1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2010, Jouni Malinen <j@w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 * 14 * This file implements the Peer State Machine as defined in RFC 4137. The used 15 * states and state transitions match mostly with the RFC. However, there are 16 * couple of additional transitions for working around small issues noticed 17 * during testing. These exceptions are explained in comments within the 18 * functions in this file. The method functions, m.func(), are similar to the 19 * ones used in RFC 4137, but some small changes have used here to optimize 20 * operations and to add functionality needed for fast re-authentication 21 * (session resumption). 22 */ 23 24 #include "includes.h" 25 26 #include "common.h" 27 #include "pcsc_funcs.h" 28 #include "state_machine.h" 29 #include "crypto/crypto.h" 30 #include "crypto/tls.h" 31 #include "common/wpa_ctrl.h" 32 #include "eap_common/eap_wsc_common.h" 33 #include "eap_i.h" 34 #include "eap_config.h" 35 36 #define STATE_MACHINE_DATA struct eap_sm 37 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 38 39 #define EAP_MAX_AUTH_ROUNDS 50 40 41 42 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 43 EapType method); 44 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 45 static void eap_sm_processIdentity(struct eap_sm *sm, 46 const struct wpabuf *req); 47 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 48 static struct wpabuf * eap_sm_buildNotify(int id); 49 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 50 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 51 static const char * eap_sm_method_state_txt(EapMethodState state); 52 static const char * eap_sm_decision_txt(EapDecision decision); 53 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 54 55 56 57 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 58 { 59 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 60 } 61 62 63 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 64 Boolean value) 65 { 66 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 67 } 68 69 70 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 71 { 72 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 73 } 74 75 76 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 77 unsigned int value) 78 { 79 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 80 } 81 82 83 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 84 { 85 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 86 } 87 88 89 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 90 { 91 if (sm->m == NULL || sm->eap_method_priv == NULL) 92 return; 93 94 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 95 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 96 sm->m->deinit(sm, sm->eap_method_priv); 97 sm->eap_method_priv = NULL; 98 sm->m = NULL; 99 } 100 101 102 /** 103 * eap_allowed_method - Check whether EAP method is allowed 104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 105 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 106 * @method: EAP type 107 * Returns: 1 = allowed EAP method, 0 = not allowed 108 */ 109 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 110 { 111 struct eap_peer_config *config = eap_get_config(sm); 112 int i; 113 struct eap_method_type *m; 114 115 if (config == NULL || config->eap_methods == NULL) 116 return 1; 117 118 m = config->eap_methods; 119 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 120 m[i].method != EAP_TYPE_NONE; i++) { 121 if (m[i].vendor == vendor && m[i].method == method) 122 return 1; 123 } 124 return 0; 125 } 126 127 128 /* 129 * This state initializes state machine variables when the machine is 130 * activated (portEnabled = TRUE). This is also used when re-starting 131 * authentication (eapRestart == TRUE). 132 */ 133 SM_STATE(EAP, INITIALIZE) 134 { 135 SM_ENTRY(EAP, INITIALIZE); 136 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 137 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 138 !sm->prev_failure) { 139 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 140 "fast reauthentication"); 141 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 142 } else { 143 eap_deinit_prev_method(sm, "INITIALIZE"); 144 } 145 sm->selectedMethod = EAP_TYPE_NONE; 146 sm->methodState = METHOD_NONE; 147 sm->allowNotifications = TRUE; 148 sm->decision = DECISION_FAIL; 149 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 150 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 151 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 152 os_free(sm->eapKeyData); 153 sm->eapKeyData = NULL; 154 sm->eapKeyAvailable = FALSE; 155 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 156 sm->lastId = -1; /* new session - make sure this does not match with 157 * the first EAP-Packet */ 158 /* 159 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 160 * seemed to be able to trigger cases where both were set and if EAPOL 161 * state machine uses eapNoResp first, it may end up not sending a real 162 * reply correctly. This occurred when the workaround in FAIL state set 163 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 164 * something else(?) 165 */ 166 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 167 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 168 sm->num_rounds = 0; 169 sm->prev_failure = 0; 170 } 171 172 173 /* 174 * This state is reached whenever service from the lower layer is interrupted 175 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 176 * occurs when the port becomes enabled. 177 */ 178 SM_STATE(EAP, DISABLED) 179 { 180 SM_ENTRY(EAP, DISABLED); 181 sm->num_rounds = 0; 182 } 183 184 185 /* 186 * The state machine spends most of its time here, waiting for something to 187 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 188 * SEND_RESPONSE states. 189 */ 190 SM_STATE(EAP, IDLE) 191 { 192 SM_ENTRY(EAP, IDLE); 193 } 194 195 196 /* 197 * This state is entered when an EAP packet is received (eapReq == TRUE) to 198 * parse the packet header. 199 */ 200 SM_STATE(EAP, RECEIVED) 201 { 202 const struct wpabuf *eapReqData; 203 204 SM_ENTRY(EAP, RECEIVED); 205 eapReqData = eapol_get_eapReqData(sm); 206 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 207 eap_sm_parseEapReq(sm, eapReqData); 208 sm->num_rounds++; 209 } 210 211 212 /* 213 * This state is entered when a request for a new type comes in. Either the 214 * correct method is started, or a Nak response is built. 215 */ 216 SM_STATE(EAP, GET_METHOD) 217 { 218 int reinit; 219 EapType method; 220 221 SM_ENTRY(EAP, GET_METHOD); 222 223 if (sm->reqMethod == EAP_TYPE_EXPANDED) 224 method = sm->reqVendorMethod; 225 else 226 method = sm->reqMethod; 227 228 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 229 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 230 sm->reqVendor, method); 231 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 232 "vendor=%u method=%u -> NAK", 233 sm->reqVendor, method); 234 goto nak; 235 } 236 237 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 238 "vendor=%u method=%u", sm->reqVendor, method); 239 240 /* 241 * RFC 4137 does not define specific operation for fast 242 * re-authentication (session resumption). The design here is to allow 243 * the previously used method data to be maintained for 244 * re-authentication if the method support session resumption. 245 * Otherwise, the previously used method data is freed and a new method 246 * is allocated here. 247 */ 248 if (sm->fast_reauth && 249 sm->m && sm->m->vendor == sm->reqVendor && 250 sm->m->method == method && 251 sm->m->has_reauth_data && 252 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 253 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 254 " for fast re-authentication"); 255 reinit = 1; 256 } else { 257 eap_deinit_prev_method(sm, "GET_METHOD"); 258 reinit = 0; 259 } 260 261 sm->selectedMethod = sm->reqMethod; 262 if (sm->m == NULL) 263 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 264 if (!sm->m) { 265 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 266 "vendor %d method %d", 267 sm->reqVendor, method); 268 goto nak; 269 } 270 271 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 272 "vendor %u method %u (%s)", 273 sm->reqVendor, method, sm->m->name); 274 if (reinit) 275 sm->eap_method_priv = sm->m->init_for_reauth( 276 sm, sm->eap_method_priv); 277 else 278 sm->eap_method_priv = sm->m->init(sm); 279 280 if (sm->eap_method_priv == NULL) { 281 struct eap_peer_config *config = eap_get_config(sm); 282 wpa_msg(sm->msg_ctx, MSG_INFO, 283 "EAP: Failed to initialize EAP method: vendor %u " 284 "method %u (%s)", 285 sm->reqVendor, method, sm->m->name); 286 sm->m = NULL; 287 sm->methodState = METHOD_NONE; 288 sm->selectedMethod = EAP_TYPE_NONE; 289 if (sm->reqMethod == EAP_TYPE_TLS && config && 290 (config->pending_req_pin || 291 config->pending_req_passphrase)) { 292 /* 293 * Return without generating Nak in order to allow 294 * entering of PIN code or passphrase to retry the 295 * current EAP packet. 296 */ 297 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 298 "request - skip Nak"); 299 return; 300 } 301 302 goto nak; 303 } 304 305 sm->methodState = METHOD_INIT; 306 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 307 "EAP vendor %u method %u (%s) selected", 308 sm->reqVendor, method, sm->m->name); 309 return; 310 311 nak: 312 wpabuf_free(sm->eapRespData); 313 sm->eapRespData = NULL; 314 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 315 } 316 317 318 /* 319 * The method processing happens here. The request from the authenticator is 320 * processed, and an appropriate response packet is built. 321 */ 322 SM_STATE(EAP, METHOD) 323 { 324 struct wpabuf *eapReqData; 325 struct eap_method_ret ret; 326 327 SM_ENTRY(EAP, METHOD); 328 if (sm->m == NULL) { 329 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 330 return; 331 } 332 333 eapReqData = eapol_get_eapReqData(sm); 334 335 /* 336 * Get ignore, methodState, decision, allowNotifications, and 337 * eapRespData. RFC 4137 uses three separate method procedure (check, 338 * process, and buildResp) in this state. These have been combined into 339 * a single function call to m->process() in order to optimize EAP 340 * method implementation interface a bit. These procedures are only 341 * used from within this METHOD state, so there is no need to keep 342 * these as separate C functions. 343 * 344 * The RFC 4137 procedures return values as follows: 345 * ignore = m.check(eapReqData) 346 * (methodState, decision, allowNotifications) = m.process(eapReqData) 347 * eapRespData = m.buildResp(reqId) 348 */ 349 os_memset(&ret, 0, sizeof(ret)); 350 ret.ignore = sm->ignore; 351 ret.methodState = sm->methodState; 352 ret.decision = sm->decision; 353 ret.allowNotifications = sm->allowNotifications; 354 wpabuf_free(sm->eapRespData); 355 sm->eapRespData = NULL; 356 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 357 eapReqData); 358 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 359 "methodState=%s decision=%s", 360 ret.ignore ? "TRUE" : "FALSE", 361 eap_sm_method_state_txt(ret.methodState), 362 eap_sm_decision_txt(ret.decision)); 363 364 sm->ignore = ret.ignore; 365 if (sm->ignore) 366 return; 367 sm->methodState = ret.methodState; 368 sm->decision = ret.decision; 369 sm->allowNotifications = ret.allowNotifications; 370 371 if (sm->m->isKeyAvailable && sm->m->getKey && 372 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 373 os_free(sm->eapKeyData); 374 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 375 &sm->eapKeyDataLen); 376 } 377 } 378 379 380 /* 381 * This state signals the lower layer that a response packet is ready to be 382 * sent. 383 */ 384 SM_STATE(EAP, SEND_RESPONSE) 385 { 386 SM_ENTRY(EAP, SEND_RESPONSE); 387 wpabuf_free(sm->lastRespData); 388 if (sm->eapRespData) { 389 if (sm->workaround) 390 os_memcpy(sm->last_md5, sm->req_md5, 16); 391 sm->lastId = sm->reqId; 392 sm->lastRespData = wpabuf_dup(sm->eapRespData); 393 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 394 } else 395 sm->lastRespData = NULL; 396 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 397 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 398 } 399 400 401 /* 402 * This state signals the lower layer that the request was discarded, and no 403 * response packet will be sent at this time. 404 */ 405 SM_STATE(EAP, DISCARD) 406 { 407 SM_ENTRY(EAP, DISCARD); 408 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 409 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 410 } 411 412 413 /* 414 * Handles requests for Identity method and builds a response. 415 */ 416 SM_STATE(EAP, IDENTITY) 417 { 418 const struct wpabuf *eapReqData; 419 420 SM_ENTRY(EAP, IDENTITY); 421 eapReqData = eapol_get_eapReqData(sm); 422 eap_sm_processIdentity(sm, eapReqData); 423 wpabuf_free(sm->eapRespData); 424 sm->eapRespData = NULL; 425 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 426 } 427 428 429 /* 430 * Handles requests for Notification method and builds a response. 431 */ 432 SM_STATE(EAP, NOTIFICATION) 433 { 434 const struct wpabuf *eapReqData; 435 436 SM_ENTRY(EAP, NOTIFICATION); 437 eapReqData = eapol_get_eapReqData(sm); 438 eap_sm_processNotify(sm, eapReqData); 439 wpabuf_free(sm->eapRespData); 440 sm->eapRespData = NULL; 441 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 442 } 443 444 445 /* 446 * This state retransmits the previous response packet. 447 */ 448 SM_STATE(EAP, RETRANSMIT) 449 { 450 SM_ENTRY(EAP, RETRANSMIT); 451 wpabuf_free(sm->eapRespData); 452 if (sm->lastRespData) 453 sm->eapRespData = wpabuf_dup(sm->lastRespData); 454 else 455 sm->eapRespData = NULL; 456 } 457 458 459 /* 460 * This state is entered in case of a successful completion of authentication 461 * and state machine waits here until port is disabled or EAP authentication is 462 * restarted. 463 */ 464 SM_STATE(EAP, SUCCESS) 465 { 466 SM_ENTRY(EAP, SUCCESS); 467 if (sm->eapKeyData != NULL) 468 sm->eapKeyAvailable = TRUE; 469 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 470 471 /* 472 * RFC 4137 does not clear eapReq here, but this seems to be required 473 * to avoid processing the same request twice when state machine is 474 * initialized. 475 */ 476 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 477 478 /* 479 * RFC 4137 does not set eapNoResp here, but this seems to be required 480 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 481 * addition, either eapResp or eapNoResp is required to be set after 482 * processing the received EAP frame. 483 */ 484 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 485 486 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 487 "EAP authentication completed successfully"); 488 } 489 490 491 /* 492 * This state is entered in case of a failure and state machine waits here 493 * until port is disabled or EAP authentication is restarted. 494 */ 495 SM_STATE(EAP, FAILURE) 496 { 497 SM_ENTRY(EAP, FAILURE); 498 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 499 500 /* 501 * RFC 4137 does not clear eapReq here, but this seems to be required 502 * to avoid processing the same request twice when state machine is 503 * initialized. 504 */ 505 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 506 507 /* 508 * RFC 4137 does not set eapNoResp here. However, either eapResp or 509 * eapNoResp is required to be set after processing the received EAP 510 * frame. 511 */ 512 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 513 514 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 515 "EAP authentication failed"); 516 517 sm->prev_failure = 1; 518 } 519 520 521 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 522 { 523 /* 524 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 525 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 526 * RFC 4137 require that reqId == lastId. In addition, it looks like 527 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 528 * 529 * Accept this kind of Id if EAP workarounds are enabled. These are 530 * unauthenticated plaintext messages, so this should have minimal 531 * security implications (bit easier to fake EAP-Success/Failure). 532 */ 533 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 534 reqId == ((lastId + 2) & 0xff))) { 535 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 536 "identifier field in EAP Success: " 537 "reqId=%d lastId=%d (these are supposed to be " 538 "same)", reqId, lastId); 539 return 1; 540 } 541 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 542 "lastId=%d", reqId, lastId); 543 return 0; 544 } 545 546 547 /* 548 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 549 */ 550 551 static void eap_peer_sm_step_idle(struct eap_sm *sm) 552 { 553 /* 554 * The first three transitions are from RFC 4137. The last two are 555 * local additions to handle special cases with LEAP and PEAP server 556 * not sending EAP-Success in some cases. 557 */ 558 if (eapol_get_bool(sm, EAPOL_eapReq)) 559 SM_ENTER(EAP, RECEIVED); 560 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 561 sm->decision != DECISION_FAIL) || 562 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 563 sm->decision == DECISION_UNCOND_SUCC)) 564 SM_ENTER(EAP, SUCCESS); 565 else if (eapol_get_bool(sm, EAPOL_altReject) || 566 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 567 sm->decision != DECISION_UNCOND_SUCC) || 568 (eapol_get_bool(sm, EAPOL_altAccept) && 569 sm->methodState != METHOD_CONT && 570 sm->decision == DECISION_FAIL)) 571 SM_ENTER(EAP, FAILURE); 572 else if (sm->selectedMethod == EAP_TYPE_LEAP && 573 sm->leap_done && sm->decision != DECISION_FAIL && 574 sm->methodState == METHOD_DONE) 575 SM_ENTER(EAP, SUCCESS); 576 else if (sm->selectedMethod == EAP_TYPE_PEAP && 577 sm->peap_done && sm->decision != DECISION_FAIL && 578 sm->methodState == METHOD_DONE) 579 SM_ENTER(EAP, SUCCESS); 580 } 581 582 583 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 584 { 585 int duplicate; 586 587 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 588 if (sm->workaround && duplicate && 589 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 590 /* 591 * RFC 4137 uses (reqId == lastId) as the only verification for 592 * duplicate EAP requests. However, this misses cases where the 593 * AS is incorrectly using the same id again; and 594 * unfortunately, such implementations exist. Use MD5 hash as 595 * an extra verification for the packets being duplicate to 596 * workaround these issues. 597 */ 598 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 599 "EAP packets were not identical"); 600 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 601 "duplicate packet"); 602 duplicate = 0; 603 } 604 605 return duplicate; 606 } 607 608 609 static void eap_peer_sm_step_received(struct eap_sm *sm) 610 { 611 int duplicate = eap_peer_req_is_duplicate(sm); 612 613 /* 614 * Two special cases below for LEAP are local additions to work around 615 * odd LEAP behavior (EAP-Success in the middle of authentication and 616 * then swapped roles). Other transitions are based on RFC 4137. 617 */ 618 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 619 (sm->reqId == sm->lastId || 620 eap_success_workaround(sm, sm->reqId, sm->lastId))) 621 SM_ENTER(EAP, SUCCESS); 622 else if (sm->methodState != METHOD_CONT && 623 ((sm->rxFailure && 624 sm->decision != DECISION_UNCOND_SUCC) || 625 (sm->rxSuccess && sm->decision == DECISION_FAIL && 626 (sm->selectedMethod != EAP_TYPE_LEAP || 627 sm->methodState != METHOD_MAY_CONT))) && 628 (sm->reqId == sm->lastId || 629 eap_success_workaround(sm, sm->reqId, sm->lastId))) 630 SM_ENTER(EAP, FAILURE); 631 else if (sm->rxReq && duplicate) 632 SM_ENTER(EAP, RETRANSMIT); 633 else if (sm->rxReq && !duplicate && 634 sm->reqMethod == EAP_TYPE_NOTIFICATION && 635 sm->allowNotifications) 636 SM_ENTER(EAP, NOTIFICATION); 637 else if (sm->rxReq && !duplicate && 638 sm->selectedMethod == EAP_TYPE_NONE && 639 sm->reqMethod == EAP_TYPE_IDENTITY) 640 SM_ENTER(EAP, IDENTITY); 641 else if (sm->rxReq && !duplicate && 642 sm->selectedMethod == EAP_TYPE_NONE && 643 sm->reqMethod != EAP_TYPE_IDENTITY && 644 sm->reqMethod != EAP_TYPE_NOTIFICATION) 645 SM_ENTER(EAP, GET_METHOD); 646 else if (sm->rxReq && !duplicate && 647 sm->reqMethod == sm->selectedMethod && 648 sm->methodState != METHOD_DONE) 649 SM_ENTER(EAP, METHOD); 650 else if (sm->selectedMethod == EAP_TYPE_LEAP && 651 (sm->rxSuccess || sm->rxResp)) 652 SM_ENTER(EAP, METHOD); 653 else 654 SM_ENTER(EAP, DISCARD); 655 } 656 657 658 static void eap_peer_sm_step_local(struct eap_sm *sm) 659 { 660 switch (sm->EAP_state) { 661 case EAP_INITIALIZE: 662 SM_ENTER(EAP, IDLE); 663 break; 664 case EAP_DISABLED: 665 if (eapol_get_bool(sm, EAPOL_portEnabled) && 666 !sm->force_disabled) 667 SM_ENTER(EAP, INITIALIZE); 668 break; 669 case EAP_IDLE: 670 eap_peer_sm_step_idle(sm); 671 break; 672 case EAP_RECEIVED: 673 eap_peer_sm_step_received(sm); 674 break; 675 case EAP_GET_METHOD: 676 if (sm->selectedMethod == sm->reqMethod) 677 SM_ENTER(EAP, METHOD); 678 else 679 SM_ENTER(EAP, SEND_RESPONSE); 680 break; 681 case EAP_METHOD: 682 if (sm->ignore) 683 SM_ENTER(EAP, DISCARD); 684 else 685 SM_ENTER(EAP, SEND_RESPONSE); 686 break; 687 case EAP_SEND_RESPONSE: 688 SM_ENTER(EAP, IDLE); 689 break; 690 case EAP_DISCARD: 691 SM_ENTER(EAP, IDLE); 692 break; 693 case EAP_IDENTITY: 694 SM_ENTER(EAP, SEND_RESPONSE); 695 break; 696 case EAP_NOTIFICATION: 697 SM_ENTER(EAP, SEND_RESPONSE); 698 break; 699 case EAP_RETRANSMIT: 700 SM_ENTER(EAP, SEND_RESPONSE); 701 break; 702 case EAP_SUCCESS: 703 break; 704 case EAP_FAILURE: 705 break; 706 } 707 } 708 709 710 SM_STEP(EAP) 711 { 712 /* Global transitions */ 713 if (eapol_get_bool(sm, EAPOL_eapRestart) && 714 eapol_get_bool(sm, EAPOL_portEnabled)) 715 SM_ENTER_GLOBAL(EAP, INITIALIZE); 716 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 717 SM_ENTER_GLOBAL(EAP, DISABLED); 718 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 719 /* RFC 4137 does not place any limit on number of EAP messages 720 * in an authentication session. However, some error cases have 721 * ended up in a state were EAP messages were sent between the 722 * peer and server in a loop (e.g., TLS ACK frame in both 723 * direction). Since this is quite undesired outcome, limit the 724 * total number of EAP round-trips and abort authentication if 725 * this limit is exceeded. 726 */ 727 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 728 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 729 "authentication rounds - abort", 730 EAP_MAX_AUTH_ROUNDS); 731 sm->num_rounds++; 732 SM_ENTER_GLOBAL(EAP, FAILURE); 733 } 734 } else { 735 /* Local transitions */ 736 eap_peer_sm_step_local(sm); 737 } 738 } 739 740 741 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 742 EapType method) 743 { 744 if (!eap_allowed_method(sm, vendor, method)) { 745 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 746 "vendor %u method %u", vendor, method); 747 return FALSE; 748 } 749 if (eap_peer_get_eap_method(vendor, method)) 750 return TRUE; 751 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 752 "vendor %u method %u", vendor, method); 753 return FALSE; 754 } 755 756 757 static struct wpabuf * eap_sm_build_expanded_nak( 758 struct eap_sm *sm, int id, const struct eap_method *methods, 759 size_t count) 760 { 761 struct wpabuf *resp; 762 int found = 0; 763 const struct eap_method *m; 764 765 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 766 767 /* RFC 3748 - 5.3.2: Expanded Nak */ 768 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 769 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 770 if (resp == NULL) 771 return NULL; 772 773 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 774 wpabuf_put_be32(resp, EAP_TYPE_NAK); 775 776 for (m = methods; m; m = m->next) { 777 if (sm->reqVendor == m->vendor && 778 sm->reqVendorMethod == m->method) 779 continue; /* do not allow the current method again */ 780 if (eap_allowed_method(sm, m->vendor, m->method)) { 781 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 782 "vendor=%u method=%u", 783 m->vendor, m->method); 784 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 785 wpabuf_put_be24(resp, m->vendor); 786 wpabuf_put_be32(resp, m->method); 787 788 found++; 789 } 790 } 791 if (!found) { 792 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 793 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 794 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 795 wpabuf_put_be32(resp, EAP_TYPE_NONE); 796 } 797 798 eap_update_len(resp); 799 800 return resp; 801 } 802 803 804 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 805 { 806 struct wpabuf *resp; 807 u8 *start; 808 int found = 0, expanded_found = 0; 809 size_t count; 810 const struct eap_method *methods, *m; 811 812 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 813 "vendor=%u method=%u not allowed)", sm->reqMethod, 814 sm->reqVendor, sm->reqVendorMethod); 815 methods = eap_peer_get_methods(&count); 816 if (methods == NULL) 817 return NULL; 818 if (sm->reqMethod == EAP_TYPE_EXPANDED) 819 return eap_sm_build_expanded_nak(sm, id, methods, count); 820 821 /* RFC 3748 - 5.3.1: Legacy Nak */ 822 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 823 sizeof(struct eap_hdr) + 1 + count + 1, 824 EAP_CODE_RESPONSE, id); 825 if (resp == NULL) 826 return NULL; 827 828 start = wpabuf_put(resp, 0); 829 for (m = methods; m; m = m->next) { 830 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 831 continue; /* do not allow the current method again */ 832 if (eap_allowed_method(sm, m->vendor, m->method)) { 833 if (m->vendor != EAP_VENDOR_IETF) { 834 if (expanded_found) 835 continue; 836 expanded_found = 1; 837 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 838 } else 839 wpabuf_put_u8(resp, m->method); 840 found++; 841 } 842 } 843 if (!found) 844 wpabuf_put_u8(resp, EAP_TYPE_NONE); 845 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 846 847 eap_update_len(resp); 848 849 return resp; 850 } 851 852 853 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 854 { 855 const struct eap_hdr *hdr = wpabuf_head(req); 856 const u8 *pos = (const u8 *) (hdr + 1); 857 pos++; 858 859 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 860 "EAP authentication started"); 861 862 /* 863 * RFC 3748 - 5.1: Identity 864 * Data field may contain a displayable message in UTF-8. If this 865 * includes NUL-character, only the data before that should be 866 * displayed. Some EAP implementasitons may piggy-back additional 867 * options after the NUL. 868 */ 869 /* TODO: could save displayable message so that it can be shown to the 870 * user in case of interaction is required */ 871 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 872 pos, be_to_host16(hdr->length) - 5); 873 } 874 875 876 #ifdef PCSC_FUNCS 877 static int eap_sm_imsi_identity(struct eap_sm *sm, 878 struct eap_peer_config *conf) 879 { 880 int aka = 0; 881 char imsi[100]; 882 size_t imsi_len; 883 struct eap_method_type *m = conf->eap_methods; 884 int i; 885 886 imsi_len = sizeof(imsi); 887 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 888 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 889 return -1; 890 } 891 892 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 893 894 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 895 m[i].method != EAP_TYPE_NONE); i++) { 896 if (m[i].vendor == EAP_VENDOR_IETF && 897 m[i].method == EAP_TYPE_AKA) { 898 aka = 1; 899 break; 900 } 901 } 902 903 os_free(conf->identity); 904 conf->identity = os_malloc(1 + imsi_len); 905 if (conf->identity == NULL) { 906 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 907 "IMSI-based identity"); 908 return -1; 909 } 910 911 conf->identity[0] = aka ? '0' : '1'; 912 os_memcpy(conf->identity + 1, imsi, imsi_len); 913 conf->identity_len = 1 + imsi_len; 914 915 return 0; 916 } 917 #endif /* PCSC_FUNCS */ 918 919 920 static int eap_sm_set_scard_pin(struct eap_sm *sm, 921 struct eap_peer_config *conf) 922 { 923 #ifdef PCSC_FUNCS 924 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 925 /* 926 * Make sure the same PIN is not tried again in order to avoid 927 * blocking SIM. 928 */ 929 os_free(conf->pin); 930 conf->pin = NULL; 931 932 wpa_printf(MSG_WARNING, "PIN validation failed"); 933 eap_sm_request_pin(sm); 934 return -1; 935 } 936 return 0; 937 #else /* PCSC_FUNCS */ 938 return -1; 939 #endif /* PCSC_FUNCS */ 940 } 941 942 static int eap_sm_get_scard_identity(struct eap_sm *sm, 943 struct eap_peer_config *conf) 944 { 945 #ifdef PCSC_FUNCS 946 if (eap_sm_set_scard_pin(sm, conf)) 947 return -1; 948 949 return eap_sm_imsi_identity(sm, conf); 950 #else /* PCSC_FUNCS */ 951 return -1; 952 #endif /* PCSC_FUNCS */ 953 } 954 955 956 /** 957 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 958 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 959 * @id: EAP identifier for the packet 960 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 961 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 962 * failure 963 * 964 * This function allocates and builds an EAP-Identity/Response packet for the 965 * current network. The caller is responsible for freeing the returned data. 966 */ 967 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 968 { 969 struct eap_peer_config *config = eap_get_config(sm); 970 struct wpabuf *resp; 971 const u8 *identity; 972 size_t identity_len; 973 974 if (config == NULL) { 975 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 976 "was not available"); 977 return NULL; 978 } 979 980 if (sm->m && sm->m->get_identity && 981 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 982 &identity_len)) != NULL) { 983 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 984 "identity", identity, identity_len); 985 } else if (!encrypted && config->anonymous_identity) { 986 identity = config->anonymous_identity; 987 identity_len = config->anonymous_identity_len; 988 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 989 identity, identity_len); 990 } else { 991 identity = config->identity; 992 identity_len = config->identity_len; 993 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 994 identity, identity_len); 995 } 996 997 if (identity == NULL) { 998 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 999 "configuration was not available"); 1000 if (config->pcsc) { 1001 if (eap_sm_get_scard_identity(sm, config) < 0) 1002 return NULL; 1003 identity = config->identity; 1004 identity_len = config->identity_len; 1005 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1006 "IMSI", identity, identity_len); 1007 } else { 1008 eap_sm_request_identity(sm); 1009 return NULL; 1010 } 1011 } else if (config->pcsc) { 1012 if (eap_sm_set_scard_pin(sm, config) < 0) 1013 return NULL; 1014 } 1015 1016 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1017 EAP_CODE_RESPONSE, id); 1018 if (resp == NULL) 1019 return NULL; 1020 1021 wpabuf_put_data(resp, identity, identity_len); 1022 1023 return resp; 1024 } 1025 1026 1027 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1028 { 1029 const u8 *pos; 1030 char *msg; 1031 size_t i, msg_len; 1032 1033 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1034 &msg_len); 1035 if (pos == NULL) 1036 return; 1037 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1038 pos, msg_len); 1039 1040 msg = os_malloc(msg_len + 1); 1041 if (msg == NULL) 1042 return; 1043 for (i = 0; i < msg_len; i++) 1044 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1045 msg[msg_len] = '\0'; 1046 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1047 WPA_EVENT_EAP_NOTIFICATION, msg); 1048 os_free(msg); 1049 } 1050 1051 1052 static struct wpabuf * eap_sm_buildNotify(int id) 1053 { 1054 struct wpabuf *resp; 1055 1056 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1057 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1058 EAP_CODE_RESPONSE, id); 1059 if (resp == NULL) 1060 return NULL; 1061 1062 return resp; 1063 } 1064 1065 1066 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1067 { 1068 const struct eap_hdr *hdr; 1069 size_t plen; 1070 const u8 *pos; 1071 1072 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1073 sm->reqId = 0; 1074 sm->reqMethod = EAP_TYPE_NONE; 1075 sm->reqVendor = EAP_VENDOR_IETF; 1076 sm->reqVendorMethod = EAP_TYPE_NONE; 1077 1078 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1079 return; 1080 1081 hdr = wpabuf_head(req); 1082 plen = be_to_host16(hdr->length); 1083 if (plen > wpabuf_len(req)) { 1084 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1085 "(len=%lu plen=%lu)", 1086 (unsigned long) wpabuf_len(req), 1087 (unsigned long) plen); 1088 return; 1089 } 1090 1091 sm->reqId = hdr->identifier; 1092 1093 if (sm->workaround) { 1094 const u8 *addr[1]; 1095 addr[0] = wpabuf_head(req); 1096 md5_vector(1, addr, &plen, sm->req_md5); 1097 } 1098 1099 switch (hdr->code) { 1100 case EAP_CODE_REQUEST: 1101 if (plen < sizeof(*hdr) + 1) { 1102 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1103 "no Type field"); 1104 return; 1105 } 1106 sm->rxReq = TRUE; 1107 pos = (const u8 *) (hdr + 1); 1108 sm->reqMethod = *pos++; 1109 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1110 if (plen < sizeof(*hdr) + 8) { 1111 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1112 "expanded EAP-Packet (plen=%lu)", 1113 (unsigned long) plen); 1114 return; 1115 } 1116 sm->reqVendor = WPA_GET_BE24(pos); 1117 pos += 3; 1118 sm->reqVendorMethod = WPA_GET_BE32(pos); 1119 } 1120 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1121 "method=%u vendor=%u vendorMethod=%u", 1122 sm->reqId, sm->reqMethod, sm->reqVendor, 1123 sm->reqVendorMethod); 1124 break; 1125 case EAP_CODE_RESPONSE: 1126 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1127 /* 1128 * LEAP differs from RFC 4137 by using reversed roles 1129 * for mutual authentication and because of this, we 1130 * need to accept EAP-Response frames if LEAP is used. 1131 */ 1132 if (plen < sizeof(*hdr) + 1) { 1133 wpa_printf(MSG_DEBUG, "EAP: Too short " 1134 "EAP-Response - no Type field"); 1135 return; 1136 } 1137 sm->rxResp = TRUE; 1138 pos = (const u8 *) (hdr + 1); 1139 sm->reqMethod = *pos; 1140 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1141 "LEAP method=%d id=%d", 1142 sm->reqMethod, sm->reqId); 1143 break; 1144 } 1145 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1146 break; 1147 case EAP_CODE_SUCCESS: 1148 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1149 sm->rxSuccess = TRUE; 1150 break; 1151 case EAP_CODE_FAILURE: 1152 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1153 sm->rxFailure = TRUE; 1154 break; 1155 default: 1156 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1157 "code %d", hdr->code); 1158 break; 1159 } 1160 } 1161 1162 1163 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1164 union tls_event_data *data) 1165 { 1166 struct eap_sm *sm = ctx; 1167 char *hash_hex = NULL; 1168 char *cert_hex = NULL; 1169 1170 switch (ev) { 1171 case TLS_CERT_CHAIN_FAILURE: 1172 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1173 "reason=%d depth=%d subject='%s' err='%s'", 1174 data->cert_fail.reason, 1175 data->cert_fail.depth, 1176 data->cert_fail.subject, 1177 data->cert_fail.reason_txt); 1178 break; 1179 case TLS_PEER_CERTIFICATE: 1180 if (data->peer_cert.hash) { 1181 size_t len = data->peer_cert.hash_len * 2 + 1; 1182 hash_hex = os_malloc(len); 1183 if (hash_hex) { 1184 wpa_snprintf_hex(hash_hex, len, 1185 data->peer_cert.hash, 1186 data->peer_cert.hash_len); 1187 } 1188 } 1189 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PEER_CERT 1190 "depth=%d subject='%s'%s%s", 1191 data->peer_cert.depth, data->peer_cert.subject, 1192 hash_hex ? " hash=" : "", hash_hex ? hash_hex : ""); 1193 1194 if (data->peer_cert.cert) { 1195 size_t len = wpabuf_len(data->peer_cert.cert) * 2 + 1; 1196 cert_hex = os_malloc(len); 1197 if (cert_hex == NULL) 1198 break; 1199 wpa_snprintf_hex(cert_hex, len, 1200 wpabuf_head(data->peer_cert.cert), 1201 wpabuf_len(data->peer_cert.cert)); 1202 wpa_msg_ctrl(sm->msg_ctx, MSG_INFO, 1203 WPA_EVENT_EAP_PEER_CERT 1204 "depth=%d subject='%s' cert=%s", 1205 data->peer_cert.depth, 1206 data->peer_cert.subject, 1207 cert_hex); 1208 } 1209 break; 1210 } 1211 1212 os_free(hash_hex); 1213 os_free(cert_hex); 1214 } 1215 1216 1217 /** 1218 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1219 * @eapol_ctx: Context data to be used with eapol_cb calls 1220 * @eapol_cb: Pointer to EAPOL callback functions 1221 * @msg_ctx: Context data for wpa_msg() calls 1222 * @conf: EAP configuration 1223 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1224 * 1225 * This function allocates and initializes an EAP state machine. In addition, 1226 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1227 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1228 * state machine. Consequently, the caller must make sure that this data 1229 * structure remains alive while the EAP state machine is active. 1230 */ 1231 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1232 struct eapol_callbacks *eapol_cb, 1233 void *msg_ctx, struct eap_config *conf) 1234 { 1235 struct eap_sm *sm; 1236 struct tls_config tlsconf; 1237 1238 sm = os_zalloc(sizeof(*sm)); 1239 if (sm == NULL) 1240 return NULL; 1241 sm->eapol_ctx = eapol_ctx; 1242 sm->eapol_cb = eapol_cb; 1243 sm->msg_ctx = msg_ctx; 1244 sm->ClientTimeout = 60; 1245 sm->wps = conf->wps; 1246 1247 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1248 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1249 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1250 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1251 #ifdef CONFIG_FIPS 1252 tlsconf.fips_mode = 1; 1253 #endif /* CONFIG_FIPS */ 1254 tlsconf.event_cb = eap_peer_sm_tls_event; 1255 tlsconf.cb_ctx = sm; 1256 sm->ssl_ctx = tls_init(&tlsconf); 1257 if (sm->ssl_ctx == NULL) { 1258 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1259 "context."); 1260 os_free(sm); 1261 return NULL; 1262 } 1263 1264 return sm; 1265 } 1266 1267 1268 /** 1269 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1270 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1271 * 1272 * This function deinitializes EAP state machine and frees all allocated 1273 * resources. 1274 */ 1275 void eap_peer_sm_deinit(struct eap_sm *sm) 1276 { 1277 if (sm == NULL) 1278 return; 1279 eap_deinit_prev_method(sm, "EAP deinit"); 1280 eap_sm_abort(sm); 1281 tls_deinit(sm->ssl_ctx); 1282 os_free(sm); 1283 } 1284 1285 1286 /** 1287 * eap_peer_sm_step - Step EAP peer state machine 1288 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1289 * Returns: 1 if EAP state was changed or 0 if not 1290 * 1291 * This function advances EAP state machine to a new state to match with the 1292 * current variables. This should be called whenever variables used by the EAP 1293 * state machine have changed. 1294 */ 1295 int eap_peer_sm_step(struct eap_sm *sm) 1296 { 1297 int res = 0; 1298 do { 1299 sm->changed = FALSE; 1300 SM_STEP_RUN(EAP); 1301 if (sm->changed) 1302 res = 1; 1303 } while (sm->changed); 1304 return res; 1305 } 1306 1307 1308 /** 1309 * eap_sm_abort - Abort EAP authentication 1310 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1311 * 1312 * Release system resources that have been allocated for the authentication 1313 * session without fully deinitializing the EAP state machine. 1314 */ 1315 void eap_sm_abort(struct eap_sm *sm) 1316 { 1317 wpabuf_free(sm->lastRespData); 1318 sm->lastRespData = NULL; 1319 wpabuf_free(sm->eapRespData); 1320 sm->eapRespData = NULL; 1321 os_free(sm->eapKeyData); 1322 sm->eapKeyData = NULL; 1323 1324 /* This is not clearly specified in the EAP statemachines draft, but 1325 * it seems necessary to make sure that some of the EAPOL variables get 1326 * cleared for the next authentication. */ 1327 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1328 } 1329 1330 1331 #ifdef CONFIG_CTRL_IFACE 1332 static const char * eap_sm_state_txt(int state) 1333 { 1334 switch (state) { 1335 case EAP_INITIALIZE: 1336 return "INITIALIZE"; 1337 case EAP_DISABLED: 1338 return "DISABLED"; 1339 case EAP_IDLE: 1340 return "IDLE"; 1341 case EAP_RECEIVED: 1342 return "RECEIVED"; 1343 case EAP_GET_METHOD: 1344 return "GET_METHOD"; 1345 case EAP_METHOD: 1346 return "METHOD"; 1347 case EAP_SEND_RESPONSE: 1348 return "SEND_RESPONSE"; 1349 case EAP_DISCARD: 1350 return "DISCARD"; 1351 case EAP_IDENTITY: 1352 return "IDENTITY"; 1353 case EAP_NOTIFICATION: 1354 return "NOTIFICATION"; 1355 case EAP_RETRANSMIT: 1356 return "RETRANSMIT"; 1357 case EAP_SUCCESS: 1358 return "SUCCESS"; 1359 case EAP_FAILURE: 1360 return "FAILURE"; 1361 default: 1362 return "UNKNOWN"; 1363 } 1364 } 1365 #endif /* CONFIG_CTRL_IFACE */ 1366 1367 1368 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1369 static const char * eap_sm_method_state_txt(EapMethodState state) 1370 { 1371 switch (state) { 1372 case METHOD_NONE: 1373 return "NONE"; 1374 case METHOD_INIT: 1375 return "INIT"; 1376 case METHOD_CONT: 1377 return "CONT"; 1378 case METHOD_MAY_CONT: 1379 return "MAY_CONT"; 1380 case METHOD_DONE: 1381 return "DONE"; 1382 default: 1383 return "UNKNOWN"; 1384 } 1385 } 1386 1387 1388 static const char * eap_sm_decision_txt(EapDecision decision) 1389 { 1390 switch (decision) { 1391 case DECISION_FAIL: 1392 return "FAIL"; 1393 case DECISION_COND_SUCC: 1394 return "COND_SUCC"; 1395 case DECISION_UNCOND_SUCC: 1396 return "UNCOND_SUCC"; 1397 default: 1398 return "UNKNOWN"; 1399 } 1400 } 1401 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1402 1403 1404 #ifdef CONFIG_CTRL_IFACE 1405 1406 /** 1407 * eap_sm_get_status - Get EAP state machine status 1408 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1409 * @buf: Buffer for status information 1410 * @buflen: Maximum buffer length 1411 * @verbose: Whether to include verbose status information 1412 * Returns: Number of bytes written to buf. 1413 * 1414 * Query EAP state machine for status information. This function fills in a 1415 * text area with current status information from the EAPOL state machine. If 1416 * the buffer (buf) is not large enough, status information will be truncated 1417 * to fit the buffer. 1418 */ 1419 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1420 { 1421 int len, ret; 1422 1423 if (sm == NULL) 1424 return 0; 1425 1426 len = os_snprintf(buf, buflen, 1427 "EAP state=%s\n", 1428 eap_sm_state_txt(sm->EAP_state)); 1429 if (len < 0 || (size_t) len >= buflen) 1430 return 0; 1431 1432 if (sm->selectedMethod != EAP_TYPE_NONE) { 1433 const char *name; 1434 if (sm->m) { 1435 name = sm->m->name; 1436 } else { 1437 const struct eap_method *m = 1438 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1439 sm->selectedMethod); 1440 if (m) 1441 name = m->name; 1442 else 1443 name = "?"; 1444 } 1445 ret = os_snprintf(buf + len, buflen - len, 1446 "selectedMethod=%d (EAP-%s)\n", 1447 sm->selectedMethod, name); 1448 if (ret < 0 || (size_t) ret >= buflen - len) 1449 return len; 1450 len += ret; 1451 1452 if (sm->m && sm->m->get_status) { 1453 len += sm->m->get_status(sm, sm->eap_method_priv, 1454 buf + len, buflen - len, 1455 verbose); 1456 } 1457 } 1458 1459 if (verbose) { 1460 ret = os_snprintf(buf + len, buflen - len, 1461 "reqMethod=%d\n" 1462 "methodState=%s\n" 1463 "decision=%s\n" 1464 "ClientTimeout=%d\n", 1465 sm->reqMethod, 1466 eap_sm_method_state_txt(sm->methodState), 1467 eap_sm_decision_txt(sm->decision), 1468 sm->ClientTimeout); 1469 if (ret < 0 || (size_t) ret >= buflen - len) 1470 return len; 1471 len += ret; 1472 } 1473 1474 return len; 1475 } 1476 #endif /* CONFIG_CTRL_IFACE */ 1477 1478 1479 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1480 typedef enum { 1481 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD, 1482 TYPE_PASSPHRASE 1483 } eap_ctrl_req_type; 1484 1485 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type, 1486 const char *msg, size_t msglen) 1487 { 1488 struct eap_peer_config *config; 1489 char *field, *txt, *tmp; 1490 1491 if (sm == NULL) 1492 return; 1493 config = eap_get_config(sm); 1494 if (config == NULL) 1495 return; 1496 1497 switch (type) { 1498 case TYPE_IDENTITY: 1499 field = "IDENTITY"; 1500 txt = "Identity"; 1501 config->pending_req_identity++; 1502 break; 1503 case TYPE_PASSWORD: 1504 field = "PASSWORD"; 1505 txt = "Password"; 1506 config->pending_req_password++; 1507 break; 1508 case TYPE_NEW_PASSWORD: 1509 field = "NEW_PASSWORD"; 1510 txt = "New Password"; 1511 config->pending_req_new_password++; 1512 break; 1513 case TYPE_PIN: 1514 field = "PIN"; 1515 txt = "PIN"; 1516 config->pending_req_pin++; 1517 break; 1518 case TYPE_OTP: 1519 field = "OTP"; 1520 if (msg) { 1521 tmp = os_malloc(msglen + 3); 1522 if (tmp == NULL) 1523 return; 1524 tmp[0] = '['; 1525 os_memcpy(tmp + 1, msg, msglen); 1526 tmp[msglen + 1] = ']'; 1527 tmp[msglen + 2] = '\0'; 1528 txt = tmp; 1529 os_free(config->pending_req_otp); 1530 config->pending_req_otp = tmp; 1531 config->pending_req_otp_len = msglen + 3; 1532 } else { 1533 if (config->pending_req_otp == NULL) 1534 return; 1535 txt = config->pending_req_otp; 1536 } 1537 break; 1538 case TYPE_PASSPHRASE: 1539 field = "PASSPHRASE"; 1540 txt = "Private key passphrase"; 1541 config->pending_req_passphrase++; 1542 break; 1543 default: 1544 return; 1545 } 1546 1547 if (sm->eapol_cb->eap_param_needed) 1548 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1549 } 1550 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1551 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1552 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1553 1554 1555 /** 1556 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1557 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1558 * 1559 * EAP methods can call this function to request identity information for the 1560 * current network. This is normally called when the identity is not included 1561 * in the network configuration. The request will be sent to monitor programs 1562 * through the control interface. 1563 */ 1564 void eap_sm_request_identity(struct eap_sm *sm) 1565 { 1566 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0); 1567 } 1568 1569 1570 /** 1571 * eap_sm_request_password - Request password from user (ctrl_iface) 1572 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1573 * 1574 * EAP methods can call this function to request password information for the 1575 * current network. This is normally called when the password is not included 1576 * in the network configuration. The request will be sent to monitor programs 1577 * through the control interface. 1578 */ 1579 void eap_sm_request_password(struct eap_sm *sm) 1580 { 1581 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0); 1582 } 1583 1584 1585 /** 1586 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1587 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1588 * 1589 * EAP methods can call this function to request new password information for 1590 * the current network. This is normally called when the EAP method indicates 1591 * that the current password has expired and password change is required. The 1592 * request will be sent to monitor programs through the control interface. 1593 */ 1594 void eap_sm_request_new_password(struct eap_sm *sm) 1595 { 1596 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0); 1597 } 1598 1599 1600 /** 1601 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1602 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1603 * 1604 * EAP methods can call this function to request SIM or smart card PIN 1605 * information for the current network. This is normally called when the PIN is 1606 * not included in the network configuration. The request will be sent to 1607 * monitor programs through the control interface. 1608 */ 1609 void eap_sm_request_pin(struct eap_sm *sm) 1610 { 1611 eap_sm_request(sm, TYPE_PIN, NULL, 0); 1612 } 1613 1614 1615 /** 1616 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1617 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1618 * @msg: Message to be displayed to the user when asking for OTP 1619 * @msg_len: Length of the user displayable message 1620 * 1621 * EAP methods can call this function to request open time password (OTP) for 1622 * the current network. The request will be sent to monitor programs through 1623 * the control interface. 1624 */ 1625 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1626 { 1627 eap_sm_request(sm, TYPE_OTP, msg, msg_len); 1628 } 1629 1630 1631 /** 1632 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1633 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1634 * 1635 * EAP methods can call this function to request passphrase for a private key 1636 * for the current network. This is normally called when the passphrase is not 1637 * included in the network configuration. The request will be sent to monitor 1638 * programs through the control interface. 1639 */ 1640 void eap_sm_request_passphrase(struct eap_sm *sm) 1641 { 1642 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0); 1643 } 1644 1645 1646 /** 1647 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1648 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1649 * 1650 * Notify EAP state machines that a monitor was attached to the control 1651 * interface to trigger re-sending of pending requests for user input. 1652 */ 1653 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1654 { 1655 struct eap_peer_config *config = eap_get_config(sm); 1656 1657 if (config == NULL) 1658 return; 1659 1660 /* Re-send any pending requests for user data since a new control 1661 * interface was added. This handles cases where the EAP authentication 1662 * starts immediately after system startup when the user interface is 1663 * not yet running. */ 1664 if (config->pending_req_identity) 1665 eap_sm_request_identity(sm); 1666 if (config->pending_req_password) 1667 eap_sm_request_password(sm); 1668 if (config->pending_req_new_password) 1669 eap_sm_request_new_password(sm); 1670 if (config->pending_req_otp) 1671 eap_sm_request_otp(sm, NULL, 0); 1672 if (config->pending_req_pin) 1673 eap_sm_request_pin(sm); 1674 if (config->pending_req_passphrase) 1675 eap_sm_request_passphrase(sm); 1676 } 1677 1678 1679 static int eap_allowed_phase2_type(int vendor, int type) 1680 { 1681 if (vendor != EAP_VENDOR_IETF) 1682 return 0; 1683 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1684 type != EAP_TYPE_FAST; 1685 } 1686 1687 1688 /** 1689 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1690 * @name: EAP method name, e.g., MD5 1691 * @vendor: Buffer for returning EAP Vendor-Id 1692 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1693 * 1694 * This function maps EAP type names into EAP type numbers that are allowed for 1695 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1696 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1697 */ 1698 u32 eap_get_phase2_type(const char *name, int *vendor) 1699 { 1700 int v; 1701 u8 type = eap_peer_get_type(name, &v); 1702 if (eap_allowed_phase2_type(v, type)) { 1703 *vendor = v; 1704 return type; 1705 } 1706 *vendor = EAP_VENDOR_IETF; 1707 return EAP_TYPE_NONE; 1708 } 1709 1710 1711 /** 1712 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1713 * @config: Pointer to a network configuration 1714 * @count: Pointer to a variable to be filled with number of returned EAP types 1715 * Returns: Pointer to allocated type list or %NULL on failure 1716 * 1717 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1718 * the given network configuration. 1719 */ 1720 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1721 size_t *count) 1722 { 1723 struct eap_method_type *buf; 1724 u32 method; 1725 int vendor; 1726 size_t mcount; 1727 const struct eap_method *methods, *m; 1728 1729 methods = eap_peer_get_methods(&mcount); 1730 if (methods == NULL) 1731 return NULL; 1732 *count = 0; 1733 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1734 if (buf == NULL) 1735 return NULL; 1736 1737 for (m = methods; m; m = m->next) { 1738 vendor = m->vendor; 1739 method = m->method; 1740 if (eap_allowed_phase2_type(vendor, method)) { 1741 if (vendor == EAP_VENDOR_IETF && 1742 method == EAP_TYPE_TLS && config && 1743 config->private_key2 == NULL) 1744 continue; 1745 buf[*count].vendor = vendor; 1746 buf[*count].method = method; 1747 (*count)++; 1748 } 1749 } 1750 1751 return buf; 1752 } 1753 1754 1755 /** 1756 * eap_set_fast_reauth - Update fast_reauth setting 1757 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1758 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1759 */ 1760 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1761 { 1762 sm->fast_reauth = enabled; 1763 } 1764 1765 1766 /** 1767 * eap_set_workaround - Update EAP workarounds setting 1768 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1769 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1770 */ 1771 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1772 { 1773 sm->workaround = workaround; 1774 } 1775 1776 1777 /** 1778 * eap_get_config - Get current network configuration 1779 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1780 * Returns: Pointer to the current network configuration or %NULL if not found 1781 * 1782 * EAP peer methods should avoid using this function if they can use other 1783 * access functions, like eap_get_config_identity() and 1784 * eap_get_config_password(), that do not require direct access to 1785 * struct eap_peer_config. 1786 */ 1787 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1788 { 1789 return sm->eapol_cb->get_config(sm->eapol_ctx); 1790 } 1791 1792 1793 /** 1794 * eap_get_config_identity - Get identity from the network configuration 1795 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1796 * @len: Buffer for the length of the identity 1797 * Returns: Pointer to the identity or %NULL if not found 1798 */ 1799 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1800 { 1801 struct eap_peer_config *config = eap_get_config(sm); 1802 if (config == NULL) 1803 return NULL; 1804 *len = config->identity_len; 1805 return config->identity; 1806 } 1807 1808 1809 /** 1810 * eap_get_config_password - Get password from the network configuration 1811 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1812 * @len: Buffer for the length of the password 1813 * Returns: Pointer to the password or %NULL if not found 1814 */ 1815 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1816 { 1817 struct eap_peer_config *config = eap_get_config(sm); 1818 if (config == NULL) 1819 return NULL; 1820 *len = config->password_len; 1821 return config->password; 1822 } 1823 1824 1825 /** 1826 * eap_get_config_password2 - Get password from the network configuration 1827 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1828 * @len: Buffer for the length of the password 1829 * @hash: Buffer for returning whether the password is stored as a 1830 * NtPasswordHash instead of plaintext password; can be %NULL if this 1831 * information is not needed 1832 * Returns: Pointer to the password or %NULL if not found 1833 */ 1834 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1835 { 1836 struct eap_peer_config *config = eap_get_config(sm); 1837 if (config == NULL) 1838 return NULL; 1839 *len = config->password_len; 1840 if (hash) 1841 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1842 return config->password; 1843 } 1844 1845 1846 /** 1847 * eap_get_config_new_password - Get new password from network configuration 1848 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1849 * @len: Buffer for the length of the new password 1850 * Returns: Pointer to the new password or %NULL if not found 1851 */ 1852 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1853 { 1854 struct eap_peer_config *config = eap_get_config(sm); 1855 if (config == NULL) 1856 return NULL; 1857 *len = config->new_password_len; 1858 return config->new_password; 1859 } 1860 1861 1862 /** 1863 * eap_get_config_otp - Get one-time password from the network configuration 1864 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1865 * @len: Buffer for the length of the one-time password 1866 * Returns: Pointer to the one-time password or %NULL if not found 1867 */ 1868 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1869 { 1870 struct eap_peer_config *config = eap_get_config(sm); 1871 if (config == NULL) 1872 return NULL; 1873 *len = config->otp_len; 1874 return config->otp; 1875 } 1876 1877 1878 /** 1879 * eap_clear_config_otp - Clear used one-time password 1880 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1881 * 1882 * This function clears a used one-time password (OTP) from the current network 1883 * configuration. This should be called when the OTP has been used and is not 1884 * needed anymore. 1885 */ 1886 void eap_clear_config_otp(struct eap_sm *sm) 1887 { 1888 struct eap_peer_config *config = eap_get_config(sm); 1889 if (config == NULL) 1890 return; 1891 os_memset(config->otp, 0, config->otp_len); 1892 os_free(config->otp); 1893 config->otp = NULL; 1894 config->otp_len = 0; 1895 } 1896 1897 1898 /** 1899 * eap_get_config_phase1 - Get phase1 data from the network configuration 1900 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1901 * Returns: Pointer to the phase1 data or %NULL if not found 1902 */ 1903 const char * eap_get_config_phase1(struct eap_sm *sm) 1904 { 1905 struct eap_peer_config *config = eap_get_config(sm); 1906 if (config == NULL) 1907 return NULL; 1908 return config->phase1; 1909 } 1910 1911 1912 /** 1913 * eap_get_config_phase2 - Get phase2 data from the network configuration 1914 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1915 * Returns: Pointer to the phase1 data or %NULL if not found 1916 */ 1917 const char * eap_get_config_phase2(struct eap_sm *sm) 1918 { 1919 struct eap_peer_config *config = eap_get_config(sm); 1920 if (config == NULL) 1921 return NULL; 1922 return config->phase2; 1923 } 1924 1925 1926 /** 1927 * eap_key_available - Get key availability (eapKeyAvailable variable) 1928 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1929 * Returns: 1 if EAP keying material is available, 0 if not 1930 */ 1931 int eap_key_available(struct eap_sm *sm) 1932 { 1933 return sm ? sm->eapKeyAvailable : 0; 1934 } 1935 1936 1937 /** 1938 * eap_notify_success - Notify EAP state machine about external success trigger 1939 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1940 * 1941 * This function is called when external event, e.g., successful completion of 1942 * WPA-PSK key handshake, is indicating that EAP state machine should move to 1943 * success state. This is mainly used with security modes that do not use EAP 1944 * state machine (e.g., WPA-PSK). 1945 */ 1946 void eap_notify_success(struct eap_sm *sm) 1947 { 1948 if (sm) { 1949 sm->decision = DECISION_COND_SUCC; 1950 sm->EAP_state = EAP_SUCCESS; 1951 } 1952 } 1953 1954 1955 /** 1956 * eap_notify_lower_layer_success - Notification of lower layer success 1957 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1958 * 1959 * Notify EAP state machines that a lower layer has detected a successful 1960 * authentication. This is used to recover from dropped EAP-Success messages. 1961 */ 1962 void eap_notify_lower_layer_success(struct eap_sm *sm) 1963 { 1964 if (sm == NULL) 1965 return; 1966 1967 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 1968 sm->decision == DECISION_FAIL || 1969 (sm->methodState != METHOD_MAY_CONT && 1970 sm->methodState != METHOD_DONE)) 1971 return; 1972 1973 if (sm->eapKeyData != NULL) 1974 sm->eapKeyAvailable = TRUE; 1975 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 1976 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 1977 "EAP authentication completed successfully (based on lower " 1978 "layer success)"); 1979 } 1980 1981 1982 /** 1983 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 1984 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1985 * @len: Pointer to variable that will be set to number of bytes in the key 1986 * Returns: Pointer to the EAP keying data or %NULL on failure 1987 * 1988 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 1989 * key is available only after a successful authentication. EAP state machine 1990 * continues to manage the key data and the caller must not change or free the 1991 * returned data. 1992 */ 1993 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 1994 { 1995 if (sm == NULL || sm->eapKeyData == NULL) { 1996 *len = 0; 1997 return NULL; 1998 } 1999 2000 *len = sm->eapKeyDataLen; 2001 return sm->eapKeyData; 2002 } 2003 2004 2005 /** 2006 * eap_get_eapKeyData - Get EAP response data 2007 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2008 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2009 * 2010 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2011 * available when EAP state machine has processed an incoming EAP request. The 2012 * EAP state machine does not maintain a reference to the response after this 2013 * function is called and the caller is responsible for freeing the data. 2014 */ 2015 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2016 { 2017 struct wpabuf *resp; 2018 2019 if (sm == NULL || sm->eapRespData == NULL) 2020 return NULL; 2021 2022 resp = sm->eapRespData; 2023 sm->eapRespData = NULL; 2024 2025 return resp; 2026 } 2027 2028 2029 /** 2030 * eap_sm_register_scard_ctx - Notification of smart card context 2031 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2032 * @ctx: Context data for smart card operations 2033 * 2034 * Notify EAP state machines of context data for smart card operations. This 2035 * context data will be used as a parameter for scard_*() functions. 2036 */ 2037 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2038 { 2039 if (sm) 2040 sm->scard_ctx = ctx; 2041 } 2042 2043 2044 /** 2045 * eap_set_config_blob - Set or add a named configuration blob 2046 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2047 * @blob: New value for the blob 2048 * 2049 * Adds a new configuration blob or replaces the current value of an existing 2050 * blob. 2051 */ 2052 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2053 { 2054 #ifndef CONFIG_NO_CONFIG_BLOBS 2055 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2056 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2057 } 2058 2059 2060 /** 2061 * eap_get_config_blob - Get a named configuration blob 2062 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2063 * @name: Name of the blob 2064 * Returns: Pointer to blob data or %NULL if not found 2065 */ 2066 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2067 const char *name) 2068 { 2069 #ifndef CONFIG_NO_CONFIG_BLOBS 2070 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2071 #else /* CONFIG_NO_CONFIG_BLOBS */ 2072 return NULL; 2073 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2074 } 2075 2076 2077 /** 2078 * eap_set_force_disabled - Set force_disabled flag 2079 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2080 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2081 * 2082 * This function is used to force EAP state machine to be disabled when it is 2083 * not in use (e.g., with WPA-PSK or plaintext connections). 2084 */ 2085 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2086 { 2087 sm->force_disabled = disabled; 2088 } 2089 2090 2091 /** 2092 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2093 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2094 * 2095 * An EAP method can perform a pending operation (e.g., to get a response from 2096 * an external process). Once the response is available, this function can be 2097 * used to request EAPOL state machine to retry delivering the previously 2098 * received (and still unanswered) EAP request to EAP state machine. 2099 */ 2100 void eap_notify_pending(struct eap_sm *sm) 2101 { 2102 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2103 } 2104 2105 2106 /** 2107 * eap_invalidate_cached_session - Mark cached session data invalid 2108 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2109 */ 2110 void eap_invalidate_cached_session(struct eap_sm *sm) 2111 { 2112 if (sm) 2113 eap_deinit_prev_method(sm, "invalidate"); 2114 } 2115 2116 2117 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2118 { 2119 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2120 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2121 return 0; /* Not a WPS Enrollee */ 2122 2123 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2124 return 0; /* Not using PBC */ 2125 2126 return 1; 2127 } 2128 2129 2130 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2131 { 2132 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2133 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2134 return 0; /* Not a WPS Enrollee */ 2135 2136 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2137 return 0; /* Not using PIN */ 2138 2139 return 1; 2140 } 2141