xref: /freebsd/contrib/wpa/src/crypto/sha1-tlsprf.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*
2  * TLS PRF (SHA1 + MD5)
3  * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common.h"
12 #include "sha1.h"
13 #include "md5.h"
14 
15 
16 /**
17  * tls_prf_sha1_md5 - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
18  * @secret: Key for PRF
19  * @secret_len: Length of the key in bytes
20  * @label: A unique label for each purpose of the PRF
21  * @seed: Seed value to bind into the key
22  * @seed_len: Length of the seed
23  * @out: Buffer for the generated pseudo-random key
24  * @outlen: Number of bytes of key to generate
25  * Returns: 0 on success, -1 on failure.
26  *
27  * This function is used to derive new, cryptographically separate keys from a
28  * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
29  */
30 int tls_prf_sha1_md5(const u8 *secret, size_t secret_len, const char *label,
31 		     const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
32 {
33 	size_t L_S1, L_S2, i;
34 	const u8 *S1, *S2;
35 	u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
36 	u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
37 	int MD5_pos, SHA1_pos;
38 	const u8 *MD5_addr[3];
39 	size_t MD5_len[3];
40 	const unsigned char *SHA1_addr[3];
41 	size_t SHA1_len[3];
42 
43 	if (secret_len & 1)
44 		return -1;
45 
46 	MD5_addr[0] = A_MD5;
47 	MD5_len[0] = MD5_MAC_LEN;
48 	MD5_addr[1] = (unsigned char *) label;
49 	MD5_len[1] = os_strlen(label);
50 	MD5_addr[2] = seed;
51 	MD5_len[2] = seed_len;
52 
53 	SHA1_addr[0] = A_SHA1;
54 	SHA1_len[0] = SHA1_MAC_LEN;
55 	SHA1_addr[1] = (unsigned char *) label;
56 	SHA1_len[1] = os_strlen(label);
57 	SHA1_addr[2] = seed;
58 	SHA1_len[2] = seed_len;
59 
60 	/* RFC 2246, Chapter 5
61 	 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
62 	 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
63 	 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
64 	 */
65 
66 	L_S1 = L_S2 = (secret_len + 1) / 2;
67 	S1 = secret;
68 	S2 = secret + L_S1;
69 	if (secret_len & 1) {
70 		/* The last byte of S1 will be shared with S2 */
71 		S2--;
72 	}
73 
74 	hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
75 	hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
76 
77 	MD5_pos = MD5_MAC_LEN;
78 	SHA1_pos = SHA1_MAC_LEN;
79 	for (i = 0; i < outlen; i++) {
80 		if (MD5_pos == MD5_MAC_LEN) {
81 			hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
82 			MD5_pos = 0;
83 			hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
84 		}
85 		if (SHA1_pos == SHA1_MAC_LEN) {
86 			hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
87 					 P_SHA1);
88 			SHA1_pos = 0;
89 			hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
90 		}
91 
92 		out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
93 
94 		MD5_pos++;
95 		SHA1_pos++;
96 	}
97 
98 	os_memset(A_MD5, 0, MD5_MAC_LEN);
99 	os_memset(P_MD5, 0, MD5_MAC_LEN);
100 	os_memset(A_SHA1, 0, SHA1_MAC_LEN);
101 	os_memset(P_SHA1, 0, SHA1_MAC_LEN);
102 
103 	return 0;
104 }
105