xref: /freebsd/contrib/wpa/src/crypto/md5-internal.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * MD5 hash implementation and interface functions
3  * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common.h"
12 #include "md5.h"
13 #include "md5_i.h"
14 #include "crypto.h"
15 
16 
17 static void MD5Transform(u32 buf[4], u32 const in[16]);
18 
19 
20 typedef struct MD5Context MD5_CTX;
21 
22 
23 /**
24  * md5_vector - MD5 hash for data vector
25  * @num_elem: Number of elements in the data vector
26  * @addr: Pointers to the data areas
27  * @len: Lengths of the data blocks
28  * @mac: Buffer for the hash
29  * Returns: 0 on success, -1 of failure
30  */
31 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
32 {
33 	MD5_CTX ctx;
34 	size_t i;
35 
36 	MD5Init(&ctx);
37 	for (i = 0; i < num_elem; i++)
38 		MD5Update(&ctx, addr[i], len[i]);
39 	MD5Final(mac, &ctx);
40 	return 0;
41 }
42 
43 
44 /* ===== start - public domain MD5 implementation ===== */
45 /*
46  * This code implements the MD5 message-digest algorithm.
47  * The algorithm is due to Ron Rivest.  This code was
48  * written by Colin Plumb in 1993, no copyright is claimed.
49  * This code is in the public domain; do with it what you wish.
50  *
51  * Equivalent code is available from RSA Data Security, Inc.
52  * This code has been tested against that, and is equivalent,
53  * except that you don't need to include two pages of legalese
54  * with every copy.
55  *
56  * To compute the message digest of a chunk of bytes, declare an
57  * MD5Context structure, pass it to MD5Init, call MD5Update as
58  * needed on buffers full of bytes, and then call MD5Final, which
59  * will fill a supplied 16-byte array with the digest.
60  */
61 
62 #ifndef WORDS_BIGENDIAN
63 #define byteReverse(buf, len)	/* Nothing */
64 #else
65 /*
66  * Note: this code is harmless on little-endian machines.
67  */
68 static void byteReverse(unsigned char *buf, unsigned longs)
69 {
70     u32 t;
71     do {
72 	t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
73 	    ((unsigned) buf[1] << 8 | buf[0]);
74 	*(u32 *) buf = t;
75 	buf += 4;
76     } while (--longs);
77 }
78 #endif
79 
80 /*
81  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
82  * initialization constants.
83  */
84 void MD5Init(struct MD5Context *ctx)
85 {
86     ctx->buf[0] = 0x67452301;
87     ctx->buf[1] = 0xefcdab89;
88     ctx->buf[2] = 0x98badcfe;
89     ctx->buf[3] = 0x10325476;
90 
91     ctx->bits[0] = 0;
92     ctx->bits[1] = 0;
93 }
94 
95 /*
96  * Update context to reflect the concatenation of another buffer full
97  * of bytes.
98  */
99 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
100 {
101     u32 t;
102 
103     /* Update bitcount */
104 
105     t = ctx->bits[0];
106     if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
107 	ctx->bits[1]++;		/* Carry from low to high */
108     ctx->bits[1] += len >> 29;
109 
110     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
111 
112     /* Handle any leading odd-sized chunks */
113 
114     if (t) {
115 	unsigned char *p = (unsigned char *) ctx->in + t;
116 
117 	t = 64 - t;
118 	if (len < t) {
119 	    os_memcpy(p, buf, len);
120 	    return;
121 	}
122 	os_memcpy(p, buf, t);
123 	byteReverse(ctx->in, 16);
124 	MD5Transform(ctx->buf, (u32 *) ctx->in);
125 	buf += t;
126 	len -= t;
127     }
128     /* Process data in 64-byte chunks */
129 
130     while (len >= 64) {
131 	os_memcpy(ctx->in, buf, 64);
132 	byteReverse(ctx->in, 16);
133 	MD5Transform(ctx->buf, (u32 *) ctx->in);
134 	buf += 64;
135 	len -= 64;
136     }
137 
138     /* Handle any remaining bytes of data. */
139 
140     os_memcpy(ctx->in, buf, len);
141 }
142 
143 /*
144  * Final wrapup - pad to 64-byte boundary with the bit pattern
145  * 1 0* (64-bit count of bits processed, MSB-first)
146  */
147 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
148 {
149     unsigned count;
150     unsigned char *p;
151 
152     /* Compute number of bytes mod 64 */
153     count = (ctx->bits[0] >> 3) & 0x3F;
154 
155     /* Set the first char of padding to 0x80.  This is safe since there is
156        always at least one byte free */
157     p = ctx->in + count;
158     *p++ = 0x80;
159 
160     /* Bytes of padding needed to make 64 bytes */
161     count = 64 - 1 - count;
162 
163     /* Pad out to 56 mod 64 */
164     if (count < 8) {
165 	/* Two lots of padding:  Pad the first block to 64 bytes */
166 	os_memset(p, 0, count);
167 	byteReverse(ctx->in, 16);
168 	MD5Transform(ctx->buf, (u32 *) ctx->in);
169 
170 	/* Now fill the next block with 56 bytes */
171 	os_memset(ctx->in, 0, 56);
172     } else {
173 	/* Pad block to 56 bytes */
174 	os_memset(p, 0, count - 8);
175     }
176     byteReverse(ctx->in, 14);
177 
178     /* Append length in bits and transform */
179     ((u32 *) aliasing_hide_typecast(ctx->in, u32))[14] = ctx->bits[0];
180     ((u32 *) aliasing_hide_typecast(ctx->in, u32))[15] = ctx->bits[1];
181 
182     MD5Transform(ctx->buf, (u32 *) ctx->in);
183     byteReverse((unsigned char *) ctx->buf, 4);
184     os_memcpy(digest, ctx->buf, 16);
185     os_memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
186 }
187 
188 /* The four core functions - F1 is optimized somewhat */
189 
190 /* #define F1(x, y, z) (x & y | ~x & z) */
191 #define F1(x, y, z) (z ^ (x & (y ^ z)))
192 #define F2(x, y, z) F1(z, x, y)
193 #define F3(x, y, z) (x ^ y ^ z)
194 #define F4(x, y, z) (y ^ (x | ~z))
195 
196 /* This is the central step in the MD5 algorithm. */
197 #define MD5STEP(f, w, x, y, z, data, s) \
198 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
199 
200 /*
201  * The core of the MD5 algorithm, this alters an existing MD5 hash to
202  * reflect the addition of 16 longwords of new data.  MD5Update blocks
203  * the data and converts bytes into longwords for this routine.
204  */
205 static void MD5Transform(u32 buf[4], u32 const in[16])
206 {
207     register u32 a, b, c, d;
208 
209     a = buf[0];
210     b = buf[1];
211     c = buf[2];
212     d = buf[3];
213 
214     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
215     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
216     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
217     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
218     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
219     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
220     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
221     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
222     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
223     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
224     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
225     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
226     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
227     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
228     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
229     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
230 
231     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
232     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
233     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
234     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
235     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
236     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
237     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
238     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
239     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
240     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
241     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
242     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
243     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
244     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
245     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
246     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
247 
248     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
249     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
250     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
251     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
252     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
253     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
254     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
255     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
256     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
257     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
258     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
259     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
260     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
261     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
262     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
263     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
264 
265     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
266     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
267     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
268     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
269     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
270     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
271     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
272     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
273     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
274     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
275     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
276     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
277     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
278     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
279     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
280     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
281 
282     buf[0] += a;
283     buf[1] += b;
284     buf[2] += c;
285     buf[3] += d;
286 }
287 /* ===== end - public domain MD5 implementation ===== */
288