1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file implements the Peer State Machine as defined in RFC 4137. The used 9 * states and state transitions match mostly with the RFC. However, there are 10 * couple of additional transitions for working around small issues noticed 11 * during testing. These exceptions are explained in comments within the 12 * functions in this file. The method functions, m.func(), are similar to the 13 * ones used in RFC 4137, but some small changes have used here to optimize 14 * operations and to add functionality needed for fast re-authentication 15 * (session resumption). 16 */ 17 18 #include "includes.h" 19 20 #include "common.h" 21 #include "pcsc_funcs.h" 22 #include "state_machine.h" 23 #include "ext_password.h" 24 #include "crypto/crypto.h" 25 #include "crypto/tls.h" 26 #include "common/wpa_ctrl.h" 27 #include "eap_common/eap_wsc_common.h" 28 #include "eap_i.h" 29 #include "eap_config.h" 30 31 #define STATE_MACHINE_DATA struct eap_sm 32 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 33 34 #define EAP_MAX_AUTH_ROUNDS 50 35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 36 37 38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 39 EapType method); 40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 41 static void eap_sm_processIdentity(struct eap_sm *sm, 42 const struct wpabuf *req); 43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 44 static struct wpabuf * eap_sm_buildNotify(int id); 45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 47 static const char * eap_sm_method_state_txt(EapMethodState state); 48 static const char * eap_sm_decision_txt(EapDecision decision); 49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 50 51 52 53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 54 { 55 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 56 } 57 58 59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 60 Boolean value) 61 { 62 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 63 } 64 65 66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 67 { 68 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 69 } 70 71 72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 73 unsigned int value) 74 { 75 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 76 } 77 78 79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 80 { 81 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 82 } 83 84 85 static void eap_notify_status(struct eap_sm *sm, const char *status, 86 const char *parameter) 87 { 88 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)", 89 status, parameter); 90 if (sm->eapol_cb->notify_status) 91 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter); 92 } 93 94 95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 96 { 97 ext_password_free(sm->ext_pw_buf); 98 sm->ext_pw_buf = NULL; 99 100 if (sm->m == NULL || sm->eap_method_priv == NULL) 101 return; 102 103 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 104 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 105 sm->m->deinit(sm, sm->eap_method_priv); 106 sm->eap_method_priv = NULL; 107 sm->m = NULL; 108 } 109 110 111 /** 112 * eap_allowed_method - Check whether EAP method is allowed 113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 115 * @method: EAP type 116 * Returns: 1 = allowed EAP method, 0 = not allowed 117 */ 118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 119 { 120 struct eap_peer_config *config = eap_get_config(sm); 121 int i; 122 struct eap_method_type *m; 123 124 if (config == NULL || config->eap_methods == NULL) 125 return 1; 126 127 m = config->eap_methods; 128 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 129 m[i].method != EAP_TYPE_NONE; i++) { 130 if (m[i].vendor == vendor && m[i].method == method) 131 return 1; 132 } 133 return 0; 134 } 135 136 137 /* 138 * This state initializes state machine variables when the machine is 139 * activated (portEnabled = TRUE). This is also used when re-starting 140 * authentication (eapRestart == TRUE). 141 */ 142 SM_STATE(EAP, INITIALIZE) 143 { 144 SM_ENTRY(EAP, INITIALIZE); 145 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 146 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 147 !sm->prev_failure) { 148 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 149 "fast reauthentication"); 150 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 151 } else { 152 eap_deinit_prev_method(sm, "INITIALIZE"); 153 } 154 sm->selectedMethod = EAP_TYPE_NONE; 155 sm->methodState = METHOD_NONE; 156 sm->allowNotifications = TRUE; 157 sm->decision = DECISION_FAIL; 158 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 159 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 160 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 161 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 162 os_free(sm->eapKeyData); 163 sm->eapKeyData = NULL; 164 sm->eapKeyAvailable = FALSE; 165 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 166 sm->lastId = -1; /* new session - make sure this does not match with 167 * the first EAP-Packet */ 168 /* 169 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 170 * seemed to be able to trigger cases where both were set and if EAPOL 171 * state machine uses eapNoResp first, it may end up not sending a real 172 * reply correctly. This occurred when the workaround in FAIL state set 173 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 174 * something else(?) 175 */ 176 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 177 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 178 sm->num_rounds = 0; 179 sm->prev_failure = 0; 180 } 181 182 183 /* 184 * This state is reached whenever service from the lower layer is interrupted 185 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 186 * occurs when the port becomes enabled. 187 */ 188 SM_STATE(EAP, DISABLED) 189 { 190 SM_ENTRY(EAP, DISABLED); 191 sm->num_rounds = 0; 192 /* 193 * RFC 4137 does not describe clearing of idleWhile here, but doing so 194 * allows the timer tick to be stopped more quickly when EAP is not in 195 * use. 196 */ 197 eapol_set_int(sm, EAPOL_idleWhile, 0); 198 } 199 200 201 /* 202 * The state machine spends most of its time here, waiting for something to 203 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 204 * SEND_RESPONSE states. 205 */ 206 SM_STATE(EAP, IDLE) 207 { 208 SM_ENTRY(EAP, IDLE); 209 } 210 211 212 /* 213 * This state is entered when an EAP packet is received (eapReq == TRUE) to 214 * parse the packet header. 215 */ 216 SM_STATE(EAP, RECEIVED) 217 { 218 const struct wpabuf *eapReqData; 219 220 SM_ENTRY(EAP, RECEIVED); 221 eapReqData = eapol_get_eapReqData(sm); 222 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 223 eap_sm_parseEapReq(sm, eapReqData); 224 sm->num_rounds++; 225 } 226 227 228 /* 229 * This state is entered when a request for a new type comes in. Either the 230 * correct method is started, or a Nak response is built. 231 */ 232 SM_STATE(EAP, GET_METHOD) 233 { 234 int reinit; 235 EapType method; 236 const struct eap_method *eap_method; 237 238 SM_ENTRY(EAP, GET_METHOD); 239 240 if (sm->reqMethod == EAP_TYPE_EXPANDED) 241 method = sm->reqVendorMethod; 242 else 243 method = sm->reqMethod; 244 245 eap_method = eap_peer_get_eap_method(sm->reqVendor, method); 246 247 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 248 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 249 sm->reqVendor, method); 250 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 251 "vendor=%u method=%u -> NAK", 252 sm->reqVendor, method); 253 eap_notify_status(sm, "refuse proposed method", 254 eap_method ? eap_method->name : "unknown"); 255 goto nak; 256 } 257 258 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 259 "vendor=%u method=%u", sm->reqVendor, method); 260 261 eap_notify_status(sm, "accept proposed method", 262 eap_method ? eap_method->name : "unknown"); 263 /* 264 * RFC 4137 does not define specific operation for fast 265 * re-authentication (session resumption). The design here is to allow 266 * the previously used method data to be maintained for 267 * re-authentication if the method support session resumption. 268 * Otherwise, the previously used method data is freed and a new method 269 * is allocated here. 270 */ 271 if (sm->fast_reauth && 272 sm->m && sm->m->vendor == sm->reqVendor && 273 sm->m->method == method && 274 sm->m->has_reauth_data && 275 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 276 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 277 " for fast re-authentication"); 278 reinit = 1; 279 } else { 280 eap_deinit_prev_method(sm, "GET_METHOD"); 281 reinit = 0; 282 } 283 284 sm->selectedMethod = sm->reqMethod; 285 if (sm->m == NULL) 286 sm->m = eap_method; 287 if (!sm->m) { 288 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 289 "vendor %d method %d", 290 sm->reqVendor, method); 291 goto nak; 292 } 293 294 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 295 296 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 297 "vendor %u method %u (%s)", 298 sm->reqVendor, method, sm->m->name); 299 if (reinit) 300 sm->eap_method_priv = sm->m->init_for_reauth( 301 sm, sm->eap_method_priv); 302 else 303 sm->eap_method_priv = sm->m->init(sm); 304 305 if (sm->eap_method_priv == NULL) { 306 struct eap_peer_config *config = eap_get_config(sm); 307 wpa_msg(sm->msg_ctx, MSG_INFO, 308 "EAP: Failed to initialize EAP method: vendor %u " 309 "method %u (%s)", 310 sm->reqVendor, method, sm->m->name); 311 sm->m = NULL; 312 sm->methodState = METHOD_NONE; 313 sm->selectedMethod = EAP_TYPE_NONE; 314 if (sm->reqMethod == EAP_TYPE_TLS && config && 315 (config->pending_req_pin || 316 config->pending_req_passphrase)) { 317 /* 318 * Return without generating Nak in order to allow 319 * entering of PIN code or passphrase to retry the 320 * current EAP packet. 321 */ 322 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 323 "request - skip Nak"); 324 return; 325 } 326 327 goto nak; 328 } 329 330 sm->methodState = METHOD_INIT; 331 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 332 "EAP vendor %u method %u (%s) selected", 333 sm->reqVendor, method, sm->m->name); 334 return; 335 336 nak: 337 wpabuf_free(sm->eapRespData); 338 sm->eapRespData = NULL; 339 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 340 } 341 342 343 /* 344 * The method processing happens here. The request from the authenticator is 345 * processed, and an appropriate response packet is built. 346 */ 347 SM_STATE(EAP, METHOD) 348 { 349 struct wpabuf *eapReqData; 350 struct eap_method_ret ret; 351 int min_len = 1; 352 353 SM_ENTRY(EAP, METHOD); 354 if (sm->m == NULL) { 355 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 356 return; 357 } 358 359 eapReqData = eapol_get_eapReqData(sm); 360 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP) 361 min_len = 0; /* LEAP uses EAP-Success without payload */ 362 if (!eap_hdr_len_valid(eapReqData, min_len)) 363 return; 364 365 /* 366 * Get ignore, methodState, decision, allowNotifications, and 367 * eapRespData. RFC 4137 uses three separate method procedure (check, 368 * process, and buildResp) in this state. These have been combined into 369 * a single function call to m->process() in order to optimize EAP 370 * method implementation interface a bit. These procedures are only 371 * used from within this METHOD state, so there is no need to keep 372 * these as separate C functions. 373 * 374 * The RFC 4137 procedures return values as follows: 375 * ignore = m.check(eapReqData) 376 * (methodState, decision, allowNotifications) = m.process(eapReqData) 377 * eapRespData = m.buildResp(reqId) 378 */ 379 os_memset(&ret, 0, sizeof(ret)); 380 ret.ignore = sm->ignore; 381 ret.methodState = sm->methodState; 382 ret.decision = sm->decision; 383 ret.allowNotifications = sm->allowNotifications; 384 wpabuf_free(sm->eapRespData); 385 sm->eapRespData = NULL; 386 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 387 eapReqData); 388 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 389 "methodState=%s decision=%s", 390 ret.ignore ? "TRUE" : "FALSE", 391 eap_sm_method_state_txt(ret.methodState), 392 eap_sm_decision_txt(ret.decision)); 393 394 sm->ignore = ret.ignore; 395 if (sm->ignore) 396 return; 397 sm->methodState = ret.methodState; 398 sm->decision = ret.decision; 399 sm->allowNotifications = ret.allowNotifications; 400 401 if (sm->m->isKeyAvailable && sm->m->getKey && 402 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 403 os_free(sm->eapKeyData); 404 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 405 &sm->eapKeyDataLen); 406 } 407 } 408 409 410 /* 411 * This state signals the lower layer that a response packet is ready to be 412 * sent. 413 */ 414 SM_STATE(EAP, SEND_RESPONSE) 415 { 416 SM_ENTRY(EAP, SEND_RESPONSE); 417 wpabuf_free(sm->lastRespData); 418 if (sm->eapRespData) { 419 if (sm->workaround) 420 os_memcpy(sm->last_md5, sm->req_md5, 16); 421 sm->lastId = sm->reqId; 422 sm->lastRespData = wpabuf_dup(sm->eapRespData); 423 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 424 } else 425 sm->lastRespData = NULL; 426 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 427 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 428 } 429 430 431 /* 432 * This state signals the lower layer that the request was discarded, and no 433 * response packet will be sent at this time. 434 */ 435 SM_STATE(EAP, DISCARD) 436 { 437 SM_ENTRY(EAP, DISCARD); 438 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 439 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 440 } 441 442 443 /* 444 * Handles requests for Identity method and builds a response. 445 */ 446 SM_STATE(EAP, IDENTITY) 447 { 448 const struct wpabuf *eapReqData; 449 450 SM_ENTRY(EAP, IDENTITY); 451 eapReqData = eapol_get_eapReqData(sm); 452 if (!eap_hdr_len_valid(eapReqData, 1)) 453 return; 454 eap_sm_processIdentity(sm, eapReqData); 455 wpabuf_free(sm->eapRespData); 456 sm->eapRespData = NULL; 457 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 458 } 459 460 461 /* 462 * Handles requests for Notification method and builds a response. 463 */ 464 SM_STATE(EAP, NOTIFICATION) 465 { 466 const struct wpabuf *eapReqData; 467 468 SM_ENTRY(EAP, NOTIFICATION); 469 eapReqData = eapol_get_eapReqData(sm); 470 if (!eap_hdr_len_valid(eapReqData, 1)) 471 return; 472 eap_sm_processNotify(sm, eapReqData); 473 wpabuf_free(sm->eapRespData); 474 sm->eapRespData = NULL; 475 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 476 } 477 478 479 /* 480 * This state retransmits the previous response packet. 481 */ 482 SM_STATE(EAP, RETRANSMIT) 483 { 484 SM_ENTRY(EAP, RETRANSMIT); 485 wpabuf_free(sm->eapRespData); 486 if (sm->lastRespData) 487 sm->eapRespData = wpabuf_dup(sm->lastRespData); 488 else 489 sm->eapRespData = NULL; 490 } 491 492 493 /* 494 * This state is entered in case of a successful completion of authentication 495 * and state machine waits here until port is disabled or EAP authentication is 496 * restarted. 497 */ 498 SM_STATE(EAP, SUCCESS) 499 { 500 SM_ENTRY(EAP, SUCCESS); 501 if (sm->eapKeyData != NULL) 502 sm->eapKeyAvailable = TRUE; 503 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 504 505 /* 506 * RFC 4137 does not clear eapReq here, but this seems to be required 507 * to avoid processing the same request twice when state machine is 508 * initialized. 509 */ 510 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 511 512 /* 513 * RFC 4137 does not set eapNoResp here, but this seems to be required 514 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 515 * addition, either eapResp or eapNoResp is required to be set after 516 * processing the received EAP frame. 517 */ 518 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 519 520 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 521 "EAP authentication completed successfully"); 522 } 523 524 525 /* 526 * This state is entered in case of a failure and state machine waits here 527 * until port is disabled or EAP authentication is restarted. 528 */ 529 SM_STATE(EAP, FAILURE) 530 { 531 SM_ENTRY(EAP, FAILURE); 532 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 533 534 /* 535 * RFC 4137 does not clear eapReq here, but this seems to be required 536 * to avoid processing the same request twice when state machine is 537 * initialized. 538 */ 539 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 540 541 /* 542 * RFC 4137 does not set eapNoResp here. However, either eapResp or 543 * eapNoResp is required to be set after processing the received EAP 544 * frame. 545 */ 546 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 547 548 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 549 "EAP authentication failed"); 550 551 sm->prev_failure = 1; 552 } 553 554 555 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 556 { 557 /* 558 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 559 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 560 * RFC 4137 require that reqId == lastId. In addition, it looks like 561 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 562 * 563 * Accept this kind of Id if EAP workarounds are enabled. These are 564 * unauthenticated plaintext messages, so this should have minimal 565 * security implications (bit easier to fake EAP-Success/Failure). 566 */ 567 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 568 reqId == ((lastId + 2) & 0xff))) { 569 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 570 "identifier field in EAP Success: " 571 "reqId=%d lastId=%d (these are supposed to be " 572 "same)", reqId, lastId); 573 return 1; 574 } 575 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 576 "lastId=%d", reqId, lastId); 577 return 0; 578 } 579 580 581 /* 582 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 583 */ 584 585 static void eap_peer_sm_step_idle(struct eap_sm *sm) 586 { 587 /* 588 * The first three transitions are from RFC 4137. The last two are 589 * local additions to handle special cases with LEAP and PEAP server 590 * not sending EAP-Success in some cases. 591 */ 592 if (eapol_get_bool(sm, EAPOL_eapReq)) 593 SM_ENTER(EAP, RECEIVED); 594 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 595 sm->decision != DECISION_FAIL) || 596 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 597 sm->decision == DECISION_UNCOND_SUCC)) 598 SM_ENTER(EAP, SUCCESS); 599 else if (eapol_get_bool(sm, EAPOL_altReject) || 600 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 601 sm->decision != DECISION_UNCOND_SUCC) || 602 (eapol_get_bool(sm, EAPOL_altAccept) && 603 sm->methodState != METHOD_CONT && 604 sm->decision == DECISION_FAIL)) 605 SM_ENTER(EAP, FAILURE); 606 else if (sm->selectedMethod == EAP_TYPE_LEAP && 607 sm->leap_done && sm->decision != DECISION_FAIL && 608 sm->methodState == METHOD_DONE) 609 SM_ENTER(EAP, SUCCESS); 610 else if (sm->selectedMethod == EAP_TYPE_PEAP && 611 sm->peap_done && sm->decision != DECISION_FAIL && 612 sm->methodState == METHOD_DONE) 613 SM_ENTER(EAP, SUCCESS); 614 } 615 616 617 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 618 { 619 int duplicate; 620 621 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 622 if (sm->workaround && duplicate && 623 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 624 /* 625 * RFC 4137 uses (reqId == lastId) as the only verification for 626 * duplicate EAP requests. However, this misses cases where the 627 * AS is incorrectly using the same id again; and 628 * unfortunately, such implementations exist. Use MD5 hash as 629 * an extra verification for the packets being duplicate to 630 * workaround these issues. 631 */ 632 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 633 "EAP packets were not identical"); 634 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 635 "duplicate packet"); 636 duplicate = 0; 637 } 638 639 return duplicate; 640 } 641 642 643 static void eap_peer_sm_step_received(struct eap_sm *sm) 644 { 645 int duplicate = eap_peer_req_is_duplicate(sm); 646 647 /* 648 * Two special cases below for LEAP are local additions to work around 649 * odd LEAP behavior (EAP-Success in the middle of authentication and 650 * then swapped roles). Other transitions are based on RFC 4137. 651 */ 652 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 653 (sm->reqId == sm->lastId || 654 eap_success_workaround(sm, sm->reqId, sm->lastId))) 655 SM_ENTER(EAP, SUCCESS); 656 else if (sm->methodState != METHOD_CONT && 657 ((sm->rxFailure && 658 sm->decision != DECISION_UNCOND_SUCC) || 659 (sm->rxSuccess && sm->decision == DECISION_FAIL && 660 (sm->selectedMethod != EAP_TYPE_LEAP || 661 sm->methodState != METHOD_MAY_CONT))) && 662 (sm->reqId == sm->lastId || 663 eap_success_workaround(sm, sm->reqId, sm->lastId))) 664 SM_ENTER(EAP, FAILURE); 665 else if (sm->rxReq && duplicate) 666 SM_ENTER(EAP, RETRANSMIT); 667 else if (sm->rxReq && !duplicate && 668 sm->reqMethod == EAP_TYPE_NOTIFICATION && 669 sm->allowNotifications) 670 SM_ENTER(EAP, NOTIFICATION); 671 else if (sm->rxReq && !duplicate && 672 sm->selectedMethod == EAP_TYPE_NONE && 673 sm->reqMethod == EAP_TYPE_IDENTITY) 674 SM_ENTER(EAP, IDENTITY); 675 else if (sm->rxReq && !duplicate && 676 sm->selectedMethod == EAP_TYPE_NONE && 677 sm->reqMethod != EAP_TYPE_IDENTITY && 678 sm->reqMethod != EAP_TYPE_NOTIFICATION) 679 SM_ENTER(EAP, GET_METHOD); 680 else if (sm->rxReq && !duplicate && 681 sm->reqMethod == sm->selectedMethod && 682 sm->methodState != METHOD_DONE) 683 SM_ENTER(EAP, METHOD); 684 else if (sm->selectedMethod == EAP_TYPE_LEAP && 685 (sm->rxSuccess || sm->rxResp)) 686 SM_ENTER(EAP, METHOD); 687 else 688 SM_ENTER(EAP, DISCARD); 689 } 690 691 692 static void eap_peer_sm_step_local(struct eap_sm *sm) 693 { 694 switch (sm->EAP_state) { 695 case EAP_INITIALIZE: 696 SM_ENTER(EAP, IDLE); 697 break; 698 case EAP_DISABLED: 699 if (eapol_get_bool(sm, EAPOL_portEnabled) && 700 !sm->force_disabled) 701 SM_ENTER(EAP, INITIALIZE); 702 break; 703 case EAP_IDLE: 704 eap_peer_sm_step_idle(sm); 705 break; 706 case EAP_RECEIVED: 707 eap_peer_sm_step_received(sm); 708 break; 709 case EAP_GET_METHOD: 710 if (sm->selectedMethod == sm->reqMethod) 711 SM_ENTER(EAP, METHOD); 712 else 713 SM_ENTER(EAP, SEND_RESPONSE); 714 break; 715 case EAP_METHOD: 716 if (sm->ignore) 717 SM_ENTER(EAP, DISCARD); 718 else 719 SM_ENTER(EAP, SEND_RESPONSE); 720 break; 721 case EAP_SEND_RESPONSE: 722 SM_ENTER(EAP, IDLE); 723 break; 724 case EAP_DISCARD: 725 SM_ENTER(EAP, IDLE); 726 break; 727 case EAP_IDENTITY: 728 SM_ENTER(EAP, SEND_RESPONSE); 729 break; 730 case EAP_NOTIFICATION: 731 SM_ENTER(EAP, SEND_RESPONSE); 732 break; 733 case EAP_RETRANSMIT: 734 SM_ENTER(EAP, SEND_RESPONSE); 735 break; 736 case EAP_SUCCESS: 737 break; 738 case EAP_FAILURE: 739 break; 740 } 741 } 742 743 744 SM_STEP(EAP) 745 { 746 /* Global transitions */ 747 if (eapol_get_bool(sm, EAPOL_eapRestart) && 748 eapol_get_bool(sm, EAPOL_portEnabled)) 749 SM_ENTER_GLOBAL(EAP, INITIALIZE); 750 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 751 SM_ENTER_GLOBAL(EAP, DISABLED); 752 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 753 /* RFC 4137 does not place any limit on number of EAP messages 754 * in an authentication session. However, some error cases have 755 * ended up in a state were EAP messages were sent between the 756 * peer and server in a loop (e.g., TLS ACK frame in both 757 * direction). Since this is quite undesired outcome, limit the 758 * total number of EAP round-trips and abort authentication if 759 * this limit is exceeded. 760 */ 761 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 762 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 763 "authentication rounds - abort", 764 EAP_MAX_AUTH_ROUNDS); 765 sm->num_rounds++; 766 SM_ENTER_GLOBAL(EAP, FAILURE); 767 } 768 } else { 769 /* Local transitions */ 770 eap_peer_sm_step_local(sm); 771 } 772 } 773 774 775 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 776 EapType method) 777 { 778 if (!eap_allowed_method(sm, vendor, method)) { 779 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 780 "vendor %u method %u", vendor, method); 781 return FALSE; 782 } 783 if (eap_peer_get_eap_method(vendor, method)) 784 return TRUE; 785 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 786 "vendor %u method %u", vendor, method); 787 return FALSE; 788 } 789 790 791 static struct wpabuf * eap_sm_build_expanded_nak( 792 struct eap_sm *sm, int id, const struct eap_method *methods, 793 size_t count) 794 { 795 struct wpabuf *resp; 796 int found = 0; 797 const struct eap_method *m; 798 799 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 800 801 /* RFC 3748 - 5.3.2: Expanded Nak */ 802 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 803 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 804 if (resp == NULL) 805 return NULL; 806 807 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 808 wpabuf_put_be32(resp, EAP_TYPE_NAK); 809 810 for (m = methods; m; m = m->next) { 811 if (sm->reqVendor == m->vendor && 812 sm->reqVendorMethod == m->method) 813 continue; /* do not allow the current method again */ 814 if (eap_allowed_method(sm, m->vendor, m->method)) { 815 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 816 "vendor=%u method=%u", 817 m->vendor, m->method); 818 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 819 wpabuf_put_be24(resp, m->vendor); 820 wpabuf_put_be32(resp, m->method); 821 822 found++; 823 } 824 } 825 if (!found) { 826 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 827 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 828 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 829 wpabuf_put_be32(resp, EAP_TYPE_NONE); 830 } 831 832 eap_update_len(resp); 833 834 return resp; 835 } 836 837 838 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 839 { 840 struct wpabuf *resp; 841 u8 *start; 842 int found = 0, expanded_found = 0; 843 size_t count; 844 const struct eap_method *methods, *m; 845 846 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 847 "vendor=%u method=%u not allowed)", sm->reqMethod, 848 sm->reqVendor, sm->reqVendorMethod); 849 methods = eap_peer_get_methods(&count); 850 if (methods == NULL) 851 return NULL; 852 if (sm->reqMethod == EAP_TYPE_EXPANDED) 853 return eap_sm_build_expanded_nak(sm, id, methods, count); 854 855 /* RFC 3748 - 5.3.1: Legacy Nak */ 856 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 857 sizeof(struct eap_hdr) + 1 + count + 1, 858 EAP_CODE_RESPONSE, id); 859 if (resp == NULL) 860 return NULL; 861 862 start = wpabuf_put(resp, 0); 863 for (m = methods; m; m = m->next) { 864 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 865 continue; /* do not allow the current method again */ 866 if (eap_allowed_method(sm, m->vendor, m->method)) { 867 if (m->vendor != EAP_VENDOR_IETF) { 868 if (expanded_found) 869 continue; 870 expanded_found = 1; 871 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 872 } else 873 wpabuf_put_u8(resp, m->method); 874 found++; 875 } 876 } 877 if (!found) 878 wpabuf_put_u8(resp, EAP_TYPE_NONE); 879 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 880 881 eap_update_len(resp); 882 883 return resp; 884 } 885 886 887 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 888 { 889 const u8 *pos; 890 size_t msg_len; 891 892 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 893 "EAP authentication started"); 894 895 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req, 896 &msg_len); 897 if (pos == NULL) 898 return; 899 900 /* 901 * RFC 3748 - 5.1: Identity 902 * Data field may contain a displayable message in UTF-8. If this 903 * includes NUL-character, only the data before that should be 904 * displayed. Some EAP implementasitons may piggy-back additional 905 * options after the NUL. 906 */ 907 /* TODO: could save displayable message so that it can be shown to the 908 * user in case of interaction is required */ 909 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 910 pos, msg_len); 911 } 912 913 914 #ifdef PCSC_FUNCS 915 916 /* 917 * Rules for figuring out MNC length based on IMSI for SIM cards that do not 918 * include MNC length field. 919 */ 920 static int mnc_len_from_imsi(const char *imsi) 921 { 922 char mcc_str[4]; 923 unsigned int mcc; 924 925 os_memcpy(mcc_str, imsi, 3); 926 mcc_str[3] = '\0'; 927 mcc = atoi(mcc_str); 928 929 if (mcc == 244) 930 return 2; /* Networks in Finland use 2-digit MNC */ 931 932 return -1; 933 } 934 935 936 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi, 937 size_t max_len, size_t *imsi_len) 938 { 939 int mnc_len; 940 char *pos, mnc[4]; 941 942 if (*imsi_len + 36 > max_len) { 943 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer"); 944 return -1; 945 } 946 947 /* MNC (2 or 3 digits) */ 948 mnc_len = scard_get_mnc_len(sm->scard_ctx); 949 if (mnc_len < 0) 950 mnc_len = mnc_len_from_imsi(imsi); 951 if (mnc_len < 0) { 952 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM " 953 "assuming 3"); 954 mnc_len = 3; 955 } 956 957 if (mnc_len == 2) { 958 mnc[0] = '0'; 959 mnc[1] = imsi[3]; 960 mnc[2] = imsi[4]; 961 } else if (mnc_len == 3) { 962 mnc[0] = imsi[3]; 963 mnc[1] = imsi[4]; 964 mnc[2] = imsi[5]; 965 } 966 mnc[3] = '\0'; 967 968 pos = imsi + *imsi_len; 969 pos += os_snprintf(pos, imsi + max_len - pos, 970 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org", 971 mnc, imsi[0], imsi[1], imsi[2]); 972 *imsi_len = pos - imsi; 973 974 return 0; 975 } 976 977 978 static int eap_sm_imsi_identity(struct eap_sm *sm, 979 struct eap_peer_config *conf) 980 { 981 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM; 982 char imsi[100]; 983 size_t imsi_len; 984 struct eap_method_type *m = conf->eap_methods; 985 int i; 986 987 imsi_len = sizeof(imsi); 988 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 989 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 990 return -1; 991 } 992 993 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 994 995 if (imsi_len < 7) { 996 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity"); 997 return -1; 998 } 999 1000 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) { 1001 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity"); 1002 return -1; 1003 } 1004 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len); 1005 1006 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 1007 m[i].method != EAP_TYPE_NONE); i++) { 1008 if (m[i].vendor == EAP_VENDOR_IETF && 1009 m[i].method == EAP_TYPE_AKA_PRIME) { 1010 method = EAP_SM_AKA_PRIME; 1011 break; 1012 } 1013 1014 if (m[i].vendor == EAP_VENDOR_IETF && 1015 m[i].method == EAP_TYPE_AKA) { 1016 method = EAP_SM_AKA; 1017 break; 1018 } 1019 } 1020 1021 os_free(conf->identity); 1022 conf->identity = os_malloc(1 + imsi_len); 1023 if (conf->identity == NULL) { 1024 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 1025 "IMSI-based identity"); 1026 return -1; 1027 } 1028 1029 switch (method) { 1030 case EAP_SM_SIM: 1031 conf->identity[0] = '1'; 1032 break; 1033 case EAP_SM_AKA: 1034 conf->identity[0] = '0'; 1035 break; 1036 case EAP_SM_AKA_PRIME: 1037 conf->identity[0] = '6'; 1038 break; 1039 } 1040 os_memcpy(conf->identity + 1, imsi, imsi_len); 1041 conf->identity_len = 1 + imsi_len; 1042 1043 return 0; 1044 } 1045 1046 #endif /* PCSC_FUNCS */ 1047 1048 1049 static int eap_sm_set_scard_pin(struct eap_sm *sm, 1050 struct eap_peer_config *conf) 1051 { 1052 #ifdef PCSC_FUNCS 1053 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 1054 /* 1055 * Make sure the same PIN is not tried again in order to avoid 1056 * blocking SIM. 1057 */ 1058 os_free(conf->pin); 1059 conf->pin = NULL; 1060 1061 wpa_printf(MSG_WARNING, "PIN validation failed"); 1062 eap_sm_request_pin(sm); 1063 return -1; 1064 } 1065 return 0; 1066 #else /* PCSC_FUNCS */ 1067 return -1; 1068 #endif /* PCSC_FUNCS */ 1069 } 1070 1071 static int eap_sm_get_scard_identity(struct eap_sm *sm, 1072 struct eap_peer_config *conf) 1073 { 1074 #ifdef PCSC_FUNCS 1075 if (eap_sm_set_scard_pin(sm, conf)) 1076 return -1; 1077 1078 return eap_sm_imsi_identity(sm, conf); 1079 #else /* PCSC_FUNCS */ 1080 return -1; 1081 #endif /* PCSC_FUNCS */ 1082 } 1083 1084 1085 /** 1086 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 1087 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1088 * @id: EAP identifier for the packet 1089 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 1090 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 1091 * failure 1092 * 1093 * This function allocates and builds an EAP-Identity/Response packet for the 1094 * current network. The caller is responsible for freeing the returned data. 1095 */ 1096 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 1097 { 1098 struct eap_peer_config *config = eap_get_config(sm); 1099 struct wpabuf *resp; 1100 const u8 *identity; 1101 size_t identity_len; 1102 1103 if (config == NULL) { 1104 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 1105 "was not available"); 1106 return NULL; 1107 } 1108 1109 if (sm->m && sm->m->get_identity && 1110 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 1111 &identity_len)) != NULL) { 1112 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 1113 "identity", identity, identity_len); 1114 } else if (!encrypted && config->anonymous_identity) { 1115 identity = config->anonymous_identity; 1116 identity_len = config->anonymous_identity_len; 1117 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 1118 identity, identity_len); 1119 } else { 1120 identity = config->identity; 1121 identity_len = config->identity_len; 1122 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 1123 identity, identity_len); 1124 } 1125 1126 if (identity == NULL) { 1127 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1128 "configuration was not available"); 1129 if (config->pcsc) { 1130 if (eap_sm_get_scard_identity(sm, config) < 0) 1131 return NULL; 1132 identity = config->identity; 1133 identity_len = config->identity_len; 1134 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1135 "IMSI", identity, identity_len); 1136 } else { 1137 eap_sm_request_identity(sm); 1138 return NULL; 1139 } 1140 } else if (config->pcsc) { 1141 if (eap_sm_set_scard_pin(sm, config) < 0) 1142 return NULL; 1143 } 1144 1145 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1146 EAP_CODE_RESPONSE, id); 1147 if (resp == NULL) 1148 return NULL; 1149 1150 wpabuf_put_data(resp, identity, identity_len); 1151 1152 return resp; 1153 } 1154 1155 1156 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1157 { 1158 const u8 *pos; 1159 char *msg; 1160 size_t i, msg_len; 1161 1162 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1163 &msg_len); 1164 if (pos == NULL) 1165 return; 1166 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1167 pos, msg_len); 1168 1169 msg = os_malloc(msg_len + 1); 1170 if (msg == NULL) 1171 return; 1172 for (i = 0; i < msg_len; i++) 1173 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1174 msg[msg_len] = '\0'; 1175 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1176 WPA_EVENT_EAP_NOTIFICATION, msg); 1177 os_free(msg); 1178 } 1179 1180 1181 static struct wpabuf * eap_sm_buildNotify(int id) 1182 { 1183 struct wpabuf *resp; 1184 1185 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1186 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1187 EAP_CODE_RESPONSE, id); 1188 if (resp == NULL) 1189 return NULL; 1190 1191 return resp; 1192 } 1193 1194 1195 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1196 { 1197 const struct eap_hdr *hdr; 1198 size_t plen; 1199 const u8 *pos; 1200 1201 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1202 sm->reqId = 0; 1203 sm->reqMethod = EAP_TYPE_NONE; 1204 sm->reqVendor = EAP_VENDOR_IETF; 1205 sm->reqVendorMethod = EAP_TYPE_NONE; 1206 1207 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1208 return; 1209 1210 hdr = wpabuf_head(req); 1211 plen = be_to_host16(hdr->length); 1212 if (plen > wpabuf_len(req)) { 1213 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1214 "(len=%lu plen=%lu)", 1215 (unsigned long) wpabuf_len(req), 1216 (unsigned long) plen); 1217 return; 1218 } 1219 1220 sm->reqId = hdr->identifier; 1221 1222 if (sm->workaround) { 1223 const u8 *addr[1]; 1224 addr[0] = wpabuf_head(req); 1225 md5_vector(1, addr, &plen, sm->req_md5); 1226 } 1227 1228 switch (hdr->code) { 1229 case EAP_CODE_REQUEST: 1230 if (plen < sizeof(*hdr) + 1) { 1231 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1232 "no Type field"); 1233 return; 1234 } 1235 sm->rxReq = TRUE; 1236 pos = (const u8 *) (hdr + 1); 1237 sm->reqMethod = *pos++; 1238 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1239 if (plen < sizeof(*hdr) + 8) { 1240 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1241 "expanded EAP-Packet (plen=%lu)", 1242 (unsigned long) plen); 1243 return; 1244 } 1245 sm->reqVendor = WPA_GET_BE24(pos); 1246 pos += 3; 1247 sm->reqVendorMethod = WPA_GET_BE32(pos); 1248 } 1249 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1250 "method=%u vendor=%u vendorMethod=%u", 1251 sm->reqId, sm->reqMethod, sm->reqVendor, 1252 sm->reqVendorMethod); 1253 break; 1254 case EAP_CODE_RESPONSE: 1255 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1256 /* 1257 * LEAP differs from RFC 4137 by using reversed roles 1258 * for mutual authentication and because of this, we 1259 * need to accept EAP-Response frames if LEAP is used. 1260 */ 1261 if (plen < sizeof(*hdr) + 1) { 1262 wpa_printf(MSG_DEBUG, "EAP: Too short " 1263 "EAP-Response - no Type field"); 1264 return; 1265 } 1266 sm->rxResp = TRUE; 1267 pos = (const u8 *) (hdr + 1); 1268 sm->reqMethod = *pos; 1269 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1270 "LEAP method=%d id=%d", 1271 sm->reqMethod, sm->reqId); 1272 break; 1273 } 1274 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1275 break; 1276 case EAP_CODE_SUCCESS: 1277 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1278 eap_notify_status(sm, "completion", "success"); 1279 sm->rxSuccess = TRUE; 1280 break; 1281 case EAP_CODE_FAILURE: 1282 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1283 eap_notify_status(sm, "completion", "failure"); 1284 sm->rxFailure = TRUE; 1285 break; 1286 default: 1287 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1288 "code %d", hdr->code); 1289 break; 1290 } 1291 } 1292 1293 1294 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1295 union tls_event_data *data) 1296 { 1297 struct eap_sm *sm = ctx; 1298 char *hash_hex = NULL; 1299 1300 switch (ev) { 1301 case TLS_CERT_CHAIN_SUCCESS: 1302 eap_notify_status(sm, "remote certificate verification", 1303 "success"); 1304 break; 1305 case TLS_CERT_CHAIN_FAILURE: 1306 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1307 "reason=%d depth=%d subject='%s' err='%s'", 1308 data->cert_fail.reason, 1309 data->cert_fail.depth, 1310 data->cert_fail.subject, 1311 data->cert_fail.reason_txt); 1312 eap_notify_status(sm, "remote certificate verification", 1313 data->cert_fail.reason_txt); 1314 break; 1315 case TLS_PEER_CERTIFICATE: 1316 if (!sm->eapol_cb->notify_cert) 1317 break; 1318 1319 if (data->peer_cert.hash) { 1320 size_t len = data->peer_cert.hash_len * 2 + 1; 1321 hash_hex = os_malloc(len); 1322 if (hash_hex) { 1323 wpa_snprintf_hex(hash_hex, len, 1324 data->peer_cert.hash, 1325 data->peer_cert.hash_len); 1326 } 1327 } 1328 1329 sm->eapol_cb->notify_cert(sm->eapol_ctx, 1330 data->peer_cert.depth, 1331 data->peer_cert.subject, 1332 hash_hex, data->peer_cert.cert); 1333 break; 1334 case TLS_ALERT: 1335 if (data->alert.is_local) 1336 eap_notify_status(sm, "local TLS alert", 1337 data->alert.description); 1338 else 1339 eap_notify_status(sm, "remote TLS alert", 1340 data->alert.description); 1341 break; 1342 } 1343 1344 os_free(hash_hex); 1345 } 1346 1347 1348 /** 1349 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1350 * @eapol_ctx: Context data to be used with eapol_cb calls 1351 * @eapol_cb: Pointer to EAPOL callback functions 1352 * @msg_ctx: Context data for wpa_msg() calls 1353 * @conf: EAP configuration 1354 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1355 * 1356 * This function allocates and initializes an EAP state machine. In addition, 1357 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1358 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1359 * state machine. Consequently, the caller must make sure that this data 1360 * structure remains alive while the EAP state machine is active. 1361 */ 1362 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1363 struct eapol_callbacks *eapol_cb, 1364 void *msg_ctx, struct eap_config *conf) 1365 { 1366 struct eap_sm *sm; 1367 struct tls_config tlsconf; 1368 1369 sm = os_zalloc(sizeof(*sm)); 1370 if (sm == NULL) 1371 return NULL; 1372 sm->eapol_ctx = eapol_ctx; 1373 sm->eapol_cb = eapol_cb; 1374 sm->msg_ctx = msg_ctx; 1375 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1376 sm->wps = conf->wps; 1377 1378 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1379 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1380 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1381 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1382 #ifdef CONFIG_FIPS 1383 tlsconf.fips_mode = 1; 1384 #endif /* CONFIG_FIPS */ 1385 tlsconf.event_cb = eap_peer_sm_tls_event; 1386 tlsconf.cb_ctx = sm; 1387 tlsconf.cert_in_cb = conf->cert_in_cb; 1388 sm->ssl_ctx = tls_init(&tlsconf); 1389 if (sm->ssl_ctx == NULL) { 1390 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1391 "context."); 1392 os_free(sm); 1393 return NULL; 1394 } 1395 1396 sm->ssl_ctx2 = tls_init(&tlsconf); 1397 if (sm->ssl_ctx2 == NULL) { 1398 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS " 1399 "context (2)."); 1400 /* Run without separate TLS context within TLS tunnel */ 1401 } 1402 1403 return sm; 1404 } 1405 1406 1407 /** 1408 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1409 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1410 * 1411 * This function deinitializes EAP state machine and frees all allocated 1412 * resources. 1413 */ 1414 void eap_peer_sm_deinit(struct eap_sm *sm) 1415 { 1416 if (sm == NULL) 1417 return; 1418 eap_deinit_prev_method(sm, "EAP deinit"); 1419 eap_sm_abort(sm); 1420 if (sm->ssl_ctx2) 1421 tls_deinit(sm->ssl_ctx2); 1422 tls_deinit(sm->ssl_ctx); 1423 os_free(sm); 1424 } 1425 1426 1427 /** 1428 * eap_peer_sm_step - Step EAP peer state machine 1429 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1430 * Returns: 1 if EAP state was changed or 0 if not 1431 * 1432 * This function advances EAP state machine to a new state to match with the 1433 * current variables. This should be called whenever variables used by the EAP 1434 * state machine have changed. 1435 */ 1436 int eap_peer_sm_step(struct eap_sm *sm) 1437 { 1438 int res = 0; 1439 do { 1440 sm->changed = FALSE; 1441 SM_STEP_RUN(EAP); 1442 if (sm->changed) 1443 res = 1; 1444 } while (sm->changed); 1445 return res; 1446 } 1447 1448 1449 /** 1450 * eap_sm_abort - Abort EAP authentication 1451 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1452 * 1453 * Release system resources that have been allocated for the authentication 1454 * session without fully deinitializing the EAP state machine. 1455 */ 1456 void eap_sm_abort(struct eap_sm *sm) 1457 { 1458 wpabuf_free(sm->lastRespData); 1459 sm->lastRespData = NULL; 1460 wpabuf_free(sm->eapRespData); 1461 sm->eapRespData = NULL; 1462 os_free(sm->eapKeyData); 1463 sm->eapKeyData = NULL; 1464 1465 /* This is not clearly specified in the EAP statemachines draft, but 1466 * it seems necessary to make sure that some of the EAPOL variables get 1467 * cleared for the next authentication. */ 1468 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1469 } 1470 1471 1472 #ifdef CONFIG_CTRL_IFACE 1473 static const char * eap_sm_state_txt(int state) 1474 { 1475 switch (state) { 1476 case EAP_INITIALIZE: 1477 return "INITIALIZE"; 1478 case EAP_DISABLED: 1479 return "DISABLED"; 1480 case EAP_IDLE: 1481 return "IDLE"; 1482 case EAP_RECEIVED: 1483 return "RECEIVED"; 1484 case EAP_GET_METHOD: 1485 return "GET_METHOD"; 1486 case EAP_METHOD: 1487 return "METHOD"; 1488 case EAP_SEND_RESPONSE: 1489 return "SEND_RESPONSE"; 1490 case EAP_DISCARD: 1491 return "DISCARD"; 1492 case EAP_IDENTITY: 1493 return "IDENTITY"; 1494 case EAP_NOTIFICATION: 1495 return "NOTIFICATION"; 1496 case EAP_RETRANSMIT: 1497 return "RETRANSMIT"; 1498 case EAP_SUCCESS: 1499 return "SUCCESS"; 1500 case EAP_FAILURE: 1501 return "FAILURE"; 1502 default: 1503 return "UNKNOWN"; 1504 } 1505 } 1506 #endif /* CONFIG_CTRL_IFACE */ 1507 1508 1509 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1510 static const char * eap_sm_method_state_txt(EapMethodState state) 1511 { 1512 switch (state) { 1513 case METHOD_NONE: 1514 return "NONE"; 1515 case METHOD_INIT: 1516 return "INIT"; 1517 case METHOD_CONT: 1518 return "CONT"; 1519 case METHOD_MAY_CONT: 1520 return "MAY_CONT"; 1521 case METHOD_DONE: 1522 return "DONE"; 1523 default: 1524 return "UNKNOWN"; 1525 } 1526 } 1527 1528 1529 static const char * eap_sm_decision_txt(EapDecision decision) 1530 { 1531 switch (decision) { 1532 case DECISION_FAIL: 1533 return "FAIL"; 1534 case DECISION_COND_SUCC: 1535 return "COND_SUCC"; 1536 case DECISION_UNCOND_SUCC: 1537 return "UNCOND_SUCC"; 1538 default: 1539 return "UNKNOWN"; 1540 } 1541 } 1542 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1543 1544 1545 #ifdef CONFIG_CTRL_IFACE 1546 1547 /** 1548 * eap_sm_get_status - Get EAP state machine status 1549 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1550 * @buf: Buffer for status information 1551 * @buflen: Maximum buffer length 1552 * @verbose: Whether to include verbose status information 1553 * Returns: Number of bytes written to buf. 1554 * 1555 * Query EAP state machine for status information. This function fills in a 1556 * text area with current status information from the EAPOL state machine. If 1557 * the buffer (buf) is not large enough, status information will be truncated 1558 * to fit the buffer. 1559 */ 1560 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1561 { 1562 int len, ret; 1563 1564 if (sm == NULL) 1565 return 0; 1566 1567 len = os_snprintf(buf, buflen, 1568 "EAP state=%s\n", 1569 eap_sm_state_txt(sm->EAP_state)); 1570 if (len < 0 || (size_t) len >= buflen) 1571 return 0; 1572 1573 if (sm->selectedMethod != EAP_TYPE_NONE) { 1574 const char *name; 1575 if (sm->m) { 1576 name = sm->m->name; 1577 } else { 1578 const struct eap_method *m = 1579 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1580 sm->selectedMethod); 1581 if (m) 1582 name = m->name; 1583 else 1584 name = "?"; 1585 } 1586 ret = os_snprintf(buf + len, buflen - len, 1587 "selectedMethod=%d (EAP-%s)\n", 1588 sm->selectedMethod, name); 1589 if (ret < 0 || (size_t) ret >= buflen - len) 1590 return len; 1591 len += ret; 1592 1593 if (sm->m && sm->m->get_status) { 1594 len += sm->m->get_status(sm, sm->eap_method_priv, 1595 buf + len, buflen - len, 1596 verbose); 1597 } 1598 } 1599 1600 if (verbose) { 1601 ret = os_snprintf(buf + len, buflen - len, 1602 "reqMethod=%d\n" 1603 "methodState=%s\n" 1604 "decision=%s\n" 1605 "ClientTimeout=%d\n", 1606 sm->reqMethod, 1607 eap_sm_method_state_txt(sm->methodState), 1608 eap_sm_decision_txt(sm->decision), 1609 sm->ClientTimeout); 1610 if (ret < 0 || (size_t) ret >= buflen - len) 1611 return len; 1612 len += ret; 1613 } 1614 1615 return len; 1616 } 1617 #endif /* CONFIG_CTRL_IFACE */ 1618 1619 1620 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1621 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field, 1622 const char *msg, size_t msglen) 1623 { 1624 struct eap_peer_config *config; 1625 char *txt = NULL, *tmp; 1626 1627 if (sm == NULL) 1628 return; 1629 config = eap_get_config(sm); 1630 if (config == NULL) 1631 return; 1632 1633 switch (field) { 1634 case WPA_CTRL_REQ_EAP_IDENTITY: 1635 config->pending_req_identity++; 1636 break; 1637 case WPA_CTRL_REQ_EAP_PASSWORD: 1638 config->pending_req_password++; 1639 break; 1640 case WPA_CTRL_REQ_EAP_NEW_PASSWORD: 1641 config->pending_req_new_password++; 1642 break; 1643 case WPA_CTRL_REQ_EAP_PIN: 1644 config->pending_req_pin++; 1645 break; 1646 case WPA_CTRL_REQ_EAP_OTP: 1647 if (msg) { 1648 tmp = os_malloc(msglen + 3); 1649 if (tmp == NULL) 1650 return; 1651 tmp[0] = '['; 1652 os_memcpy(tmp + 1, msg, msglen); 1653 tmp[msglen + 1] = ']'; 1654 tmp[msglen + 2] = '\0'; 1655 txt = tmp; 1656 os_free(config->pending_req_otp); 1657 config->pending_req_otp = tmp; 1658 config->pending_req_otp_len = msglen + 3; 1659 } else { 1660 if (config->pending_req_otp == NULL) 1661 return; 1662 txt = config->pending_req_otp; 1663 } 1664 break; 1665 case WPA_CTRL_REQ_EAP_PASSPHRASE: 1666 config->pending_req_passphrase++; 1667 break; 1668 default: 1669 return; 1670 } 1671 1672 if (sm->eapol_cb->eap_param_needed) 1673 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1674 } 1675 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1676 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1677 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1678 1679 const char * eap_sm_get_method_name(struct eap_sm *sm) 1680 { 1681 if (sm->m == NULL) 1682 return "UNKNOWN"; 1683 return sm->m->name; 1684 } 1685 1686 1687 /** 1688 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1689 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1690 * 1691 * EAP methods can call this function to request identity information for the 1692 * current network. This is normally called when the identity is not included 1693 * in the network configuration. The request will be sent to monitor programs 1694 * through the control interface. 1695 */ 1696 void eap_sm_request_identity(struct eap_sm *sm) 1697 { 1698 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0); 1699 } 1700 1701 1702 /** 1703 * eap_sm_request_password - Request password from user (ctrl_iface) 1704 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1705 * 1706 * EAP methods can call this function to request password information for the 1707 * current network. This is normally called when the password is not included 1708 * in the network configuration. The request will be sent to monitor programs 1709 * through the control interface. 1710 */ 1711 void eap_sm_request_password(struct eap_sm *sm) 1712 { 1713 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0); 1714 } 1715 1716 1717 /** 1718 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1719 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1720 * 1721 * EAP methods can call this function to request new password information for 1722 * the current network. This is normally called when the EAP method indicates 1723 * that the current password has expired and password change is required. The 1724 * request will be sent to monitor programs through the control interface. 1725 */ 1726 void eap_sm_request_new_password(struct eap_sm *sm) 1727 { 1728 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0); 1729 } 1730 1731 1732 /** 1733 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1734 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1735 * 1736 * EAP methods can call this function to request SIM or smart card PIN 1737 * information for the current network. This is normally called when the PIN is 1738 * not included in the network configuration. The request will be sent to 1739 * monitor programs through the control interface. 1740 */ 1741 void eap_sm_request_pin(struct eap_sm *sm) 1742 { 1743 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0); 1744 } 1745 1746 1747 /** 1748 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1749 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1750 * @msg: Message to be displayed to the user when asking for OTP 1751 * @msg_len: Length of the user displayable message 1752 * 1753 * EAP methods can call this function to request open time password (OTP) for 1754 * the current network. The request will be sent to monitor programs through 1755 * the control interface. 1756 */ 1757 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1758 { 1759 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len); 1760 } 1761 1762 1763 /** 1764 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1765 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1766 * 1767 * EAP methods can call this function to request passphrase for a private key 1768 * for the current network. This is normally called when the passphrase is not 1769 * included in the network configuration. The request will be sent to monitor 1770 * programs through the control interface. 1771 */ 1772 void eap_sm_request_passphrase(struct eap_sm *sm) 1773 { 1774 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0); 1775 } 1776 1777 1778 /** 1779 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1780 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1781 * 1782 * Notify EAP state machines that a monitor was attached to the control 1783 * interface to trigger re-sending of pending requests for user input. 1784 */ 1785 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1786 { 1787 struct eap_peer_config *config = eap_get_config(sm); 1788 1789 if (config == NULL) 1790 return; 1791 1792 /* Re-send any pending requests for user data since a new control 1793 * interface was added. This handles cases where the EAP authentication 1794 * starts immediately after system startup when the user interface is 1795 * not yet running. */ 1796 if (config->pending_req_identity) 1797 eap_sm_request_identity(sm); 1798 if (config->pending_req_password) 1799 eap_sm_request_password(sm); 1800 if (config->pending_req_new_password) 1801 eap_sm_request_new_password(sm); 1802 if (config->pending_req_otp) 1803 eap_sm_request_otp(sm, NULL, 0); 1804 if (config->pending_req_pin) 1805 eap_sm_request_pin(sm); 1806 if (config->pending_req_passphrase) 1807 eap_sm_request_passphrase(sm); 1808 } 1809 1810 1811 static int eap_allowed_phase2_type(int vendor, int type) 1812 { 1813 if (vendor != EAP_VENDOR_IETF) 1814 return 0; 1815 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1816 type != EAP_TYPE_FAST; 1817 } 1818 1819 1820 /** 1821 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1822 * @name: EAP method name, e.g., MD5 1823 * @vendor: Buffer for returning EAP Vendor-Id 1824 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1825 * 1826 * This function maps EAP type names into EAP type numbers that are allowed for 1827 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1828 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1829 */ 1830 u32 eap_get_phase2_type(const char *name, int *vendor) 1831 { 1832 int v; 1833 u8 type = eap_peer_get_type(name, &v); 1834 if (eap_allowed_phase2_type(v, type)) { 1835 *vendor = v; 1836 return type; 1837 } 1838 *vendor = EAP_VENDOR_IETF; 1839 return EAP_TYPE_NONE; 1840 } 1841 1842 1843 /** 1844 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1845 * @config: Pointer to a network configuration 1846 * @count: Pointer to a variable to be filled with number of returned EAP types 1847 * Returns: Pointer to allocated type list or %NULL on failure 1848 * 1849 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1850 * the given network configuration. 1851 */ 1852 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1853 size_t *count) 1854 { 1855 struct eap_method_type *buf; 1856 u32 method; 1857 int vendor; 1858 size_t mcount; 1859 const struct eap_method *methods, *m; 1860 1861 methods = eap_peer_get_methods(&mcount); 1862 if (methods == NULL) 1863 return NULL; 1864 *count = 0; 1865 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1866 if (buf == NULL) 1867 return NULL; 1868 1869 for (m = methods; m; m = m->next) { 1870 vendor = m->vendor; 1871 method = m->method; 1872 if (eap_allowed_phase2_type(vendor, method)) { 1873 if (vendor == EAP_VENDOR_IETF && 1874 method == EAP_TYPE_TLS && config && 1875 config->private_key2 == NULL) 1876 continue; 1877 buf[*count].vendor = vendor; 1878 buf[*count].method = method; 1879 (*count)++; 1880 } 1881 } 1882 1883 return buf; 1884 } 1885 1886 1887 /** 1888 * eap_set_fast_reauth - Update fast_reauth setting 1889 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1890 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1891 */ 1892 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1893 { 1894 sm->fast_reauth = enabled; 1895 } 1896 1897 1898 /** 1899 * eap_set_workaround - Update EAP workarounds setting 1900 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1901 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1902 */ 1903 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1904 { 1905 sm->workaround = workaround; 1906 } 1907 1908 1909 /** 1910 * eap_get_config - Get current network configuration 1911 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1912 * Returns: Pointer to the current network configuration or %NULL if not found 1913 * 1914 * EAP peer methods should avoid using this function if they can use other 1915 * access functions, like eap_get_config_identity() and 1916 * eap_get_config_password(), that do not require direct access to 1917 * struct eap_peer_config. 1918 */ 1919 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1920 { 1921 return sm->eapol_cb->get_config(sm->eapol_ctx); 1922 } 1923 1924 1925 /** 1926 * eap_get_config_identity - Get identity from the network configuration 1927 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1928 * @len: Buffer for the length of the identity 1929 * Returns: Pointer to the identity or %NULL if not found 1930 */ 1931 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1932 { 1933 struct eap_peer_config *config = eap_get_config(sm); 1934 if (config == NULL) 1935 return NULL; 1936 *len = config->identity_len; 1937 return config->identity; 1938 } 1939 1940 1941 static int eap_get_ext_password(struct eap_sm *sm, 1942 struct eap_peer_config *config) 1943 { 1944 char *name; 1945 1946 if (config->password == NULL) 1947 return -1; 1948 1949 name = os_zalloc(config->password_len + 1); 1950 if (name == NULL) 1951 return -1; 1952 os_memcpy(name, config->password, config->password_len); 1953 1954 ext_password_free(sm->ext_pw_buf); 1955 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name); 1956 os_free(name); 1957 1958 return sm->ext_pw_buf == NULL ? -1 : 0; 1959 } 1960 1961 1962 /** 1963 * eap_get_config_password - Get password from the network configuration 1964 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1965 * @len: Buffer for the length of the password 1966 * Returns: Pointer to the password or %NULL if not found 1967 */ 1968 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1969 { 1970 struct eap_peer_config *config = eap_get_config(sm); 1971 if (config == NULL) 1972 return NULL; 1973 1974 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { 1975 if (eap_get_ext_password(sm, config) < 0) 1976 return NULL; 1977 *len = wpabuf_len(sm->ext_pw_buf); 1978 return wpabuf_head(sm->ext_pw_buf); 1979 } 1980 1981 *len = config->password_len; 1982 return config->password; 1983 } 1984 1985 1986 /** 1987 * eap_get_config_password2 - Get password from the network configuration 1988 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1989 * @len: Buffer for the length of the password 1990 * @hash: Buffer for returning whether the password is stored as a 1991 * NtPasswordHash instead of plaintext password; can be %NULL if this 1992 * information is not needed 1993 * Returns: Pointer to the password or %NULL if not found 1994 */ 1995 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1996 { 1997 struct eap_peer_config *config = eap_get_config(sm); 1998 if (config == NULL) 1999 return NULL; 2000 2001 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { 2002 if (eap_get_ext_password(sm, config) < 0) 2003 return NULL; 2004 *len = wpabuf_len(sm->ext_pw_buf); 2005 return wpabuf_head(sm->ext_pw_buf); 2006 } 2007 2008 *len = config->password_len; 2009 if (hash) 2010 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 2011 return config->password; 2012 } 2013 2014 2015 /** 2016 * eap_get_config_new_password - Get new password from network configuration 2017 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2018 * @len: Buffer for the length of the new password 2019 * Returns: Pointer to the new password or %NULL if not found 2020 */ 2021 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 2022 { 2023 struct eap_peer_config *config = eap_get_config(sm); 2024 if (config == NULL) 2025 return NULL; 2026 *len = config->new_password_len; 2027 return config->new_password; 2028 } 2029 2030 2031 /** 2032 * eap_get_config_otp - Get one-time password from the network configuration 2033 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2034 * @len: Buffer for the length of the one-time password 2035 * Returns: Pointer to the one-time password or %NULL if not found 2036 */ 2037 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 2038 { 2039 struct eap_peer_config *config = eap_get_config(sm); 2040 if (config == NULL) 2041 return NULL; 2042 *len = config->otp_len; 2043 return config->otp; 2044 } 2045 2046 2047 /** 2048 * eap_clear_config_otp - Clear used one-time password 2049 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2050 * 2051 * This function clears a used one-time password (OTP) from the current network 2052 * configuration. This should be called when the OTP has been used and is not 2053 * needed anymore. 2054 */ 2055 void eap_clear_config_otp(struct eap_sm *sm) 2056 { 2057 struct eap_peer_config *config = eap_get_config(sm); 2058 if (config == NULL) 2059 return; 2060 os_memset(config->otp, 0, config->otp_len); 2061 os_free(config->otp); 2062 config->otp = NULL; 2063 config->otp_len = 0; 2064 } 2065 2066 2067 /** 2068 * eap_get_config_phase1 - Get phase1 data from the network configuration 2069 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2070 * Returns: Pointer to the phase1 data or %NULL if not found 2071 */ 2072 const char * eap_get_config_phase1(struct eap_sm *sm) 2073 { 2074 struct eap_peer_config *config = eap_get_config(sm); 2075 if (config == NULL) 2076 return NULL; 2077 return config->phase1; 2078 } 2079 2080 2081 /** 2082 * eap_get_config_phase2 - Get phase2 data from the network configuration 2083 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2084 * Returns: Pointer to the phase1 data or %NULL if not found 2085 */ 2086 const char * eap_get_config_phase2(struct eap_sm *sm) 2087 { 2088 struct eap_peer_config *config = eap_get_config(sm); 2089 if (config == NULL) 2090 return NULL; 2091 return config->phase2; 2092 } 2093 2094 2095 int eap_get_config_fragment_size(struct eap_sm *sm) 2096 { 2097 struct eap_peer_config *config = eap_get_config(sm); 2098 if (config == NULL) 2099 return -1; 2100 return config->fragment_size; 2101 } 2102 2103 2104 /** 2105 * eap_key_available - Get key availability (eapKeyAvailable variable) 2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2107 * Returns: 1 if EAP keying material is available, 0 if not 2108 */ 2109 int eap_key_available(struct eap_sm *sm) 2110 { 2111 return sm ? sm->eapKeyAvailable : 0; 2112 } 2113 2114 2115 /** 2116 * eap_notify_success - Notify EAP state machine about external success trigger 2117 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2118 * 2119 * This function is called when external event, e.g., successful completion of 2120 * WPA-PSK key handshake, is indicating that EAP state machine should move to 2121 * success state. This is mainly used with security modes that do not use EAP 2122 * state machine (e.g., WPA-PSK). 2123 */ 2124 void eap_notify_success(struct eap_sm *sm) 2125 { 2126 if (sm) { 2127 sm->decision = DECISION_COND_SUCC; 2128 sm->EAP_state = EAP_SUCCESS; 2129 } 2130 } 2131 2132 2133 /** 2134 * eap_notify_lower_layer_success - Notification of lower layer success 2135 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2136 * 2137 * Notify EAP state machines that a lower layer has detected a successful 2138 * authentication. This is used to recover from dropped EAP-Success messages. 2139 */ 2140 void eap_notify_lower_layer_success(struct eap_sm *sm) 2141 { 2142 if (sm == NULL) 2143 return; 2144 2145 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 2146 sm->decision == DECISION_FAIL || 2147 (sm->methodState != METHOD_MAY_CONT && 2148 sm->methodState != METHOD_DONE)) 2149 return; 2150 2151 if (sm->eapKeyData != NULL) 2152 sm->eapKeyAvailable = TRUE; 2153 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 2154 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 2155 "EAP authentication completed successfully (based on lower " 2156 "layer success)"); 2157 } 2158 2159 2160 /** 2161 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 2162 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2163 * @len: Pointer to variable that will be set to number of bytes in the key 2164 * Returns: Pointer to the EAP keying data or %NULL on failure 2165 * 2166 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 2167 * key is available only after a successful authentication. EAP state machine 2168 * continues to manage the key data and the caller must not change or free the 2169 * returned data. 2170 */ 2171 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 2172 { 2173 if (sm == NULL || sm->eapKeyData == NULL) { 2174 *len = 0; 2175 return NULL; 2176 } 2177 2178 *len = sm->eapKeyDataLen; 2179 return sm->eapKeyData; 2180 } 2181 2182 2183 /** 2184 * eap_get_eapKeyData - Get EAP response data 2185 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2186 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2187 * 2188 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2189 * available when EAP state machine has processed an incoming EAP request. The 2190 * EAP state machine does not maintain a reference to the response after this 2191 * function is called and the caller is responsible for freeing the data. 2192 */ 2193 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2194 { 2195 struct wpabuf *resp; 2196 2197 if (sm == NULL || sm->eapRespData == NULL) 2198 return NULL; 2199 2200 resp = sm->eapRespData; 2201 sm->eapRespData = NULL; 2202 2203 return resp; 2204 } 2205 2206 2207 /** 2208 * eap_sm_register_scard_ctx - Notification of smart card context 2209 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2210 * @ctx: Context data for smart card operations 2211 * 2212 * Notify EAP state machines of context data for smart card operations. This 2213 * context data will be used as a parameter for scard_*() functions. 2214 */ 2215 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2216 { 2217 if (sm) 2218 sm->scard_ctx = ctx; 2219 } 2220 2221 2222 /** 2223 * eap_set_config_blob - Set or add a named configuration blob 2224 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2225 * @blob: New value for the blob 2226 * 2227 * Adds a new configuration blob or replaces the current value of an existing 2228 * blob. 2229 */ 2230 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2231 { 2232 #ifndef CONFIG_NO_CONFIG_BLOBS 2233 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2234 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2235 } 2236 2237 2238 /** 2239 * eap_get_config_blob - Get a named configuration blob 2240 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2241 * @name: Name of the blob 2242 * Returns: Pointer to blob data or %NULL if not found 2243 */ 2244 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2245 const char *name) 2246 { 2247 #ifndef CONFIG_NO_CONFIG_BLOBS 2248 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2249 #else /* CONFIG_NO_CONFIG_BLOBS */ 2250 return NULL; 2251 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2252 } 2253 2254 2255 /** 2256 * eap_set_force_disabled - Set force_disabled flag 2257 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2258 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2259 * 2260 * This function is used to force EAP state machine to be disabled when it is 2261 * not in use (e.g., with WPA-PSK or plaintext connections). 2262 */ 2263 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2264 { 2265 sm->force_disabled = disabled; 2266 } 2267 2268 2269 /** 2270 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2271 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2272 * 2273 * An EAP method can perform a pending operation (e.g., to get a response from 2274 * an external process). Once the response is available, this function can be 2275 * used to request EAPOL state machine to retry delivering the previously 2276 * received (and still unanswered) EAP request to EAP state machine. 2277 */ 2278 void eap_notify_pending(struct eap_sm *sm) 2279 { 2280 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2281 } 2282 2283 2284 /** 2285 * eap_invalidate_cached_session - Mark cached session data invalid 2286 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2287 */ 2288 void eap_invalidate_cached_session(struct eap_sm *sm) 2289 { 2290 if (sm) 2291 eap_deinit_prev_method(sm, "invalidate"); 2292 } 2293 2294 2295 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2296 { 2297 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2298 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2299 return 0; /* Not a WPS Enrollee */ 2300 2301 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2302 return 0; /* Not using PBC */ 2303 2304 return 1; 2305 } 2306 2307 2308 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2309 { 2310 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2311 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2312 return 0; /* Not a WPS Enrollee */ 2313 2314 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2315 return 0; /* Not using PIN */ 2316 2317 return 1; 2318 } 2319 2320 2321 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext) 2322 { 2323 ext_password_free(sm->ext_pw_buf); 2324 sm->ext_pw_buf = NULL; 2325 sm->ext_pw = ext; 2326 } 2327 2328 2329 /** 2330 * eap_set_anon_id - Set or add anonymous identity 2331 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2332 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear 2333 * @len: Length of anonymous identity in octets 2334 */ 2335 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len) 2336 { 2337 if (sm->eapol_cb->set_anon_id) 2338 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len); 2339 } 2340