199 /*
200  * This state is reached whenever service from the lower layer is interrupted
201  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
202  * occurs when the port becomes enabled.
203  */
204 SM_STATE(EAP, DISABLED)
205 {
206 	SM_ENTRY(EAP, DISABLED);
207 	sm->num_rounds = 0;
208 	/*
209 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
210 	 * allows the timer tick to be stopped more quickly when EAP is not in
211 	 * use.
212 	 */
213 	eapol_set_int(sm, EAPOL_idleWhile, 0);
214 }
215 
216 
217 /*
218  * The state machine spends most of its time here, waiting for something to
219  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
220  * SEND_RESPONSE states.
221  */
222 SM_STATE(EAP, IDLE)
223 {
224 	SM_ENTRY(EAP, IDLE);
225 }
226 
227 
228 /*
229  * This state is entered when an EAP packet is received (eapReq == TRUE) to
230  * parse the packet header.
231  */
232 SM_STATE(EAP, RECEIVED)
233 {
234 	const struct wpabuf *eapReqData;
235 
236 	SM_ENTRY(EAP, RECEIVED);
237 	eapReqData = eapol_get_eapReqData(sm);
238 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
239 	eap_sm_parseEapReq(sm, eapReqData);
240 	sm->num_rounds++;
241 }
242 
243 
244 /*
245  * This state is entered when a request for a new type comes in. Either the
246  * correct method is started, or a Nak response is built.
247  */
248 SM_STATE(EAP, GET_METHOD)
249 {
250 	int reinit;
251 	EapType method;
252 	const struct eap_method *eap_method;
253 
254 	SM_ENTRY(EAP, GET_METHOD);
255 
256 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
257 		method = sm->reqVendorMethod;
258 	else
259 		method = sm->reqMethod;
260 
261 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
262 
263 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
264 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
265 			   sm->reqVendor, method);
266 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
267 			"vendor=%u method=%u -> NAK",
268 			sm->reqVendor, method);
269 		eap_notify_status(sm, "refuse proposed method",
270 				  eap_method ?  eap_method->name : "unknown");
271 		goto nak;
272 	}
273 
274 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
275 		"vendor=%u method=%u", sm->reqVendor, method);
276 
277 	eap_notify_status(sm, "accept proposed method",
278 			  eap_method ?  eap_method->name : "unknown");
279 	/*
280 	 * RFC 4137 does not define specific operation for fast
281 	 * re-authentication (session resumption). The design here is to allow
282 	 * the previously used method data to be maintained for
283 	 * re-authentication if the method support session resumption.
284 	 * Otherwise, the previously used method data is freed and a new method
285 	 * is allocated here.
286 	 */
287 	if (sm->fast_reauth &&
288 	    sm->m && sm->m->vendor == sm->reqVendor &&
289 	    sm->m->method == method &&
290 	    sm->m->has_reauth_data &&
291 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
292 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
293 			   " for fast re-authentication");
294 		reinit = 1;
295 	} else {
296 		eap_deinit_prev_method(sm, "GET_METHOD");
297 		reinit = 0;
298 	}
299 
300 	sm->selectedMethod = sm->reqMethod;
301 	if (sm->m == NULL)
302 		sm->m = eap_method;
303 	if (!sm->m) {
304 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
305 			   "vendor %d method %d",
306 			   sm->reqVendor, method);
307 		goto nak;
308 	}
309 
310 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
311 
312 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
313 		   "vendor %u method %u (%s)",
314 		   sm->reqVendor, method, sm->m->name);
315 	if (reinit)
316 		sm->eap_method_priv = sm->m->init_for_reauth(
317 			sm, sm->eap_method_priv);
318 	else
319 		sm->eap_method_priv = sm->m->init(sm);
320 
321 	if (sm->eap_method_priv == NULL) {
322 		struct eap_peer_config *config = eap_get_config(sm);
323 		wpa_msg(sm->msg_ctx, MSG_INFO,
324 			"EAP: Failed to initialize EAP method: vendor %u "
325 			"method %u (%s)",
326 			sm->reqVendor, method, sm->m->name);
327 		sm->m = NULL;
328 		sm->methodState = METHOD_NONE;
329 		sm->selectedMethod = EAP_TYPE_NONE;
330 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
331 		    (config->pending_req_pin ||
332 		     config->pending_req_passphrase)) {
333 			/*
334 			 * Return without generating Nak in order to allow
335 			 * entering of PIN code or passphrase to retry the
336 			 * current EAP packet.
337 			 */
338 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
339 				   "request - skip Nak");
340 			return;
341 		}
342 
343 		goto nak;
344 	}
345 
346 	sm->methodState = METHOD_INIT;
347 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
348 		"EAP vendor %u method %u (%s) selected",
349 		sm->reqVendor, method, sm->m->name);
350 	return;
351 
352 nak:
353 	wpabuf_free(sm->eapRespData);
354 	sm->eapRespData = NULL;
355 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
356 }
357 
358 
359 #ifdef CONFIG_ERP
360 
361 static char * eap_home_realm(struct eap_sm *sm)
362 {
363 	struct eap_peer_config *config = eap_get_config(sm);
364 	char *realm;
365 	size_t i, realm_len;
366 
367 	if (!config)
368 		return NULL;
369 
370 	if (config->identity) {
371 		for (i = 0; i < config->identity_len; i++) {
372 			if (config->identity[i] == '@')
373 				break;
374 		}
375 		if (i < config->identity_len) {
376 			realm_len = config->identity_len - i - 1;
377 			realm = os_malloc(realm_len + 1);
378 			if (realm == NULL)
379 				return NULL;
380 			os_memcpy(realm, &config->identity[i + 1], realm_len);
381 			realm[realm_len] = '\0';
382 			return realm;
383 		}
384 	}
385 
386 	if (config->anonymous_identity) {
387 		for (i = 0; i < config->anonymous_identity_len; i++) {
388 			if (config->anonymous_identity[i] == '@')
389 				break;
390 		}
391 		if (i < config->anonymous_identity_len) {
392 			realm_len = config->anonymous_identity_len - i - 1;
393 			realm = os_malloc(realm_len + 1);
394 			if (realm == NULL)
395 				return NULL;
396 			os_memcpy(realm, &config->anonymous_identity[i + 1],
397 				  realm_len);
398 			realm[realm_len] = '\0';
399 			return realm;
400 		}
401 	}
402 
403 	return os_strdup("");
404 }
405 
406 
407 static struct eap_erp_key *
408 eap_erp_get_key(struct eap_sm *sm, const char *realm)
409 {
410 	struct eap_erp_key *erp;
411 
412 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
413 		char *pos;
414 
415 		pos = os_strchr(erp->keyname_nai, '@');
416 		if (!pos)
417 			continue;
418 		pos++;
419 		if (os_strcmp(pos, realm) == 0)
420 			return erp;
421 	}
422 
423 	return NULL;
424 }
425 
426 
427 static struct eap_erp_key *
428 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
429 {
430 	struct eap_erp_key *erp;
431 
432 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
433 		if (os_strcmp(erp->keyname_nai, nai) == 0)
434 			return erp;
435 	}
436 
437 	return NULL;
438 }
439 
440 
441 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
442 {
443 	dl_list_del(&erp->list);
444 	bin_clear_free(erp, sizeof(*erp));
445 }
446 
447 
448 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
449 {
450 	struct eap_erp_key *erp;
451 
452 	while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
453 		wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
454 			   erp->keyname_nai);
455 		eap_peer_erp_free_key(erp);
456 	}
457 }
458 
459 #endif /* CONFIG_ERP */
460 
461 
462 void eap_peer_erp_free_keys(struct eap_sm *sm)
463 {
464 #ifdef CONFIG_ERP
465 	struct eap_erp_key *erp, *tmp;
466 
467 	dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
468 		eap_peer_erp_free_key(erp);
469 #endif /* CONFIG_ERP */
470 }
471 
472 
473 static void eap_peer_erp_init(struct eap_sm *sm)
474 {
475 #ifdef CONFIG_ERP
476 	u8 *emsk = NULL;
477 	size_t emsk_len = 0;
478 	u8 EMSKname[EAP_EMSK_NAME_LEN];
479 	u8 len[2];
480 	char *realm;
481 	size_t realm_len, nai_buf_len;
482 	struct eap_erp_key *erp = NULL;
483 	int pos;
484 
485 	realm = eap_home_realm(sm);
486 	if (!realm)
487 		return;
488 	realm_len = os_strlen(realm);
489 	wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
490 	eap_erp_remove_keys_realm(sm, realm);
491 
492 	nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
493 	if (nai_buf_len > 253) {
494 		/*
495 		 * keyName-NAI has a maximum length of 253 octet to fit in
496 		 * RADIUS attributes.
497 		 */
498 		wpa_printf(MSG_DEBUG,
499 			   "EAP: Too long realm for ERP keyName-NAI maximum length");
500 		goto fail;
501 	}
502 	nai_buf_len++; /* null termination */
503 	erp = os_zalloc(sizeof(*erp) + nai_buf_len);
504 	if (erp == NULL)
505 		goto fail;
506 
507 	emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
508 	if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
509 		wpa_printf(MSG_DEBUG,
510 			   "EAP: No suitable EMSK available for ERP");
511 		goto fail;
512 	}
513 
514 	wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
515 
516 	WPA_PUT_BE16(len, 8);
517 	if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
518 			    len, sizeof(len),
519 			    EMSKname, EAP_EMSK_NAME_LEN) < 0) {
520 		wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
521 		goto fail;
522 	}
523 	wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
524 
525 	pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
526 			       EMSKname, EAP_EMSK_NAME_LEN);
527 	erp->keyname_nai[pos] = '@';
528 	os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
529 
530 	WPA_PUT_BE16(len, emsk_len);
531 	if (hmac_sha256_kdf(emsk, emsk_len,
532 			    "EAP Re-authentication Root Key@ietf.org",
533 			    len, sizeof(len), erp->rRK, emsk_len) < 0) {
534 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
535 		goto fail;
536 	}
537 	erp->rRK_len = emsk_len;
538 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
539 
540 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
541 			    "EAP Re-authentication Integrity Key@ietf.org",
542 			    len, sizeof(len), erp->rIK, erp->rRK_len) < 0) {
543 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
544 		goto fail;
545 	}
546 	erp->rIK_len = erp->rRK_len;
547 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
548 
549 	wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
550 	dl_list_add(&sm->erp_keys, &erp->list);
551 	erp = NULL;
552 fail:
553 	bin_clear_free(emsk, emsk_len);
554 	bin_clear_free(erp, sizeof(*erp));
555 	os_free(realm);
556 #endif /* CONFIG_ERP */
557 }
558 
559 
560 #ifdef CONFIG_ERP
561 static int eap_peer_erp_reauth_start(struct eap_sm *sm,
562 				     const struct eap_hdr *hdr, size_t len)
563 {
564 	char *realm;
565 	struct eap_erp_key *erp;
566 	struct wpabuf *msg;
567 	u8 hash[SHA256_MAC_LEN];
568 
569 	realm = eap_home_realm(sm);
570 	if (!realm)
571 		return -1;
572 
573 	erp = eap_erp_get_key(sm, realm);
574 	os_free(realm);
575 	realm = NULL;
576 	if (!erp)
577 		return -1;
578 
579 	if (erp->next_seq >= 65536)
580 		return -1; /* SEQ has range of 0..65535 */
581 
582 	/* TODO: check rRK lifetime expiration */
583 
584 	wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
585 		   erp->keyname_nai, erp->next_seq);
586 
587 	msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
588 			    1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
589 			    EAP_CODE_INITIATE, hdr->identifier);
590 	if (msg == NULL)
591 		return -1;
592 
593 	wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
594 	wpabuf_put_be16(msg, erp->next_seq);
595 
596 	wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
597 	wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
598 	wpabuf_put_str(msg, erp->keyname_nai);
599 
600 	wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
601 
602 	if (hmac_sha256(erp->rIK, erp->rIK_len,
603 			wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
604 		wpabuf_free(msg);
605 		return -1;
606 	}
607 	wpabuf_put_data(msg, hash, 16);
608 
609 	wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
610 	sm->erp_seq = erp->next_seq;
611 	erp->next_seq++;
612 	wpabuf_free(sm->eapRespData);
613 	sm->eapRespData = msg;
614 	sm->reauthInit = TRUE;
615 	return 0;
616 }
617 #endif /* CONFIG_ERP */
618 
619 
620 /*
621  * The method processing happens here. The request from the authenticator is
622  * processed, and an appropriate response packet is built.
623  */
624 SM_STATE(EAP, METHOD)
625 {
626 	struct wpabuf *eapReqData;
627 	struct eap_method_ret ret;
628 	int min_len = 1;
629 
630 	SM_ENTRY(EAP, METHOD);
631 	if (sm->m == NULL) {
632 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
633 		return;
634 	}
635 
636 	eapReqData = eapol_get_eapReqData(sm);
637 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
638 		min_len = 0; /* LEAP uses EAP-Success without payload */
639 	if (!eap_hdr_len_valid(eapReqData, min_len))
640 		return;
641 
642 	/*
643 	 * Get ignore, methodState, decision, allowNotifications, and
644 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
645 	 * process, and buildResp) in this state. These have been combined into
646 	 * a single function call to m->process() in order to optimize EAP
647 	 * method implementation interface a bit. These procedures are only
648 	 * used from within this METHOD state, so there is no need to keep
649 	 * these as separate C functions.
650 	 *
651 	 * The RFC 4137 procedures return values as follows:
652 	 * ignore = m.check(eapReqData)
653 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
654 	 * eapRespData = m.buildResp(reqId)
655 	 */
656 	os_memset(&ret, 0, sizeof(ret));
657 	ret.ignore = sm->ignore;
658 	ret.methodState = sm->methodState;
659 	ret.decision = sm->decision;
660 	ret.allowNotifications = sm->allowNotifications;
661 	wpabuf_free(sm->eapRespData);
662 	sm->eapRespData = NULL;
663 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
664 					 eapReqData);
665 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
666 		   "methodState=%s decision=%s eapRespData=%p",
667 		   ret.ignore ? "TRUE" : "FALSE",
668 		   eap_sm_method_state_txt(ret.methodState),
669 		   eap_sm_decision_txt(ret.decision),
670 		   sm->eapRespData);
671 
672 	sm->ignore = ret.ignore;
673 	if (sm->ignore)
674 		return;
675 	sm->methodState = ret.methodState;
676 	sm->decision = ret.decision;
677 	sm->allowNotifications = ret.allowNotifications;
678 
679 	if (sm->m->isKeyAvailable && sm->m->getKey &&
680 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
681 		struct eap_peer_config *config = eap_get_config(sm);
682 
683 		eap_sm_free_key(sm);
684 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
685 					       &sm->eapKeyDataLen);
686 		os_free(sm->eapSessionId);
687 		sm->eapSessionId = NULL;
688 		if (sm->m->getSessionId) {
689 			sm->eapSessionId = sm->m->getSessionId(
690 				sm, sm->eap_method_priv,
691 				&sm->eapSessionIdLen);
692 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
693 				    sm->eapSessionId, sm->eapSessionIdLen);
694 		}
695 		if (config->erp && sm->m->get_emsk && sm->eapSessionId)
696 			eap_peer_erp_init(sm);
697 	}
698 }
699 
700 
701 /*
702  * This state signals the lower layer that a response packet is ready to be
703  * sent.
704  */
705 SM_STATE(EAP, SEND_RESPONSE)
706 {
707 	SM_ENTRY(EAP, SEND_RESPONSE);
708 	wpabuf_free(sm->lastRespData);
709 	if (sm->eapRespData) {
710 		if (sm->workaround)
711 			os_memcpy(sm->last_sha1, sm->req_sha1, 20);
712 		sm->lastId = sm->reqId;
713 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
714 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
715 	} else {
716 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
717 		sm->lastRespData = NULL;
718 	}
719 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
720 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
721 	sm->reauthInit = FALSE;
722 }
723 
724 
725 /*
726  * This state signals the lower layer that the request was discarded, and no
727  * response packet will be sent at this time.
728  */
729 SM_STATE(EAP, DISCARD)
730 {
731 	SM_ENTRY(EAP, DISCARD);
732 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
733 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
734 }
735 
736 
737 /*
738  * Handles requests for Identity method and builds a response.
739  */
740 SM_STATE(EAP, IDENTITY)
741 {
742 	const struct wpabuf *eapReqData;
743 
744 	SM_ENTRY(EAP, IDENTITY);
745 	eapReqData = eapol_get_eapReqData(sm);
746 	if (!eap_hdr_len_valid(eapReqData, 1))
747 		return;
748 	eap_sm_processIdentity(sm, eapReqData);
749 	wpabuf_free(sm->eapRespData);
750 	sm->eapRespData = NULL;
751 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
752 }
753 
754 
755 /*
756  * Handles requests for Notification method and builds a response.
757  */
758 SM_STATE(EAP, NOTIFICATION)
759 {
760 	const struct wpabuf *eapReqData;
761 
762 	SM_ENTRY(EAP, NOTIFICATION);
763 	eapReqData = eapol_get_eapReqData(sm);
764 	if (!eap_hdr_len_valid(eapReqData, 1))
765 		return;
766 	eap_sm_processNotify(sm, eapReqData);
767 	wpabuf_free(sm->eapRespData);
768 	sm->eapRespData = NULL;
769 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
770 }
771 
772 
773 /*
774  * This state retransmits the previous response packet.
775  */
776 SM_STATE(EAP, RETRANSMIT)
777 {
778 	SM_ENTRY(EAP, RETRANSMIT);
779 	wpabuf_free(sm->eapRespData);
780 	if (sm->lastRespData)
781 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
782 	else
783 		sm->eapRespData = NULL;
784 }
785 
786 
787 /*
788  * This state is entered in case of a successful completion of authentication
789  * and state machine waits here until port is disabled or EAP authentication is
790  * restarted.
791  */
792 SM_STATE(EAP, SUCCESS)
793 {
794 	SM_ENTRY(EAP, SUCCESS);
795 	if (sm->eapKeyData != NULL)
796 		sm->eapKeyAvailable = TRUE;
797 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
798 
799 	/*
800 	 * RFC 4137 does not clear eapReq here, but this seems to be required
801 	 * to avoid processing the same request twice when state machine is
802 	 * initialized.
803 	 */
804 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
805 
806 	/*
807 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
808 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
809 	 * addition, either eapResp or eapNoResp is required to be set after
810 	 * processing the received EAP frame.
811 	 */
812 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
813 
814 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
815 		"EAP authentication completed successfully");
816 }
817 
818 
819 /*
820  * This state is entered in case of a failure and state machine waits here
821  * until port is disabled or EAP authentication is restarted.
822  */
823 SM_STATE(EAP, FAILURE)
824 {
825 	SM_ENTRY(EAP, FAILURE);
826 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
827 
828 	/*
829 	 * RFC 4137 does not clear eapReq here, but this seems to be required
830 	 * to avoid processing the same request twice when state machine is
831 	 * initialized.
832 	 */
833 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
834 
835 	/*
836 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
837 	 * eapNoResp is required to be set after processing the received EAP
838 	 * frame.
839 	 */
840 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
841 
842 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
843 		"EAP authentication failed");
844 
845 	sm->prev_failure = 1;
846 }
847 
848 
849 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
850 {
851 	/*
852 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
853 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
854 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
855 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
856 	 *
857 	 * Accept this kind of Id if EAP workarounds are enabled. These are
858 	 * unauthenticated plaintext messages, so this should have minimal
859 	 * security implications (bit easier to fake EAP-Success/Failure).
860 	 */
861 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
862 			       reqId == ((lastId + 2) & 0xff))) {
863 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
864 			   "identifier field in EAP Success: "
865 			   "reqId=%d lastId=%d (these are supposed to be "
866 			   "same)", reqId, lastId);
867 		return 1;
868 	}
869 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
870 		   "lastId=%d", reqId, lastId);
871 	return 0;
872 }
873 
874 
875 /*
876  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
877  */
878 
879 static void eap_peer_sm_step_idle(struct eap_sm *sm)
880 {
881 	/*
882 	 * The first three transitions are from RFC 4137. The last two are
883 	 * local additions to handle special cases with LEAP and PEAP server
884 	 * not sending EAP-Success in some cases.
885 	 */
886 	if (eapol_get_bool(sm, EAPOL_eapReq))
887 		SM_ENTER(EAP, RECEIVED);
888 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
889 		  sm->decision != DECISION_FAIL) ||
890 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
891 		  sm->decision == DECISION_UNCOND_SUCC))
892 		SM_ENTER(EAP, SUCCESS);
893 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
894 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
895 		  sm->decision != DECISION_UNCOND_SUCC) ||
896 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
897 		  sm->methodState != METHOD_CONT &&
898 		  sm->decision == DECISION_FAIL))
899 		SM_ENTER(EAP, FAILURE);
900 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
901 		 sm->leap_done && sm->decision != DECISION_FAIL &&
902 		 sm->methodState == METHOD_DONE)
903 		SM_ENTER(EAP, SUCCESS);
904 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
905 		 sm->peap_done && sm->decision != DECISION_FAIL &&
906 		 sm->methodState == METHOD_DONE)
907 		SM_ENTER(EAP, SUCCESS);
908 }
909 
910 
911 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
912 {
913 	int duplicate;
914 
915 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
916 	if (sm->workaround && duplicate &&
917 	    os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
918 		/*
919 		 * RFC 4137 uses (reqId == lastId) as the only verification for
920 		 * duplicate EAP requests. However, this misses cases where the
921 		 * AS is incorrectly using the same id again; and
922 		 * unfortunately, such implementations exist. Use SHA1 hash as
923 		 * an extra verification for the packets being duplicate to
924 		 * workaround these issues.
925 		 */
926 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
927 			   "EAP packets were not identical");
928 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
929 			   "duplicate packet");
930 		duplicate = 0;
931 	}
932 
933 	return duplicate;
934 }
935 
936 
937 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
938 {
939 	struct eap_peer_config *config = eap_get_config(sm);
940 
941 	return config && config->phase1 &&
942 		os_strstr(config->phase1, "allow_canned_success=1");
943 }
944 
945 
946 static void eap_peer_sm_step_received(struct eap_sm *sm)
947 {
948 	int duplicate = eap_peer_req_is_duplicate(sm);
949 
950 	/*
951 	 * Two special cases below for LEAP are local additions to work around
952 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
953 	 * then swapped roles). Other transitions are based on RFC 4137.
954 	 */
955 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
956 	    (sm->reqId == sm->lastId ||
957 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
958 		SM_ENTER(EAP, SUCCESS);
959 	else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
960 		 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
961 		SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
962 	else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
963 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
964 		 eap_peer_sm_allow_canned(sm))
965 		SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
966 	else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
967 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
968 		 eap_peer_sm_allow_canned(sm))
969 		SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
970 	else if (sm->methodState != METHOD_CONT &&
971 		 ((sm->rxFailure &&
972 		   sm->decision != DECISION_UNCOND_SUCC) ||
973 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
974 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
975 		    sm->methodState != METHOD_MAY_CONT))) &&
976 		 (sm->reqId == sm->lastId ||
977 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
978 		SM_ENTER(EAP, FAILURE);
979 	else if (sm->rxReq && duplicate)
980 		SM_ENTER(EAP, RETRANSMIT);
981 	else if (sm->rxReq && !duplicate &&
982 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
983 		 sm->allowNotifications)
984 		SM_ENTER(EAP, NOTIFICATION);
985 	else if (sm->rxReq && !duplicate &&
986 		 sm->selectedMethod == EAP_TYPE_NONE &&
987 		 sm->reqMethod == EAP_TYPE_IDENTITY)
988 		SM_ENTER(EAP, IDENTITY);
989 	else if (sm->rxReq && !duplicate &&
990 		 sm->selectedMethod == EAP_TYPE_NONE &&
991 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
992 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
993 		SM_ENTER(EAP, GET_METHOD);
994 	else if (sm->rxReq && !duplicate &&
995 		 sm->reqMethod == sm->selectedMethod &&
996 		 sm->methodState != METHOD_DONE)
997 		SM_ENTER(EAP, METHOD);
998 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
999 		 (sm->rxSuccess || sm->rxResp))
1000 		SM_ENTER(EAP, METHOD);
1001 	else if (sm->reauthInit)
1002 		SM_ENTER(EAP, SEND_RESPONSE);
1003 	else
1004 		SM_ENTER(EAP, DISCARD);
1005 }
1006 
1007 
1008 static void eap_peer_sm_step_local(struct eap_sm *sm)
1009 {
1010 	switch (sm->EAP_state) {
1011 	case EAP_INITIALIZE:
1012 		SM_ENTER(EAP, IDLE);
1013 		break;
1014 	case EAP_DISABLED:
1015 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1016 		    !sm->force_disabled)
1017 			SM_ENTER(EAP, INITIALIZE);
1018 		break;
1019 	case EAP_IDLE:
1020 		eap_peer_sm_step_idle(sm);
1021 		break;
1022 	case EAP_RECEIVED:
1023 		eap_peer_sm_step_received(sm);
1024 		break;
1025 	case EAP_GET_METHOD:
1026 		if (sm->selectedMethod == sm->reqMethod)
1027 			SM_ENTER(EAP, METHOD);
1028 		else
1029 			SM_ENTER(EAP, SEND_RESPONSE);
1030 		break;
1031 	case EAP_METHOD:
1032 		/*
1033 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1034 		 * as the condition. eapRespData == NULL here is used to allow
1035 		 * final EAP method response to be sent without having to change
1036 		 * all methods to either use methodState MAY_CONT or leaving
1037 		 * decision to something else than FAIL in cases where the only
1038 		 * expected response is EAP-Failure.
1039 		 */
1040 		if (sm->ignore)
1041 			SM_ENTER(EAP, DISCARD);
1042 		else if (sm->methodState == METHOD_DONE &&
1043 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
1044 			SM_ENTER(EAP, FAILURE);
1045 		else
1046 			SM_ENTER(EAP, SEND_RESPONSE);
1047 		break;
1048 	case EAP_SEND_RESPONSE:
1049 		SM_ENTER(EAP, IDLE);
1050 		break;
1051 	case EAP_DISCARD:
1052 		SM_ENTER(EAP, IDLE);
1053 		break;
1054 	case EAP_IDENTITY:
1055 		SM_ENTER(EAP, SEND_RESPONSE);
1056 		break;
1057 	case EAP_NOTIFICATION:
1058 		SM_ENTER(EAP, SEND_RESPONSE);
1059 		break;
1060 	case EAP_RETRANSMIT:
1061 		SM_ENTER(EAP, SEND_RESPONSE);
1062 		break;
1063 	case EAP_SUCCESS:
1064 		break;
1065 	case EAP_FAILURE:
1066 		break;
1067 	}
1068 }
1069 
1070 
1071 SM_STEP(EAP)
1072 {
1073 	/* Global transitions */
1074 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1075 	    eapol_get_bool(sm, EAPOL_portEnabled))
1076 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
1077 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1078 		SM_ENTER_GLOBAL(EAP, DISABLED);
1079 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1080 		/* RFC 4137 does not place any limit on number of EAP messages
1081 		 * in an authentication session. However, some error cases have
1082 		 * ended up in a state were EAP messages were sent between the
1083 		 * peer and server in a loop (e.g., TLS ACK frame in both
1084 		 * direction). Since this is quite undesired outcome, limit the
1085 		 * total number of EAP round-trips and abort authentication if
1086 		 * this limit is exceeded.
1087 		 */
1088 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1089 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1090 				"authentication rounds - abort",
1091 				EAP_MAX_AUTH_ROUNDS);
1092 			sm->num_rounds++;
1093 			SM_ENTER_GLOBAL(EAP, FAILURE);
1094 		}
1095 	} else {
1096 		/* Local transitions */
1097 		eap_peer_sm_step_local(sm);
1098 	}
1099 }
1100 
1101 
1102 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1103 				  EapType method)
1104 {
1105 	if (!eap_allowed_method(sm, vendor, method)) {
1106 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1107 			   "vendor %u method %u", vendor, method);
1108 		return FALSE;
1109 	}
1110 	if (eap_peer_get_eap_method(vendor, method))
1111 		return TRUE;
1112 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1113 		   "vendor %u method %u", vendor, method);
1114 	return FALSE;
1115 }
1116 
1117 
1118 static struct wpabuf * eap_sm_build_expanded_nak(
1119 	struct eap_sm *sm, int id, const struct eap_method *methods,
1120 	size_t count)
1121 {
1122 	struct wpabuf *resp;
1123 	int found = 0;
1124 	const struct eap_method *m;
1125 
1126 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1127 
1128 	/* RFC 3748 - 5.3.2: Expanded Nak */
1129 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1130 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1131 	if (resp == NULL)
1132 		return NULL;
1133 
1134 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1135 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
1136 
1137 	for (m = methods; m; m = m->next) {
1138 		if (sm->reqVendor == m->vendor &&
1139 		    sm->reqVendorMethod == m->method)
1140 			continue; /* do not allow the current method again */
1141 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1142 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1143 				   "vendor=%u method=%u",
1144 				   m->vendor, m->method);
1145 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1146 			wpabuf_put_be24(resp, m->vendor);
1147 			wpabuf_put_be32(resp, m->method);
1148 
1149 			found++;
1150 		}
1151 	}
1152 	if (!found) {
1153 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1154 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1155 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1156 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
1157 	}
1158 
1159 	eap_update_len(resp);
1160 
1161 	return resp;
1162 }
1163 
1164 
1165 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1166 {
1167 	struct wpabuf *resp;
1168 	u8 *start;
1169 	int found = 0, expanded_found = 0;
1170 	size_t count;
1171 	const struct eap_method *methods, *m;
1172 
1173 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1174 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
1175 		   sm->reqVendor, sm->reqVendorMethod);
1176 	methods = eap_peer_get_methods(&count);
1177 	if (methods == NULL)
1178 		return NULL;
1179 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
1180 		return eap_sm_build_expanded_nak(sm, id, methods, count);
1181 
1182 	/* RFC 3748 - 5.3.1: Legacy Nak */
1183 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1184 			     sizeof(struct eap_hdr) + 1 + count + 1,
1185 			     EAP_CODE_RESPONSE, id);
1186 	if (resp == NULL)
1187 		return NULL;
1188 
1189 	start = wpabuf_put(resp, 0);
1190 	for (m = methods; m; m = m->next) {
1191 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1192 			continue; /* do not allow the current method again */
1193 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1194 			if (m->vendor != EAP_VENDOR_IETF) {
1195 				if (expanded_found)
1196 					continue;
1197 				expanded_found = 1;
1198 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1199 			} else
1200 				wpabuf_put_u8(resp, m->method);
1201 			found++;
1202 		}
1203 	}
1204 	if (!found)
1205 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
1206 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1207 
1208 	eap_update_len(resp);
1209 
1210 	return resp;
1211 }
1212 
1213 
1214 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1215 {
1216 	const u8 *pos;
1217 	size_t msg_len;
1218 
1219 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1220 		"EAP authentication started");
1221 	eap_notify_status(sm, "started", "");
1222 
1223 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1224 			       &msg_len);
1225 	if (pos == NULL)
1226 		return;
1227 
1228 	/*
1229 	 * RFC 3748 - 5.1: Identity
1230 	 * Data field may contain a displayable message in UTF-8. If this
1231 	 * includes NUL-character, only the data before that should be
1232 	 * displayed. Some EAP implementasitons may piggy-back additional
1233 	 * options after the NUL.
1234 	 */
1235 	/* TODO: could save displayable message so that it can be shown to the
1236 	 * user in case of interaction is required */
1237 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1238 			  pos, msg_len);
1239 }
1240 
1241 
1242 #ifdef PCSC_FUNCS
1243 
1244 /*
1245  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1246  * include MNC length field.
1247  */
1248 static int mnc_len_from_imsi(const char *imsi)
1249 {
1250 	char mcc_str[4];
1251 	unsigned int mcc;
1252 
1253 	os_memcpy(mcc_str, imsi, 3);
1254 	mcc_str[3] = '\0';
1255 	mcc = atoi(mcc_str);
1256 
1257 	if (mcc == 228)
1258 		return 2; /* Networks in Switzerland use 2-digit MNC */
1259 	if (mcc == 244)
1260 		return 2; /* Networks in Finland use 2-digit MNC */
1261 
1262 	return -1;
1263 }
1264 
1265 
1266 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
1267 				    size_t max_len, size_t *imsi_len)
1268 {
1269 	int mnc_len;
1270 	char *pos, mnc[4];
1271 
1272 	if (*imsi_len + 36 > max_len) {
1273 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
1274 		return -1;
1275 	}
1276 
1277 	/* MNC (2 or 3 digits) */
1278 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
1279 	if (mnc_len < 0)
1280 		mnc_len = mnc_len_from_imsi(imsi);
1281 	if (mnc_len < 0) {
1282 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1283 			   "assuming 3");
1284 		mnc_len = 3;
1285 	}
1286 
1287 	if (mnc_len == 2) {
1288 		mnc[0] = '0';
1289 		mnc[1] = imsi[3];
1290 		mnc[2] = imsi[4];
1291 	} else if (mnc_len == 3) {
1292 		mnc[0] = imsi[3];
1293 		mnc[1] = imsi[4];
1294 		mnc[2] = imsi[5];
1295 	}
1296 	mnc[3] = '\0';
1297 
1298 	pos = imsi + *imsi_len;
1299 	pos += os_snprintf(pos, imsi + max_len - pos,
1300 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1301 			   mnc, imsi[0], imsi[1], imsi[2]);
1302 	*imsi_len = pos - imsi;
1303 
1304 	return 0;
1305 }
1306 
1307 
1308 static int eap_sm_imsi_identity(struct eap_sm *sm,
1309 				struct eap_peer_config *conf)
1310 {
1311 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1312 	char imsi[100];
1313 	size_t imsi_len;
1314 	struct eap_method_type *m = conf->eap_methods;
1315 	int i;
1316 
1317 	imsi_len = sizeof(imsi);
1318 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1319 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1320 		return -1;
1321 	}
1322 
1323 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1324 
1325 	if (imsi_len < 7) {
1326 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1327 		return -1;
1328 	}
1329 
1330 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1331 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1332 		return -1;
1333 	}
1334 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1335 
1336 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1337 			  m[i].method != EAP_TYPE_NONE); i++) {
1338 		if (m[i].vendor == EAP_VENDOR_IETF &&
1339 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1340 			method = EAP_SM_AKA_PRIME;
1341 			break;
1342 		}
1343 
1344 		if (m[i].vendor == EAP_VENDOR_IETF &&
1345 		    m[i].method == EAP_TYPE_AKA) {
1346 			method = EAP_SM_AKA;
1347 			break;
1348 		}
1349 	}
1350 
1351 	os_free(conf->identity);
1352 	conf->identity = os_malloc(1 + imsi_len);
1353 	if (conf->identity == NULL) {
1354 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1355 			   "IMSI-based identity");
1356 		return -1;
1357 	}
1358 
1359 	switch (method) {
1360 	case EAP_SM_SIM:
1361 		conf->identity[0] = '1';
1362 		break;
1363 	case EAP_SM_AKA:
1364 		conf->identity[0] = '0';
1365 		break;
1366 	case EAP_SM_AKA_PRIME:
1367 		conf->identity[0] = '6';
1368 		break;
1369 	}
1370 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1371 	conf->identity_len = 1 + imsi_len;
1372 
1373 	return 0;
1374 }
1375 
1376 #endif /* PCSC_FUNCS */
1377 
1378 
1379 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1380 				struct eap_peer_config *conf)
1381 {
1382 #ifdef PCSC_FUNCS
1383 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1384 		/*
1385 		 * Make sure the same PIN is not tried again in order to avoid
1386 		 * blocking SIM.
1387 		 */
1388 		os_free(conf->pin);
1389 		conf->pin = NULL;
1390 
1391 		wpa_printf(MSG_WARNING, "PIN validation failed");
1392 		eap_sm_request_pin(sm);
1393 		return -1;
1394 	}
1395 	return 0;
1396 #else /* PCSC_FUNCS */
1397 	return -1;
1398 #endif /* PCSC_FUNCS */
1399 }
1400 
1401 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1402 				     struct eap_peer_config *conf)
1403 {
1404 #ifdef PCSC_FUNCS
1405 	if (eap_sm_set_scard_pin(sm, conf))
1406 		return -1;
1407 
1408 	return eap_sm_imsi_identity(sm, conf);
1409 #else /* PCSC_FUNCS */
1410 	return -1;
1411 #endif /* PCSC_FUNCS */
1412 }
1413 
1414 
1415 /**
1416  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1417  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1418  * @id: EAP identifier for the packet
1419  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1420  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1421  * failure
1422  *
1423  * This function allocates and builds an EAP-Identity/Response packet for the
1424  * current network. The caller is responsible for freeing the returned data.
1425  */
1426 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1427 {
1428 	struct eap_peer_config *config = eap_get_config(sm);
1429 	struct wpabuf *resp;
1430 	const u8 *identity;
1431 	size_t identity_len;
1432 
1433 	if (config == NULL) {
1434 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1435 			   "was not available");
1436 		return NULL;
1437 	}
1438 
1439 	if (sm->m && sm->m->get_identity &&
1440 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1441 					    &identity_len)) != NULL) {
1442 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1443 				  "identity", identity, identity_len);
1444 	} else if (!encrypted && config->anonymous_identity) {
1445 		identity = config->anonymous_identity;
1446 		identity_len = config->anonymous_identity_len;
1447 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1448 				  identity, identity_len);
1449 	} else {
1450 		identity = config->identity;
1451 		identity_len = config->identity_len;
1452 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1453 				  identity, identity_len);
1454 	}
1455 
1456 	if (identity == NULL) {
1457 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1458 			   "configuration was not available");
1459 		if (config->pcsc) {
1460 			if (eap_sm_get_scard_identity(sm, config) < 0)
1461 				return NULL;
1462 			identity = config->identity;
1463 			identity_len = config->identity_len;
1464 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1465 					  "IMSI", identity, identity_len);
1466 		} else {
1467 			eap_sm_request_identity(sm);
1468 			return NULL;
1469 		}
1470 	} else if (config->pcsc) {
1471 		if (eap_sm_set_scard_pin(sm, config) < 0)
1472 			return NULL;
1473 	}
1474 
1475 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1476 			     EAP_CODE_RESPONSE, id);
1477 	if (resp == NULL)
1478 		return NULL;
1479 
1480 	wpabuf_put_data(resp, identity, identity_len);
1481 
1482 	return resp;
1483 }
1484 
1485 
1486 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1487 {
1488 	const u8 *pos;
1489 	char *msg;
1490 	size_t i, msg_len;
1491 
1492 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1493 			       &msg_len);
1494 	if (pos == NULL)
1495 		return;
1496 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1497 			  pos, msg_len);
1498 
1499 	msg = os_malloc(msg_len + 1);
1500 	if (msg == NULL)
1501 		return;
1502 	for (i = 0; i < msg_len; i++)
1503 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1504 	msg[msg_len] = '\0';
1505 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1506 		WPA_EVENT_EAP_NOTIFICATION, msg);
1507 	os_free(msg);
1508 }
1509 
1510 
1511 static struct wpabuf * eap_sm_buildNotify(int id)
1512 {
1513 	struct wpabuf *resp;
1514 
1515 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1516 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1517 			     EAP_CODE_RESPONSE, id);
1518 	if (resp == NULL)
1519 		return NULL;
1520 
1521 	return resp;
1522 }
1523 
1524 
1525 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1526 			      size_t len)
1527 {
1528 #ifdef CONFIG_ERP
1529 	const u8 *pos = (const u8 *) (hdr + 1);
1530 	const u8 *end = ((const u8 *) hdr) + len;
1531 	struct erp_tlvs parse;
1532 
1533 	if (len < sizeof(*hdr) + 1) {
1534 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1535 		return;
1536 	}
1537 
1538 	if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1539 		wpa_printf(MSG_DEBUG,
1540 			   "EAP: Ignored unexpected EAP-Initiate Type=%u",
1541 			   *pos);
1542 		return;
1543 	}
1544 
1545 	pos++;
1546 	if (pos >= end) {
1547 		wpa_printf(MSG_DEBUG,
1548 			   "EAP: Too short EAP-Initiate/Re-auth-Start");
1549 		return;
1550 	}
1551 	pos++; /* Reserved */
1552 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1553 		    pos, end - pos);
1554 
1555 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1556 		goto invalid;
1557 
1558 	if (parse.domain) {
1559 		wpa_hexdump_ascii(MSG_DEBUG,
1560 				  "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1561 				  parse.domain, parse.domain_len);
1562 		/* TODO: Derivation of domain specific keys for local ER */
1563 	}
1564 
1565 	if (eap_peer_erp_reauth_start(sm, hdr, len) == 0)
1566 		return;
1567 
1568 invalid:
1569 #endif /* CONFIG_ERP */
1570 	wpa_printf(MSG_DEBUG,
1571 		   "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1572 	eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1573 }
1574 
1575 
1576 static void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr,
1577 			    size_t len)
1578 {
1579 #ifdef CONFIG_ERP
1580 	const u8 *pos = (const u8 *) (hdr + 1);
1581 	const u8 *end = ((const u8 *) hdr) + len;
1582 	const u8 *start;
1583 	struct erp_tlvs parse;
1584 	u8 flags;
1585 	u16 seq;
1586 	u8 hash[SHA256_MAC_LEN];
1587 	size_t hash_len;
1588 	struct eap_erp_key *erp;
1589 	int max_len;
1590 	char nai[254];
1591 	u8 seed[4];
1592 	int auth_tag_ok = 0;
1593 
1594 	if (len < sizeof(*hdr) + 1) {
1595 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1596 		return;
1597 	}
1598 
1599 	if (*pos != EAP_ERP_TYPE_REAUTH) {
1600 		wpa_printf(MSG_DEBUG,
1601 			   "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1602 		return;
1603 	}
1604 
1605 	if (len < sizeof(*hdr) + 4) {
1606 		wpa_printf(MSG_DEBUG,
1607 			   "EAP: Ignored too short EAP-Finish/Re-auth");
1608 		return;
1609 	}
1610 
1611 	pos++;
1612 	flags = *pos++;
1613 	seq = WPA_GET_BE16(pos);
1614 	pos += 2;
1615 	wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1616 
1617 	if (seq != sm->erp_seq) {
1618 		wpa_printf(MSG_DEBUG,
1619 			   "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1620 		return;
1621 	}
1622 
1623 	/*
1624 	 * Parse TVs/TLVs. Since we do not yet know the length of the
1625 	 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1626 	 * just try to find the keyName-NAI first so that we can check the
1627 	 * Authentication Tag.
1628 	 */
1629 	if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1630 		return;
1631 
1632 	if (!parse.keyname) {
1633 		wpa_printf(MSG_DEBUG,
1634 			   "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1635 		return;
1636 	}
1637 
1638 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1639 			  parse.keyname, parse.keyname_len);
1640 	if (parse.keyname_len > 253) {
1641 		wpa_printf(MSG_DEBUG,
1642 			   "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1643 		return;
1644 	}
1645 	os_memcpy(nai, parse.keyname, parse.keyname_len);
1646 	nai[parse.keyname_len] = '\0';
1647 
1648 	erp = eap_erp_get_key_nai(sm, nai);
1649 	if (!erp) {
1650 		wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1651 			   nai);
1652 		return;
1653 	}
1654 
1655 	/* Is there enough room for Cryptosuite and Authentication Tag? */
1656 	start = parse.keyname + parse.keyname_len;
1657 	max_len = end - start;
1658 	hash_len = 16;
1659 	if (max_len < 1 + (int) hash_len) {
1660 		wpa_printf(MSG_DEBUG,
1661 			   "EAP: Not enough room for Authentication Tag");
1662 		if (flags & 0x80)
1663 			goto no_auth_tag;
1664 		return;
1665 	}
1666 	if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1667 		wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1668 		if (flags & 0x80)
1669 			goto no_auth_tag;
1670 		return;
1671 	}
1672 
1673 	if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1674 			end - ((const u8 *) hdr) - hash_len, hash) < 0)
1675 		return;
1676 	if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1677 		wpa_printf(MSG_DEBUG,
1678 			   "EAP: Authentication Tag mismatch");
1679 		return;
1680 	}
1681 	auth_tag_ok = 1;
1682 	end -= 1 + hash_len;
1683 
1684 no_auth_tag:
1685 	/*
1686 	 * Parse TVs/TLVs again now that we know the exact part of the buffer
1687 	 * that contains them.
1688 	 */
1689 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1690 		    pos, end - pos);
1691 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1692 		return;
1693 
1694 	if (flags & 0x80 || !auth_tag_ok) {
1695 		wpa_printf(MSG_DEBUG,
1696 			   "EAP: EAP-Finish/Re-auth indicated failure");
1697 		eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1698 		eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1699 		eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1700 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1701 			"EAP authentication failed");
1702 		sm->prev_failure = 1;
1703 		wpa_printf(MSG_DEBUG,
1704 			   "EAP: Drop ERP key to try full authentication on next attempt");
1705 		eap_peer_erp_free_key(erp);
1706 		return;
1707 	}
1708 
1709 	eap_sm_free_key(sm);
1710 	sm->eapKeyDataLen = 0;
1711 	sm->eapKeyData = os_malloc(erp->rRK_len);
1712 	if (!sm->eapKeyData)
1713 		return;
1714 	sm->eapKeyDataLen = erp->rRK_len;
1715 
1716 	WPA_PUT_BE16(seed, seq);
1717 	WPA_PUT_BE16(&seed[2], erp->rRK_len);
1718 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1719 			    "Re-authentication Master Session Key@ietf.org",
1720 			    seed, sizeof(seed),
1721 			    sm->eapKeyData, erp->rRK_len) < 0) {
1722 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1723 		eap_sm_free_key(sm);
1724 		return;
1725 	}
1726 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1727 			sm->eapKeyData, sm->eapKeyDataLen);
1728 	sm->eapKeyAvailable = TRUE;
1729 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1730 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1731 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1732 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1733 		"EAP re-authentication completed successfully");
1734 #endif /* CONFIG_ERP */
1735 }
1736 
1737 
1738 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1739 {
1740 	const struct eap_hdr *hdr;
1741 	size_t plen;
1742 	const u8 *pos;
1743 
1744 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1745 	sm->reqId = 0;
1746 	sm->reqMethod = EAP_TYPE_NONE;
1747 	sm->reqVendor = EAP_VENDOR_IETF;
1748 	sm->reqVendorMethod = EAP_TYPE_NONE;
1749 
1750 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1751 		return;
1752 
1753 	hdr = wpabuf_head(req);
1754 	plen = be_to_host16(hdr->length);
1755 	if (plen > wpabuf_len(req)) {
1756 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1757 			   "(len=%lu plen=%lu)",
1758 			   (unsigned long) wpabuf_len(req),
1759 			   (unsigned long) plen);
1760 		return;
1761 	}
1762 
1763 	sm->reqId = hdr->identifier;
1764 
1765 	if (sm->workaround) {
1766 		const u8 *addr[1];
1767 		addr[0] = wpabuf_head(req);
1768 		sha1_vector(1, addr, &plen, sm->req_sha1);
1769 	}
1770 
1771 	switch (hdr->code) {
1772 	case EAP_CODE_REQUEST:
1773 		if (plen < sizeof(*hdr) + 1) {
1774 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1775 				   "no Type field");
1776 			return;
1777 		}
1778 		sm->rxReq = TRUE;
1779 		pos = (const u8 *) (hdr + 1);
1780 		sm->reqMethod = *pos++;
1781 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1782 			if (plen < sizeof(*hdr) + 8) {
1783 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1784 					   "expanded EAP-Packet (plen=%lu)",
1785 					   (unsigned long) plen);
1786 				return;
1787 			}
1788 			sm->reqVendor = WPA_GET_BE24(pos);
1789 			pos += 3;
1790 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1791 		}
1792 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1793 			   "method=%u vendor=%u vendorMethod=%u",
1794 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1795 			   sm->reqVendorMethod);
1796 		break;
1797 	case EAP_CODE_RESPONSE:
1798 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1799 			/*
1800 			 * LEAP differs from RFC 4137 by using reversed roles
1801 			 * for mutual authentication and because of this, we
1802 			 * need to accept EAP-Response frames if LEAP is used.
1803 			 */
1804 			if (plen < sizeof(*hdr) + 1) {
1805 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1806 					   "EAP-Response - no Type field");
1807 				return;
1808 			}
1809 			sm->rxResp = TRUE;
1810 			pos = (const u8 *) (hdr + 1);
1811 			sm->reqMethod = *pos;
1812 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1813 				   "LEAP method=%d id=%d",
1814 				   sm->reqMethod, sm->reqId);
1815 			break;
1816 		}
1817 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1818 		break;
1819 	case EAP_CODE_SUCCESS:
1820 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1821 		eap_notify_status(sm, "completion", "success");
1822 		sm->rxSuccess = TRUE;
1823 		break;
1824 	case EAP_CODE_FAILURE:
1825 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1826 		eap_notify_status(sm, "completion", "failure");
1827 		sm->rxFailure = TRUE;
1828 		break;
1829 	case EAP_CODE_INITIATE:
1830 		eap_peer_initiate(sm, hdr, plen);
1831 		break;
1832 	case EAP_CODE_FINISH:
1833 		eap_peer_finish(sm, hdr, plen);
1834 		break;
1835 	default:
1836 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1837 			   "code %d", hdr->code);
1838 		break;
1839 	}
1840 }
1841 
1842 
1843 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1844 				  union tls_event_data *data)
1845 {
1846 	struct eap_sm *sm = ctx;
1847 	char *hash_hex = NULL;
1848 
1849 	switch (ev) {
1850 	case TLS_CERT_CHAIN_SUCCESS:
1851 		eap_notify_status(sm, "remote certificate verification",
1852 				  "success");
1853 		break;
1854 	case TLS_CERT_CHAIN_FAILURE:
1855 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1856 			"reason=%d depth=%d subject='%s' err='%s'",
1857 			data->cert_fail.reason,
1858 			data->cert_fail.depth,
1859 			data->cert_fail.subject,
1860 			data->cert_fail.reason_txt);
1861 		eap_notify_status(sm, "remote certificate verification",
1862 				  data->cert_fail.reason_txt);
1863 		break;
1864 	case TLS_PEER_CERTIFICATE:
1865 		if (!sm->eapol_cb->notify_cert)
1866 			break;
1867 
1868 		if (data->peer_cert.hash) {
1869 			size_t len = data->peer_cert.hash_len * 2 + 1;
1870 			hash_hex = os_malloc(len);
1871 			if (hash_hex) {
1872 				wpa_snprintf_hex(hash_hex, len,
1873 						 data->peer_cert.hash,
1874 						 data->peer_cert.hash_len);
1875 			}
1876 		}
1877 
1878 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1879 					  data->peer_cert.depth,
1880 					  data->peer_cert.subject,
1881 					  data->peer_cert.altsubject,
1882 					  data->peer_cert.num_altsubject,
1883 					  hash_hex, data->peer_cert.cert);
1884 		break;
1885 	case TLS_ALERT:
1886 		if (data->alert.is_local)
1887 			eap_notify_status(sm, "local TLS alert",
1888 					  data->alert.description);
1889 		else
1890 			eap_notify_status(sm, "remote TLS alert",
1891 					  data->alert.description);
1892 		break;
1893 	}
1894 
1895 	os_free(hash_hex);
1896 }
1897 
1898 
1899 /**
1900  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1901  * @eapol_ctx: Context data to be used with eapol_cb calls
1902  * @eapol_cb: Pointer to EAPOL callback functions
1903  * @msg_ctx: Context data for wpa_msg() calls
1904  * @conf: EAP configuration
1905  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1906  *
1907  * This function allocates and initializes an EAP state machine. In addition,
1908  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1909  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1910  * state machine. Consequently, the caller must make sure that this data
1911  * structure remains alive while the EAP state machine is active.
1912  */
1913 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1914 				 const struct eapol_callbacks *eapol_cb,
1915 				 void *msg_ctx, struct eap_config *conf)
1916 {
1917 	struct eap_sm *sm;
1918 	struct tls_config tlsconf;
1919 
1920 	sm = os_zalloc(sizeof(*sm));
1921 	if (sm == NULL)
1922 		return NULL;
1923 	sm->eapol_ctx = eapol_ctx;
1924 	sm->eapol_cb = eapol_cb;
1925 	sm->msg_ctx = msg_ctx;
1926 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1927 	sm->wps = conf->wps;
1928 	dl_list_init(&sm->erp_keys);
1929 
1930 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1931 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1932 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1933 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1934 	tlsconf.openssl_ciphers = conf->openssl_ciphers;
1935 #ifdef CONFIG_FIPS
1936 	tlsconf.fips_mode = 1;
1937 #endif /* CONFIG_FIPS */
1938 	tlsconf.event_cb = eap_peer_sm_tls_event;
1939 	tlsconf.cb_ctx = sm;
1940 	tlsconf.cert_in_cb = conf->cert_in_cb;
1941 	sm->ssl_ctx = tls_init(&tlsconf);
1942 	if (sm->ssl_ctx == NULL) {
1943 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1944 			   "context.");
1945 		os_free(sm);
1946 		return NULL;
1947 	}
1948 
1949 	sm->ssl_ctx2 = tls_init(&tlsconf);
1950 	if (sm->ssl_ctx2 == NULL) {
1951 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1952 			   "context (2).");
1953 		/* Run without separate TLS context within TLS tunnel */
1954 	}
1955 
1956 	return sm;
1957 }
1958 
1959 
1960 /**
1961  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1962  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1963  *
1964  * This function deinitializes EAP state machine and frees all allocated
1965  * resources.
1966  */
1967 void eap_peer_sm_deinit(struct eap_sm *sm)
1968 {
1969 	if (sm == NULL)
1970 		return;
1971 	eap_deinit_prev_method(sm, "EAP deinit");
1972 	eap_sm_abort(sm);
1973 	if (sm->ssl_ctx2)
1974 		tls_deinit(sm->ssl_ctx2);
1975 	tls_deinit(sm->ssl_ctx);
1976 	eap_peer_erp_free_keys(sm);
1977 	os_free(sm);
1978 }
1979 
1980 
1981 /**
1982  * eap_peer_sm_step - Step EAP peer state machine
1983  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1984  * Returns: 1 if EAP state was changed or 0 if not
1985  *
1986  * This function advances EAP state machine to a new state to match with the
1987  * current variables. This should be called whenever variables used by the EAP
1988  * state machine have changed.
1989  */
1990 int eap_peer_sm_step(struct eap_sm *sm)
1991 {
1992 	int res = 0;
1993 	do {
1994 		sm->changed = FALSE;
1995 		SM_STEP_RUN(EAP);
1996 		if (sm->changed)
1997 			res = 1;
1998 	} while (sm->changed);
1999 	return res;
2000 }
2001 
2002 
2003 /**
2004  * eap_sm_abort - Abort EAP authentication
2005  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2006  *
2007  * Release system resources that have been allocated for the authentication
2008  * session without fully deinitializing the EAP state machine.
2009  */
2010 void eap_sm_abort(struct eap_sm *sm)
2011 {
2012 	wpabuf_free(sm->lastRespData);
2013 	sm->lastRespData = NULL;
2014 	wpabuf_free(sm->eapRespData);
2015 	sm->eapRespData = NULL;
2016 	eap_sm_free_key(sm);
2017 	os_free(sm->eapSessionId);
2018 	sm->eapSessionId = NULL;
2019 
2020 	/* This is not clearly specified in the EAP statemachines draft, but
2021 	 * it seems necessary to make sure that some of the EAPOL variables get
2022 	 * cleared for the next authentication. */
2023 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2024 }
2025 
2026 
2027 #ifdef CONFIG_CTRL_IFACE
2028 static const char * eap_sm_state_txt(int state)
2029 {
2030 	switch (state) {
2031 	case EAP_INITIALIZE:
2032 		return "INITIALIZE";
2033 	case EAP_DISABLED:
2034 		return "DISABLED";
2035 	case EAP_IDLE:
2036 		return "IDLE";
2037 	case EAP_RECEIVED:
2038 		return "RECEIVED";
2039 	case EAP_GET_METHOD:
2040 		return "GET_METHOD";
2041 	case EAP_METHOD:
2042 		return "METHOD";
2043 	case EAP_SEND_RESPONSE:
2044 		return "SEND_RESPONSE";
2045 	case EAP_DISCARD:
2046 		return "DISCARD";
2047 	case EAP_IDENTITY:
2048 		return "IDENTITY";
2049 	case EAP_NOTIFICATION:
2050 		return "NOTIFICATION";
2051 	case EAP_RETRANSMIT:
2052 		return "RETRANSMIT";
2053 	case EAP_SUCCESS:
2054 		return "SUCCESS";
2055 	case EAP_FAILURE:
2056 		return "FAILURE";
2057 	default:
2058 		return "UNKNOWN";
2059 	}
2060 }
2061 #endif /* CONFIG_CTRL_IFACE */
2062 
2063 
2064 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2065 static const char * eap_sm_method_state_txt(EapMethodState state)
2066 {
2067 	switch (state) {
2068 	case METHOD_NONE:
2069 		return "NONE";
2070 	case METHOD_INIT:
2071 		return "INIT";
2072 	case METHOD_CONT:
2073 		return "CONT";
2074 	case METHOD_MAY_CONT:
2075 		return "MAY_CONT";
2076 	case METHOD_DONE:
2077 		return "DONE";
2078 	default:
2079 		return "UNKNOWN";
2080 	}
2081 }
2082 
2083 
2084 static const char * eap_sm_decision_txt(EapDecision decision)
2085 {
2086 	switch (decision) {
2087 	case DECISION_FAIL:
2088 		return "FAIL";
2089 	case DECISION_COND_SUCC:
2090 		return "COND_SUCC";
2091 	case DECISION_UNCOND_SUCC:
2092 		return "UNCOND_SUCC";
2093 	default:
2094 		return "UNKNOWN";
2095 	}
2096 }
2097 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2098 
2099 
2100 #ifdef CONFIG_CTRL_IFACE
2101 
2102 /**
2103  * eap_sm_get_status - Get EAP state machine status
2104  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2105  * @buf: Buffer for status information
2106  * @buflen: Maximum buffer length
2107  * @verbose: Whether to include verbose status information
2108  * Returns: Number of bytes written to buf.
2109  *
2110  * Query EAP state machine for status information. This function fills in a
2111  * text area with current status information from the EAPOL state machine. If
2112  * the buffer (buf) is not large enough, status information will be truncated
2113  * to fit the buffer.
2114  */
2115 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2116 {
2117 	int len, ret;
2118 
2119 	if (sm == NULL)
2120 		return 0;
2121 
2122 	len = os_snprintf(buf, buflen,
2123 			  "EAP state=%s\n",
2124 			  eap_sm_state_txt(sm->EAP_state));
2125 	if (os_snprintf_error(buflen, len))
2126 		return 0;
2127 
2128 	if (sm->selectedMethod != EAP_TYPE_NONE) {
2129 		const char *name;
2130 		if (sm->m) {
2131 			name = sm->m->name;
2132 		} else {
2133 			const struct eap_method *m =
2134 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
2135 							sm->selectedMethod);
2136 			if (m)
2137 				name = m->name;
2138 			else
2139 				name = "?";
2140 		}
2141 		ret = os_snprintf(buf + len, buflen - len,
2142 				  "selectedMethod=%d (EAP-%s)\n",
2143 				  sm->selectedMethod, name);
2144 		if (os_snprintf_error(buflen - len, ret))
2145 			return len;
2146 		len += ret;
2147 
2148 		if (sm->m && sm->m->get_status) {
2149 			len += sm->m->get_status(sm, sm->eap_method_priv,
2150 						 buf + len, buflen - len,
2151 						 verbose);
2152 		}
2153 	}
2154 
2155 	if (verbose) {
2156 		ret = os_snprintf(buf + len, buflen - len,
2157 				  "reqMethod=%d\n"
2158 				  "methodState=%s\n"
2159 				  "decision=%s\n"
2160 				  "ClientTimeout=%d\n",
2161 				  sm->reqMethod,
2162 				  eap_sm_method_state_txt(sm->methodState),
2163 				  eap_sm_decision_txt(sm->decision),
2164 				  sm->ClientTimeout);
2165 		if (os_snprintf_error(buflen - len, ret))
2166 			return len;
2167 		len += ret;
2168 	}
2169 
2170 	return len;
2171 }
2172 #endif /* CONFIG_CTRL_IFACE */
2173 
2174 
2175 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2176 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2177 			   const char *msg, size_t msglen)
2178 {
2179 	struct eap_peer_config *config;
2180 	const char *txt = NULL;
2181 	char *tmp;
2182 
2183 	if (sm == NULL)
2184 		return;
2185 	config = eap_get_config(sm);
2186 	if (config == NULL)
2187 		return;
2188 
2189 	switch (field) {
2190 	case WPA_CTRL_REQ_EAP_IDENTITY:
2191 		config->pending_req_identity++;
2192 		break;
2193 	case WPA_CTRL_REQ_EAP_PASSWORD:
2194 		config->pending_req_password++;
2195 		break;
2196 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2197 		config->pending_req_new_password++;
2198 		break;
2199 	case WPA_CTRL_REQ_EAP_PIN:
2200 		config->pending_req_pin++;
2201 		break;
2202 	case WPA_CTRL_REQ_EAP_OTP:
2203 		if (msg) {
2204 			tmp = os_malloc(msglen + 3);
2205 			if (tmp == NULL)
2206 				return;
2207 			tmp[0] = '[';
2208 			os_memcpy(tmp + 1, msg, msglen);
2209 			tmp[msglen + 1] = ']';
2210 			tmp[msglen + 2] = '\0';
2211 			txt = tmp;
2212 			os_free(config->pending_req_otp);
2213 			config->pending_req_otp = tmp;
2214 			config->pending_req_otp_len = msglen + 3;
2215 		} else {
2216 			if (config->pending_req_otp == NULL)
2217 				return;
2218 			txt = config->pending_req_otp;
2219 		}
2220 		break;
2221 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
2222 		config->pending_req_passphrase++;
2223 		break;
2224 	case WPA_CTRL_REQ_SIM:
2225 		txt = msg;
2226 		break;
2227 	default:
2228 		return;
2229 	}
2230 
2231 	if (sm->eapol_cb->eap_param_needed)
2232 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2233 }
2234 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2235 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
2236 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2237 
2238 const char * eap_sm_get_method_name(struct eap_sm *sm)
2239 {
2240 	if (sm->m == NULL)
2241 		return "UNKNOWN";
2242 	return sm->m->name;
2243 }
2244 
2245 
2246 /**
2247  * eap_sm_request_identity - Request identity from user (ctrl_iface)
2248  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2249  *
2250  * EAP methods can call this function to request identity information for the
2251  * current network. This is normally called when the identity is not included
2252  * in the network configuration. The request will be sent to monitor programs
2253  * through the control interface.
2254  */
2255 void eap_sm_request_identity(struct eap_sm *sm)
2256 {
2257 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2258 }
2259 
2260 
2261 /**
2262  * eap_sm_request_password - Request password from user (ctrl_iface)
2263  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2264  *
2265  * EAP methods can call this function to request password information for the
2266  * current network. This is normally called when the password is not included
2267  * in the network configuration. The request will be sent to monitor programs
2268  * through the control interface.
2269  */
2270 void eap_sm_request_password(struct eap_sm *sm)
2271 {
2272 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2273 }
2274 
2275 
2276 /**
2277  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2278  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2279  *
2280  * EAP methods can call this function to request new password information for
2281  * the current network. This is normally called when the EAP method indicates
2282  * that the current password has expired and password change is required. The
2283  * request will be sent to monitor programs through the control interface.
2284  */
2285 void eap_sm_request_new_password(struct eap_sm *sm)
2286 {
2287 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2288 }
2289 
2290 
2291 /**
2292  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2293  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2294  *
2295  * EAP methods can call this function to request SIM or smart card PIN
2296  * information for the current network. This is normally called when the PIN is
2297  * not included in the network configuration. The request will be sent to
2298  * monitor programs through the control interface.
2299  */
2300 void eap_sm_request_pin(struct eap_sm *sm)
2301 {
2302 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2303 }
2304 
2305 
2306 /**
2307  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2308  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2309  * @msg: Message to be displayed to the user when asking for OTP
2310  * @msg_len: Length of the user displayable message
2311  *
2312  * EAP methods can call this function to request open time password (OTP) for
2313  * the current network. The request will be sent to monitor programs through
2314  * the control interface.
2315  */
2316 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2317 {
2318 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2319 }
2320 
2321 
2322 /**
2323  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2324  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2325  *
2326  * EAP methods can call this function to request passphrase for a private key
2327  * for the current network. This is normally called when the passphrase is not
2328  * included in the network configuration. The request will be sent to monitor
2329  * programs through the control interface.
2330  */
2331 void eap_sm_request_passphrase(struct eap_sm *sm)
2332 {
2333 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2334 }
2335 
2336 
2337 /**
2338  * eap_sm_request_sim - Request external SIM processing
2339  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2340  * @req: EAP method specific request
2341  */
2342 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2343 {
2344 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2345 }
2346 
2347 
2348 /**
2349  * eap_sm_notify_ctrl_attached - Notification of attached monitor
2350  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351  *
2352  * Notify EAP state machines that a monitor was attached to the control
2353  * interface to trigger re-sending of pending requests for user input.
2354  */
2355 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2356 {
2357 	struct eap_peer_config *config = eap_get_config(sm);
2358 
2359 	if (config == NULL)
2360 		return;
2361 
2362 	/* Re-send any pending requests for user data since a new control
2363 	 * interface was added. This handles cases where the EAP authentication
2364 	 * starts immediately after system startup when the user interface is
2365 	 * not yet running. */
2366 	if (config->pending_req_identity)
2367 		eap_sm_request_identity(sm);
2368 	if (config->pending_req_password)
2369 		eap_sm_request_password(sm);
2370 	if (config->pending_req_new_password)
2371 		eap_sm_request_new_password(sm);
2372 	if (config->pending_req_otp)
2373 		eap_sm_request_otp(sm, NULL, 0);
2374 	if (config->pending_req_pin)
2375 		eap_sm_request_pin(sm);
2376 	if (config->pending_req_passphrase)
2377 		eap_sm_request_passphrase(sm);
2378 }
2379 
2380 
2381 static int eap_allowed_phase2_type(int vendor, int type)
2382 {
2383 	if (vendor != EAP_VENDOR_IETF)
2384 		return 0;
2385 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2386 		type != EAP_TYPE_FAST;
2387 }
2388 
2389 
2390 /**
2391  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2392  * @name: EAP method name, e.g., MD5
2393  * @vendor: Buffer for returning EAP Vendor-Id
2394  * Returns: EAP method type or %EAP_TYPE_NONE if not found
2395  *
2396  * This function maps EAP type names into EAP type numbers that are allowed for
2397  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2398  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2399  */
2400 u32 eap_get_phase2_type(const char *name, int *vendor)
2401 {
2402 	int v;
2403 	u32 type = eap_peer_get_type(name, &v);
2404 	if (eap_allowed_phase2_type(v, type)) {
2405 		*vendor = v;
2406 		return type;
2407 	}
2408 	*vendor = EAP_VENDOR_IETF;
2409 	return EAP_TYPE_NONE;
2410 }
2411 
2412 
2413 /**
2414  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2415  * @config: Pointer to a network configuration
2416  * @count: Pointer to a variable to be filled with number of returned EAP types
2417  * Returns: Pointer to allocated type list or %NULL on failure
2418  *
2419  * This function generates an array of allowed EAP phase 2 (tunneled) types for
2420  * the given network configuration.
2421  */
2422 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2423 					      size_t *count)
2424 {
2425 	struct eap_method_type *buf;
2426 	u32 method;
2427 	int vendor;
2428 	size_t mcount;
2429 	const struct eap_method *methods, *m;
2430 
2431 	methods = eap_peer_get_methods(&mcount);
2432 	if (methods == NULL)
2433 		return NULL;
2434 	*count = 0;
2435 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
2436 	if (buf == NULL)
2437 		return NULL;
2438 
2439 	for (m = methods; m; m = m->next) {
2440 		vendor = m->vendor;
2441 		method = m->method;
2442 		if (eap_allowed_phase2_type(vendor, method)) {
2443 			if (vendor == EAP_VENDOR_IETF &&
2444 			    method == EAP_TYPE_TLS && config &&
2445 			    config->private_key2 == NULL)
2446 				continue;
2447 			buf[*count].vendor = vendor;
2448 			buf[*count].method = method;
2449 			(*count)++;
2450 		}
2451 	}
2452 
2453 	return buf;
2454 }
2455 
2456 
2457 /**
2458  * eap_set_fast_reauth - Update fast_reauth setting
2459  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2460  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2461  */
2462 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2463 {
2464 	sm->fast_reauth = enabled;
2465 }
2466 
2467 
2468 /**
2469  * eap_set_workaround - Update EAP workarounds setting
2470  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2471  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2472  */
2473 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2474 {
2475 	sm->workaround = workaround;
2476 }
2477 
2478 
2479 /**
2480  * eap_get_config - Get current network configuration
2481  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2482  * Returns: Pointer to the current network configuration or %NULL if not found
2483  *
2484  * EAP peer methods should avoid using this function if they can use other
2485  * access functions, like eap_get_config_identity() and
2486  * eap_get_config_password(), that do not require direct access to
2487  * struct eap_peer_config.
2488  */
2489 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2490 {
2491 	return sm->eapol_cb->get_config(sm->eapol_ctx);
2492 }
2493 
2494 
2495 /**
2496  * eap_get_config_identity - Get identity from the network configuration
2497  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2498  * @len: Buffer for the length of the identity
2499  * Returns: Pointer to the identity or %NULL if not found
2500  */
2501 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2502 {
2503 	struct eap_peer_config *config = eap_get_config(sm);
2504 	if (config == NULL)
2505 		return NULL;
2506 	*len = config->identity_len;
2507 	return config->identity;
2508 }
2509 
2510 
2511 static int eap_get_ext_password(struct eap_sm *sm,
2512 				struct eap_peer_config *config)
2513 {
2514 	char *name;
2515 
2516 	if (config->password == NULL)
2517 		return -1;
2518 
2519 	name = os_zalloc(config->password_len + 1);
2520 	if (name == NULL)
2521 		return -1;
2522 	os_memcpy(name, config->password, config->password_len);
2523 
2524 	ext_password_free(sm->ext_pw_buf);
2525 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2526 	os_free(name);
2527 
2528 	return sm->ext_pw_buf == NULL ? -1 : 0;
2529 }
2530 
2531 
2532 /**
2533  * eap_get_config_password - Get password from the network configuration
2534  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2535  * @len: Buffer for the length of the password
2536  * Returns: Pointer to the password or %NULL if not found
2537  */
2538 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2539 {
2540 	struct eap_peer_config *config = eap_get_config(sm);
2541 	if (config == NULL)
2542 		return NULL;
2543 
2544 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2545 		if (eap_get_ext_password(sm, config) < 0)
2546 			return NULL;
2547 		*len = wpabuf_len(sm->ext_pw_buf);
2548 		return wpabuf_head(sm->ext_pw_buf);
2549 	}
2550 
2551 	*len = config->password_len;
2552 	return config->password;
2553 }
2554 
2555 
2556 /**
2557  * eap_get_config_password2 - Get password from the network configuration
2558  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2559  * @len: Buffer for the length of the password
2560  * @hash: Buffer for returning whether the password is stored as a
2561  * NtPasswordHash instead of plaintext password; can be %NULL if this
2562  * information is not needed
2563  * Returns: Pointer to the password or %NULL if not found
2564  */
2565 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2566 {
2567 	struct eap_peer_config *config = eap_get_config(sm);
2568 	if (config == NULL)
2569 		return NULL;
2570 
2571 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2572 		if (eap_get_ext_password(sm, config) < 0)
2573 			return NULL;
2574 		if (hash)
2575 			*hash = 0;
2576 		*len = wpabuf_len(sm->ext_pw_buf);
2577 		return wpabuf_head(sm->ext_pw_buf);
2578 	}
2579 
2580 	*len = config->password_len;
2581 	if (hash)
2582 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2583 	return config->password;
2584 }
2585 
2586 
2587 /**
2588  * eap_get_config_new_password - Get new password from network configuration
2589  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2590  * @len: Buffer for the length of the new password
2591  * Returns: Pointer to the new password or %NULL if not found
2592  */
2593 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2594 {
2595 	struct eap_peer_config *config = eap_get_config(sm);
2596 	if (config == NULL)
2597 		return NULL;
2598 	*len = config->new_password_len;
2599 	return config->new_password;
2600 }
2601 
2602 
2603 /**
2604  * eap_get_config_otp - Get one-time password from the network configuration
2605  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2606  * @len: Buffer for the length of the one-time password
2607  * Returns: Pointer to the one-time password or %NULL if not found
2608  */
2609 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2610 {
2611 	struct eap_peer_config *config = eap_get_config(sm);
2612 	if (config == NULL)
2613 		return NULL;
2614 	*len = config->otp_len;
2615 	return config->otp;
2616 }
2617 
2618 
2619 /**
2620  * eap_clear_config_otp - Clear used one-time password
2621  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2622  *
2623  * This function clears a used one-time password (OTP) from the current network
2624  * configuration. This should be called when the OTP has been used and is not
2625  * needed anymore.
2626  */
2627 void eap_clear_config_otp(struct eap_sm *sm)
2628 {
2629 	struct eap_peer_config *config = eap_get_config(sm);
2630 	if (config == NULL)
2631 		return;
2632 	os_memset(config->otp, 0, config->otp_len);
2633 	os_free(config->otp);
2634 	config->otp = NULL;
2635 	config->otp_len = 0;
2636 }
2637 
2638 
2639 /**
2640  * eap_get_config_phase1 - Get phase1 data from the network configuration
2641  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2642  * Returns: Pointer to the phase1 data or %NULL if not found
2643  */
2644 const char * eap_get_config_phase1(struct eap_sm *sm)
2645 {
2646 	struct eap_peer_config *config = eap_get_config(sm);
2647 	if (config == NULL)
2648 		return NULL;
2649 	return config->phase1;
2650 }
2651 
2652 
2653 /**
2654  * eap_get_config_phase2 - Get phase2 data from the network configuration
2655  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2656  * Returns: Pointer to the phase1 data or %NULL if not found
2657  */
2658 const char * eap_get_config_phase2(struct eap_sm *sm)
2659 {
2660 	struct eap_peer_config *config = eap_get_config(sm);
2661 	if (config == NULL)
2662 		return NULL;
2663 	return config->phase2;
2664 }
2665 
2666 
2667 int eap_get_config_fragment_size(struct eap_sm *sm)
2668 {
2669 	struct eap_peer_config *config = eap_get_config(sm);
2670 	if (config == NULL)
2671 		return -1;
2672 	return config->fragment_size;
2673 }
2674 
2675 
2676 /**
2677  * eap_key_available - Get key availability (eapKeyAvailable variable)
2678  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2679  * Returns: 1 if EAP keying material is available, 0 if not
2680  */
2681 int eap_key_available(struct eap_sm *sm)
2682 {
2683 	return sm ? sm->eapKeyAvailable : 0;
2684 }
2685 
2686 
2687 /**
2688  * eap_notify_success - Notify EAP state machine about external success trigger
2689  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2690  *
2691  * This function is called when external event, e.g., successful completion of
2692  * WPA-PSK key handshake, is indicating that EAP state machine should move to
2693  * success state. This is mainly used with security modes that do not use EAP
2694  * state machine (e.g., WPA-PSK).
2695  */
2696 void eap_notify_success(struct eap_sm *sm)
2697 {
2698 	if (sm) {
2699 		sm->decision = DECISION_COND_SUCC;
2700 		sm->EAP_state = EAP_SUCCESS;
2701 	}
2702 }
2703 
2704 
2705 /**
2706  * eap_notify_lower_layer_success - Notification of lower layer success
2707  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2708  *
2709  * Notify EAP state machines that a lower layer has detected a successful
2710  * authentication. This is used to recover from dropped EAP-Success messages.
2711  */
2712 void eap_notify_lower_layer_success(struct eap_sm *sm)
2713 {
2714 	if (sm == NULL)
2715 		return;
2716 
2717 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2718 	    sm->decision == DECISION_FAIL ||
2719 	    (sm->methodState != METHOD_MAY_CONT &&
2720 	     sm->methodState != METHOD_DONE))
2721 		return;
2722 
2723 	if (sm->eapKeyData != NULL)
2724 		sm->eapKeyAvailable = TRUE;
2725 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2726 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2727 		"EAP authentication completed successfully (based on lower "
2728 		"layer success)");
2729 }
2730 
2731 
2732 /**
2733  * eap_get_eapSessionId - Get Session-Id from EAP state machine
2734  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2735  * @len: Pointer to variable that will be set to number of bytes in the session
2736  * Returns: Pointer to the EAP Session-Id or %NULL on failure
2737  *
2738  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2739  * only after a successful authentication. EAP state machine continues to manage
2740  * the Session-Id and the caller must not change or free the returned data.
2741  */
2742 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2743 {
2744 	if (sm == NULL || sm->eapSessionId == NULL) {
2745 		*len = 0;
2746 		return NULL;
2747 	}
2748 
2749 	*len = sm->eapSessionIdLen;
2750 	return sm->eapSessionId;
2751 }
2752 
2753 
2754 /**
2755  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2756  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2757  * @len: Pointer to variable that will be set to number of bytes in the key
2758  * Returns: Pointer to the EAP keying data or %NULL on failure
2759  *
2760  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2761  * key is available only after a successful authentication. EAP state machine
2762  * continues to manage the key data and the caller must not change or free the
2763  * returned data.
2764  */
2765 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2766 {
2767 	if (sm == NULL || sm->eapKeyData == NULL) {
2768 		*len = 0;
2769 		return NULL;
2770 	}
2771 
2772 	*len = sm->eapKeyDataLen;
2773 	return sm->eapKeyData;
2774 }
2775 
2776 
2777 /**
2778  * eap_get_eapKeyData - Get EAP response data
2779  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2780  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2781  *
2782  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2783  * available when EAP state machine has processed an incoming EAP request. The
2784  * EAP state machine does not maintain a reference to the response after this
2785  * function is called and the caller is responsible for freeing the data.
2786  */
2787 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2788 {
2789 	struct wpabuf *resp;
2790 
2791 	if (sm == NULL || sm->eapRespData == NULL)
2792 		return NULL;
2793 
2794 	resp = sm->eapRespData;
2795 	sm->eapRespData = NULL;
2796 
2797 	return resp;
2798 }
2799 
2800 
2801 /**
2802  * eap_sm_register_scard_ctx - Notification of smart card context
2803  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2804  * @ctx: Context data for smart card operations
2805  *
2806  * Notify EAP state machines of context data for smart card operations. This
2807  * context data will be used as a parameter for scard_*() functions.
2808  */
2809 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2810 {
2811 	if (sm)
2812 		sm->scard_ctx = ctx;
2813 }
2814 
2815 
2816 /**
2817  * eap_set_config_blob - Set or add a named configuration blob
2818  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2819  * @blob: New value for the blob
2820  *
2821  * Adds a new configuration blob or replaces the current value of an existing
2822  * blob.
2823  */
2824 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2825 {
2826 #ifndef CONFIG_NO_CONFIG_BLOBS
2827 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2828 #endif /* CONFIG_NO_CONFIG_BLOBS */
2829 }
2830 
2831 
2832 /**
2833  * eap_get_config_blob - Get a named configuration blob
2834  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2835  * @name: Name of the blob
2836  * Returns: Pointer to blob data or %NULL if not found
2837  */
2838 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2839 						   const char *name)
2840 {
2841 #ifndef CONFIG_NO_CONFIG_BLOBS
2842 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2843 #else /* CONFIG_NO_CONFIG_BLOBS */
2844 	return NULL;
2845 #endif /* CONFIG_NO_CONFIG_BLOBS */
2846 }
2847 
2848 
2849 /**
2850  * eap_set_force_disabled - Set force_disabled flag
2851  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2852  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2853  *
2854  * This function is used to force EAP state machine to be disabled when it is
2855  * not in use (e.g., with WPA-PSK or plaintext connections).
2856  */
2857 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2858 {
2859 	sm->force_disabled = disabled;
2860 }
2861 
2862 
2863 /**
2864  * eap_set_external_sim - Set external_sim flag
2865  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2866  * @external_sim: Whether external SIM/USIM processing is used
2867  */
2868 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2869 {
2870 	sm->external_sim = external_sim;
2871 }
2872 
2873 
2874  /**
2875  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2876  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2877  *
2878  * An EAP method can perform a pending operation (e.g., to get a response from
2879  * an external process). Once the response is available, this function can be
2880  * used to request EAPOL state machine to retry delivering the previously
2881  * received (and still unanswered) EAP request to EAP state machine.
2882  */
2883 void eap_notify_pending(struct eap_sm *sm)
2884 {
2885 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2886 }
2887 
2888 
2889 /**
2890  * eap_invalidate_cached_session - Mark cached session data invalid
2891  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2892  */
2893 void eap_invalidate_cached_session(struct eap_sm *sm)
2894 {
2895 	if (sm)
2896 		eap_deinit_prev_method(sm, "invalidate");
2897 }
2898 
2899 
2900 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2901 {
2902 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2903 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2904 		return 0; /* Not a WPS Enrollee */
2905 
2906 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2907 		return 0; /* Not using PBC */
2908 
2909 	return 1;
2910 }
2911 
2912 
2913 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2914 {
2915 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2916 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2917 		return 0; /* Not a WPS Enrollee */
2918 
2919 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2920 		return 0; /* Not using PIN */
2921 
2922 	return 1;
2923 }
2924 
2925 
2926 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2927 {
2928 	ext_password_free(sm->ext_pw_buf);
2929 	sm->ext_pw_buf = NULL;
2930 	sm->ext_pw = ext;
2931 }
2932 
2933 
2934 /**
2935  * eap_set_anon_id - Set or add anonymous identity
2936  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2937  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2938  * @len: Length of anonymous identity in octets
2939  */
2940 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2941 {
2942 	if (sm->eapol_cb->set_anon_id)
2943 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2944 }
2945 
2946 
2947 int eap_peer_was_failure_expected(struct eap_sm *sm)
2948 {
2949 	return sm->expected_failure;
2950 }
2951