xref: /freebsd/contrib/wpa/src/crypto/milenage.c (revision b1f92fa22938fe29ab7e53692ffe0ed7a0ecc4d0)
1 /*
2  * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
3  * Copyright (c) 2006-2007 <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements an example authentication algorithm defined for 3GPP
9  * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
10  * EAP-AKA to be tested properly with real USIM cards.
11  *
12  * This implementations assumes that the r1..r5 and c1..c5 constants defined in
13  * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
14  * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
15  * be AES (Rijndael).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "crypto/aes_wrap.h"
22 #include "milenage.h"
23 
24 
25 /**
26  * milenage_f1 - Milenage f1 and f1* algorithms
27  * @opc: OPc = 128-bit value derived from OP and K
28  * @k: K = 128-bit subscriber key
29  * @_rand: RAND = 128-bit random challenge
30  * @sqn: SQN = 48-bit sequence number
31  * @amf: AMF = 16-bit authentication management field
32  * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
33  * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
34  * Returns: 0 on success, -1 on failure
35  */
36 int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
37 		const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
38 {
39 	u8 tmp1[16], tmp2[16], tmp3[16];
40 	int i;
41 
42 	/* tmp1 = TEMP = E_K(RAND XOR OP_C) */
43 	for (i = 0; i < 16; i++)
44 		tmp1[i] = _rand[i] ^ opc[i];
45 	if (aes_128_encrypt_block(k, tmp1, tmp1))
46 		return -1;
47 
48 	/* tmp2 = IN1 = SQN || AMF || SQN || AMF */
49 	os_memcpy(tmp2, sqn, 6);
50 	os_memcpy(tmp2 + 6, amf, 2);
51 	os_memcpy(tmp2 + 8, tmp2, 8);
52 
53 	/* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
54 
55 	/* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
56 	for (i = 0; i < 16; i++)
57 		tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
58 	/* XOR with TEMP = E_K(RAND XOR OP_C) */
59 	for (i = 0; i < 16; i++)
60 		tmp3[i] ^= tmp1[i];
61 	/* XOR with c1 (= ..00, i.e., NOP) */
62 
63 	/* f1 || f1* = E_K(tmp3) XOR OP_c */
64 	if (aes_128_encrypt_block(k, tmp3, tmp1))
65 		return -1;
66 	for (i = 0; i < 16; i++)
67 		tmp1[i] ^= opc[i];
68 	if (mac_a)
69 		os_memcpy(mac_a, tmp1, 8); /* f1 */
70 	if (mac_s)
71 		os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
72 	return 0;
73 }
74 
75 
76 /**
77  * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
78  * @opc: OPc = 128-bit value derived from OP and K
79  * @k: K = 128-bit subscriber key
80  * @_rand: RAND = 128-bit random challenge
81  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
82  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
83  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
84  * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
85  * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
86  * Returns: 0 on success, -1 on failure
87  */
88 int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
89 		   u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
90 {
91 	u8 tmp1[16], tmp2[16], tmp3[16];
92 	int i;
93 
94 	/* tmp2 = TEMP = E_K(RAND XOR OP_C) */
95 	for (i = 0; i < 16; i++)
96 		tmp1[i] = _rand[i] ^ opc[i];
97 	if (aes_128_encrypt_block(k, tmp1, tmp2))
98 		return -1;
99 
100 	/* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
101 	/* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
102 	/* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
103 	/* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
104 
105 	/* f2 and f5 */
106 	/* rotate by r2 (= 0, i.e., NOP) */
107 	for (i = 0; i < 16; i++)
108 		tmp1[i] = tmp2[i] ^ opc[i];
109 	tmp1[15] ^= 1; /* XOR c2 (= ..01) */
110 	/* f5 || f2 = E_K(tmp1) XOR OP_c */
111 	if (aes_128_encrypt_block(k, tmp1, tmp3))
112 		return -1;
113 	for (i = 0; i < 16; i++)
114 		tmp3[i] ^= opc[i];
115 	if (res)
116 		os_memcpy(res, tmp3 + 8, 8); /* f2 */
117 	if (ak)
118 		os_memcpy(ak, tmp3, 6); /* f5 */
119 
120 	/* f3 */
121 	if (ck) {
122 		/* rotate by r3 = 0x20 = 4 bytes */
123 		for (i = 0; i < 16; i++)
124 			tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
125 		tmp1[15] ^= 2; /* XOR c3 (= ..02) */
126 		if (aes_128_encrypt_block(k, tmp1, ck))
127 			return -1;
128 		for (i = 0; i < 16; i++)
129 			ck[i] ^= opc[i];
130 	}
131 
132 	/* f4 */
133 	if (ik) {
134 		/* rotate by r4 = 0x40 = 8 bytes */
135 		for (i = 0; i < 16; i++)
136 			tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
137 		tmp1[15] ^= 4; /* XOR c4 (= ..04) */
138 		if (aes_128_encrypt_block(k, tmp1, ik))
139 			return -1;
140 		for (i = 0; i < 16; i++)
141 			ik[i] ^= opc[i];
142 	}
143 
144 	/* f5* */
145 	if (akstar) {
146 		/* rotate by r5 = 0x60 = 12 bytes */
147 		for (i = 0; i < 16; i++)
148 			tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
149 		tmp1[15] ^= 8; /* XOR c5 (= ..08) */
150 		if (aes_128_encrypt_block(k, tmp1, tmp1))
151 			return -1;
152 		for (i = 0; i < 6; i++)
153 			akstar[i] = tmp1[i] ^ opc[i];
154 	}
155 
156 	return 0;
157 }
158 
159 
160 /**
161  * milenage_generate - Generate AKA AUTN,IK,CK,RES
162  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
163  * @amf: AMF = 16-bit authentication management field
164  * @k: K = 128-bit subscriber key
165  * @sqn: SQN = 48-bit sequence number
166  * @_rand: RAND = 128-bit random challenge
167  * @autn: Buffer for AUTN = 128-bit authentication token
168  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
169  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
170  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
171  * @res_len: Max length for res; set to used length or 0 on failure
172  */
173 void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
174 		       const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
175 		       u8 *ck, u8 *res, size_t *res_len)
176 {
177 	int i;
178 	u8 mac_a[8], ak[6];
179 
180 	if (*res_len < 8) {
181 		*res_len = 0;
182 		return;
183 	}
184 	if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
185 	    milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
186 		*res_len = 0;
187 		return;
188 	}
189 	*res_len = 8;
190 
191 	/* AUTN = (SQN ^ AK) || AMF || MAC */
192 	for (i = 0; i < 6; i++)
193 		autn[i] = sqn[i] ^ ak[i];
194 	os_memcpy(autn + 6, amf, 2);
195 	os_memcpy(autn + 8, mac_a, 8);
196 }
197 
198 
199 /**
200  * milenage_auts - Milenage AUTS validation
201  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
202  * @k: K = 128-bit subscriber key
203  * @_rand: RAND = 128-bit random challenge
204  * @auts: AUTS = 112-bit authentication token from client
205  * @sqn: Buffer for SQN = 48-bit sequence number
206  * Returns: 0 = success (sqn filled), -1 on failure
207  */
208 int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
209 		  u8 *sqn)
210 {
211 	u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
212 	u8 ak[6], mac_s[8];
213 	int i;
214 
215 	if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
216 		return -1;
217 	for (i = 0; i < 6; i++)
218 		sqn[i] = auts[i] ^ ak[i];
219 	if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
220 	    os_memcmp_const(mac_s, auts + 6, 8) != 0)
221 		return -1;
222 	return 0;
223 }
224 
225 
226 /**
227  * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
228  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
229  * @k: K = 128-bit subscriber key
230  * @_rand: RAND = 128-bit random challenge
231  * @sres: Buffer for SRES = 32-bit SRES
232  * @kc: Buffer for Kc = 64-bit Kc
233  * Returns: 0 on success, -1 on failure
234  */
235 int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
236 {
237 	u8 res[8], ck[16], ik[16];
238 	int i;
239 
240 	if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
241 		return -1;
242 
243 	for (i = 0; i < 8; i++)
244 		kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
245 
246 #ifdef GSM_MILENAGE_ALT_SRES
247 	os_memcpy(sres, res, 4);
248 #else /* GSM_MILENAGE_ALT_SRES */
249 	for (i = 0; i < 4; i++)
250 		sres[i] = res[i] ^ res[i + 4];
251 #endif /* GSM_MILENAGE_ALT_SRES */
252 	return 0;
253 }
254 
255 
256 /**
257  * milenage_generate - Generate AKA AUTN,IK,CK,RES
258  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
259  * @k: K = 128-bit subscriber key
260  * @sqn: SQN = 48-bit sequence number
261  * @_rand: RAND = 128-bit random challenge
262  * @autn: AUTN = 128-bit authentication token
263  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
264  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
265  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
266  * @res_len: Variable that will be set to RES length
267  * @auts: 112-bit buffer for AUTS
268  * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
269  */
270 int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
271 		   const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
272 		   u8 *auts)
273 {
274 	int i;
275 	u8 mac_a[8], ak[6], rx_sqn[6];
276 	const u8 *amf;
277 
278 	wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
279 	wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
280 
281 	if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
282 		return -1;
283 
284 	*res_len = 8;
285 	wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
286 	wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
287 	wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
288 	wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
289 
290 	/* AUTN = (SQN ^ AK) || AMF || MAC */
291 	for (i = 0; i < 6; i++)
292 		rx_sqn[i] = autn[i] ^ ak[i];
293 	wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
294 
295 	if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
296 		u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
297 		if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
298 			return -1;
299 		wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
300 		for (i = 0; i < 6; i++)
301 			auts[i] = sqn[i] ^ ak[i];
302 		if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
303 			return -1;
304 		wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
305 		return -2;
306 	}
307 
308 	amf = autn + 6;
309 	wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
310 	if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
311 		return -1;
312 
313 	wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
314 
315 	if (os_memcmp_const(mac_a, autn + 8, 8) != 0) {
316 		wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
317 		wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
318 			    autn + 8, 8);
319 		return -1;
320 	}
321 
322 	return 0;
323 }
324