xref: /freebsd/contrib/wpa/src/crypto/md5-internal.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*
2  * MD5 hash implementation and interface functions
3  * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common.h"
12 #include "md5.h"
13 #include "md5_i.h"
14 #include "crypto.h"
15 
16 
17 static void MD5Transform(u32 buf[4], u32 const in[16]);
18 
19 
20 typedef struct MD5Context MD5_CTX;
21 
22 
23 /**
24  * md5_vector - MD5 hash for data vector
25  * @num_elem: Number of elements in the data vector
26  * @addr: Pointers to the data areas
27  * @len: Lengths of the data blocks
28  * @mac: Buffer for the hash
29  * Returns: 0 on success, -1 of failure
30  */
31 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
32 {
33 	MD5_CTX ctx;
34 	size_t i;
35 
36 	if (TEST_FAIL())
37 		return -1;
38 
39 	MD5Init(&ctx);
40 	for (i = 0; i < num_elem; i++)
41 		MD5Update(&ctx, addr[i], len[i]);
42 	MD5Final(mac, &ctx);
43 	return 0;
44 }
45 
46 
47 /* ===== start - public domain MD5 implementation ===== */
48 /*
49  * This code implements the MD5 message-digest algorithm.
50  * The algorithm is due to Ron Rivest.  This code was
51  * written by Colin Plumb in 1993, no copyright is claimed.
52  * This code is in the public domain; do with it what you wish.
53  *
54  * Equivalent code is available from RSA Data Security, Inc.
55  * This code has been tested against that, and is equivalent,
56  * except that you don't need to include two pages of legalese
57  * with every copy.
58  *
59  * To compute the message digest of a chunk of bytes, declare an
60  * MD5Context structure, pass it to MD5Init, call MD5Update as
61  * needed on buffers full of bytes, and then call MD5Final, which
62  * will fill a supplied 16-byte array with the digest.
63  */
64 
65 #ifndef WORDS_BIGENDIAN
66 #define byteReverse(buf, len)	/* Nothing */
67 #else
68 /*
69  * Note: this code is harmless on little-endian machines.
70  */
71 static void byteReverse(unsigned char *buf, unsigned longs)
72 {
73     u32 t;
74     do {
75 	t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
76 	    ((unsigned) buf[1] << 8 | buf[0]);
77 	*(u32 *) buf = t;
78 	buf += 4;
79     } while (--longs);
80 }
81 #endif
82 
83 /*
84  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
85  * initialization constants.
86  */
87 void MD5Init(struct MD5Context *ctx)
88 {
89     ctx->buf[0] = 0x67452301;
90     ctx->buf[1] = 0xefcdab89;
91     ctx->buf[2] = 0x98badcfe;
92     ctx->buf[3] = 0x10325476;
93 
94     ctx->bits[0] = 0;
95     ctx->bits[1] = 0;
96 }
97 
98 /*
99  * Update context to reflect the concatenation of another buffer full
100  * of bytes.
101  */
102 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
103 {
104     u32 t;
105 
106     /* Update bitcount */
107 
108     t = ctx->bits[0];
109     if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
110 	ctx->bits[1]++;		/* Carry from low to high */
111     ctx->bits[1] += len >> 29;
112 
113     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
114 
115     /* Handle any leading odd-sized chunks */
116 
117     if (t) {
118 	unsigned char *p = (unsigned char *) ctx->in + t;
119 
120 	t = 64 - t;
121 	if (len < t) {
122 	    os_memcpy(p, buf, len);
123 	    return;
124 	}
125 	os_memcpy(p, buf, t);
126 	byteReverse(ctx->in, 16);
127 	MD5Transform(ctx->buf, (u32 *) ctx->in);
128 	buf += t;
129 	len -= t;
130     }
131     /* Process data in 64-byte chunks */
132 
133     while (len >= 64) {
134 	os_memcpy(ctx->in, buf, 64);
135 	byteReverse(ctx->in, 16);
136 	MD5Transform(ctx->buf, (u32 *) ctx->in);
137 	buf += 64;
138 	len -= 64;
139     }
140 
141     /* Handle any remaining bytes of data. */
142 
143     os_memcpy(ctx->in, buf, len);
144 }
145 
146 /*
147  * Final wrapup - pad to 64-byte boundary with the bit pattern
148  * 1 0* (64-bit count of bits processed, MSB-first)
149  */
150 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
151 {
152     unsigned count;
153     unsigned char *p;
154 
155     /* Compute number of bytes mod 64 */
156     count = (ctx->bits[0] >> 3) & 0x3F;
157 
158     /* Set the first char of padding to 0x80.  This is safe since there is
159        always at least one byte free */
160     p = ctx->in + count;
161     *p++ = 0x80;
162 
163     /* Bytes of padding needed to make 64 bytes */
164     count = 64 - 1 - count;
165 
166     /* Pad out to 56 mod 64 */
167     if (count < 8) {
168 	/* Two lots of padding:  Pad the first block to 64 bytes */
169 	os_memset(p, 0, count);
170 	byteReverse(ctx->in, 16);
171 	MD5Transform(ctx->buf, (u32 *) ctx->in);
172 
173 	/* Now fill the next block with 56 bytes */
174 	os_memset(ctx->in, 0, 56);
175     } else {
176 	/* Pad block to 56 bytes */
177 	os_memset(p, 0, count - 8);
178     }
179     byteReverse(ctx->in, 14);
180 
181     /* Append length in bits and transform */
182     ((u32 *) aliasing_hide_typecast(ctx->in, u32))[14] = ctx->bits[0];
183     ((u32 *) aliasing_hide_typecast(ctx->in, u32))[15] = ctx->bits[1];
184 
185     MD5Transform(ctx->buf, (u32 *) ctx->in);
186     byteReverse((unsigned char *) ctx->buf, 4);
187     os_memcpy(digest, ctx->buf, 16);
188     os_memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
189 }
190 
191 /* The four core functions - F1 is optimized somewhat */
192 
193 /* #define F1(x, y, z) (x & y | ~x & z) */
194 #define F1(x, y, z) (z ^ (x & (y ^ z)))
195 #define F2(x, y, z) F1(z, x, y)
196 #define F3(x, y, z) (x ^ y ^ z)
197 #define F4(x, y, z) (y ^ (x | ~z))
198 
199 /* This is the central step in the MD5 algorithm. */
200 #define MD5STEP(f, w, x, y, z, data, s) \
201 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
202 
203 /*
204  * The core of the MD5 algorithm, this alters an existing MD5 hash to
205  * reflect the addition of 16 longwords of new data.  MD5Update blocks
206  * the data and converts bytes into longwords for this routine.
207  */
208 static void MD5Transform(u32 buf[4], u32 const in[16])
209 {
210     register u32 a, b, c, d;
211 
212     a = buf[0];
213     b = buf[1];
214     c = buf[2];
215     d = buf[3];
216 
217     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
218     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
219     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
220     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
221     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
222     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
223     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
224     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
225     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
226     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
227     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
228     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
229     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
230     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
231     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
232     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
233 
234     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
235     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
236     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
237     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
238     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
239     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
240     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
241     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
242     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
243     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
244     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
245     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
246     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
247     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
248     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
249     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
250 
251     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
252     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
253     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
254     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
255     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
256     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
257     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
258     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
259     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
260     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
261     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
262     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
263     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
264     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
265     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
266     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
267 
268     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
269     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
270     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
271     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
272     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
273     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
274     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
275     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
276     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
277     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
278     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
279     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
280     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
281     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
282     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
283     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
284 
285     buf[0] += a;
286     buf[1] += b;
287     buf[2] += c;
288     buf[3] += d;
289 }
290 /* ===== end - public domain MD5 implementation ===== */
291