1 /* 2 * MD5 hash implementation and interface functions 3 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 */ 14 15 #include "includes.h" 16 17 #include "common.h" 18 #include "md5.h" 19 #include "md5_i.h" 20 #include "crypto.h" 21 22 23 static void MD5Transform(u32 buf[4], u32 const in[16]); 24 25 26 typedef struct MD5Context MD5_CTX; 27 28 29 /** 30 * md5_vector - MD5 hash for data vector 31 * @num_elem: Number of elements in the data vector 32 * @addr: Pointers to the data areas 33 * @len: Lengths of the data blocks 34 * @mac: Buffer for the hash 35 * Returns: 0 on success, -1 of failure 36 */ 37 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 38 { 39 MD5_CTX ctx; 40 size_t i; 41 42 MD5Init(&ctx); 43 for (i = 0; i < num_elem; i++) 44 MD5Update(&ctx, addr[i], len[i]); 45 MD5Final(mac, &ctx); 46 return 0; 47 } 48 49 50 /* ===== start - public domain MD5 implementation ===== */ 51 /* 52 * This code implements the MD5 message-digest algorithm. 53 * The algorithm is due to Ron Rivest. This code was 54 * written by Colin Plumb in 1993, no copyright is claimed. 55 * This code is in the public domain; do with it what you wish. 56 * 57 * Equivalent code is available from RSA Data Security, Inc. 58 * This code has been tested against that, and is equivalent, 59 * except that you don't need to include two pages of legalese 60 * with every copy. 61 * 62 * To compute the message digest of a chunk of bytes, declare an 63 * MD5Context structure, pass it to MD5Init, call MD5Update as 64 * needed on buffers full of bytes, and then call MD5Final, which 65 * will fill a supplied 16-byte array with the digest. 66 */ 67 68 #ifndef WORDS_BIGENDIAN 69 #define byteReverse(buf, len) /* Nothing */ 70 #else 71 /* 72 * Note: this code is harmless on little-endian machines. 73 */ 74 static void byteReverse(unsigned char *buf, unsigned longs) 75 { 76 u32 t; 77 do { 78 t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 79 ((unsigned) buf[1] << 8 | buf[0]); 80 *(u32 *) buf = t; 81 buf += 4; 82 } while (--longs); 83 } 84 #endif 85 86 /* 87 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 88 * initialization constants. 89 */ 90 void MD5Init(struct MD5Context *ctx) 91 { 92 ctx->buf[0] = 0x67452301; 93 ctx->buf[1] = 0xefcdab89; 94 ctx->buf[2] = 0x98badcfe; 95 ctx->buf[3] = 0x10325476; 96 97 ctx->bits[0] = 0; 98 ctx->bits[1] = 0; 99 } 100 101 /* 102 * Update context to reflect the concatenation of another buffer full 103 * of bytes. 104 */ 105 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) 106 { 107 u32 t; 108 109 /* Update bitcount */ 110 111 t = ctx->bits[0]; 112 if ((ctx->bits[0] = t + ((u32) len << 3)) < t) 113 ctx->bits[1]++; /* Carry from low to high */ 114 ctx->bits[1] += len >> 29; 115 116 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 117 118 /* Handle any leading odd-sized chunks */ 119 120 if (t) { 121 unsigned char *p = (unsigned char *) ctx->in + t; 122 123 t = 64 - t; 124 if (len < t) { 125 os_memcpy(p, buf, len); 126 return; 127 } 128 os_memcpy(p, buf, t); 129 byteReverse(ctx->in, 16); 130 MD5Transform(ctx->buf, (u32 *) ctx->in); 131 buf += t; 132 len -= t; 133 } 134 /* Process data in 64-byte chunks */ 135 136 while (len >= 64) { 137 os_memcpy(ctx->in, buf, 64); 138 byteReverse(ctx->in, 16); 139 MD5Transform(ctx->buf, (u32 *) ctx->in); 140 buf += 64; 141 len -= 64; 142 } 143 144 /* Handle any remaining bytes of data. */ 145 146 os_memcpy(ctx->in, buf, len); 147 } 148 149 /* 150 * Final wrapup - pad to 64-byte boundary with the bit pattern 151 * 1 0* (64-bit count of bits processed, MSB-first) 152 */ 153 void MD5Final(unsigned char digest[16], struct MD5Context *ctx) 154 { 155 unsigned count; 156 unsigned char *p; 157 158 /* Compute number of bytes mod 64 */ 159 count = (ctx->bits[0] >> 3) & 0x3F; 160 161 /* Set the first char of padding to 0x80. This is safe since there is 162 always at least one byte free */ 163 p = ctx->in + count; 164 *p++ = 0x80; 165 166 /* Bytes of padding needed to make 64 bytes */ 167 count = 64 - 1 - count; 168 169 /* Pad out to 56 mod 64 */ 170 if (count < 8) { 171 /* Two lots of padding: Pad the first block to 64 bytes */ 172 os_memset(p, 0, count); 173 byteReverse(ctx->in, 16); 174 MD5Transform(ctx->buf, (u32 *) ctx->in); 175 176 /* Now fill the next block with 56 bytes */ 177 os_memset(ctx->in, 0, 56); 178 } else { 179 /* Pad block to 56 bytes */ 180 os_memset(p, 0, count - 8); 181 } 182 byteReverse(ctx->in, 14); 183 184 /* Append length in bits and transform */ 185 ((u32 *) ctx->in)[14] = ctx->bits[0]; 186 ((u32 *) ctx->in)[15] = ctx->bits[1]; 187 188 MD5Transform(ctx->buf, (u32 *) ctx->in); 189 byteReverse((unsigned char *) ctx->buf, 4); 190 os_memcpy(digest, ctx->buf, 16); 191 os_memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ 192 } 193 194 /* The four core functions - F1 is optimized somewhat */ 195 196 /* #define F1(x, y, z) (x & y | ~x & z) */ 197 #define F1(x, y, z) (z ^ (x & (y ^ z))) 198 #define F2(x, y, z) F1(z, x, y) 199 #define F3(x, y, z) (x ^ y ^ z) 200 #define F4(x, y, z) (y ^ (x | ~z)) 201 202 /* This is the central step in the MD5 algorithm. */ 203 #define MD5STEP(f, w, x, y, z, data, s) \ 204 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 205 206 /* 207 * The core of the MD5 algorithm, this alters an existing MD5 hash to 208 * reflect the addition of 16 longwords of new data. MD5Update blocks 209 * the data and converts bytes into longwords for this routine. 210 */ 211 static void MD5Transform(u32 buf[4], u32 const in[16]) 212 { 213 register u32 a, b, c, d; 214 215 a = buf[0]; 216 b = buf[1]; 217 c = buf[2]; 218 d = buf[3]; 219 220 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 221 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 222 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 223 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 224 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 225 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 226 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 227 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 228 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 229 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 230 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 231 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 232 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 233 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 234 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 235 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 236 237 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 238 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 239 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 240 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 241 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 242 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 243 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 244 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 245 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 246 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 247 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 248 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 249 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 250 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 251 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 252 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 253 254 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 255 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 256 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 257 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 258 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 259 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 260 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 261 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 262 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 263 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 264 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 265 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 266 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 267 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 268 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 269 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 270 271 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 272 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 273 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 274 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 275 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 276 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 277 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 278 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 279 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 280 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 281 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 282 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 283 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 284 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 285 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 286 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 287 288 buf[0] += a; 289 buf[1] += b; 290 buf[2] += c; 291 buf[3] += d; 292 } 293 /* ===== end - public domain MD5 implementation ===== */ 294