xref: /freebsd/contrib/wpa/src/crypto/md4-internal.c (revision f81cdf24ba5436367377f7c8e8f51f6df2a75ca7)
1 /*
2  * MD4 hash implementation
3  * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common.h"
12 #include "crypto.h"
13 
14 #define	MD4_BLOCK_LENGTH		64
15 #define	MD4_DIGEST_LENGTH		16
16 
17 typedef struct MD4Context {
18 	u32 state[4];			/* state */
19 	u64 count;			/* number of bits, mod 2^64 */
20 	u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */
21 } MD4_CTX;
22 
23 
24 static void MD4Init(MD4_CTX *ctx);
25 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
26 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
27 
28 
29 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
30 {
31 	MD4_CTX ctx;
32 	size_t i;
33 
34 	if (TEST_FAIL())
35 		return -1;
36 
37 	MD4Init(&ctx);
38 	for (i = 0; i < num_elem; i++)
39 		MD4Update(&ctx, addr[i], len[i]);
40 	MD4Final(mac, &ctx);
41 	return 0;
42 }
43 
44 
45 /* ===== start - public domain MD4 implementation ===== */
46 /*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/
47 
48 /*
49  * This code implements the MD4 message-digest algorithm.
50  * The algorithm is due to Ron Rivest.	This code was
51  * written by Colin Plumb in 1993, no copyright is claimed.
52  * This code is in the public domain; do with it what you wish.
53  * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
54  *
55  * Equivalent code is available from RSA Data Security, Inc.
56  * This code has been tested against that, and is equivalent,
57  * except that you don't need to include two pages of legalese
58  * with every copy.
59  *
60  * To compute the message digest of a chunk of bytes, declare an
61  * MD4Context structure, pass it to MD4Init, call MD4Update as
62  * needed on buffers full of bytes, and then call MD4Final, which
63  * will fill a supplied 16-byte array with the digest.
64  */
65 
66 #define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1)
67 
68 
69 static void
70 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
71 
72 #define PUT_64BIT_LE(cp, value) do {					\
73 	(cp)[7] = (value) >> 56;					\
74 	(cp)[6] = (value) >> 48;					\
75 	(cp)[5] = (value) >> 40;					\
76 	(cp)[4] = (value) >> 32;					\
77 	(cp)[3] = (value) >> 24;					\
78 	(cp)[2] = (value) >> 16;					\
79 	(cp)[1] = (value) >> 8;						\
80 	(cp)[0] = (value); } while (0)
81 
82 #define PUT_32BIT_LE(cp, value) do {					\
83 	(cp)[3] = (value) >> 24;					\
84 	(cp)[2] = (value) >> 16;					\
85 	(cp)[1] = (value) >> 8;						\
86 	(cp)[0] = (value); } while (0)
87 
88 static const u8 PADDING[MD4_BLOCK_LENGTH] = {
89 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
90 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
91 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
92 };
93 
94 /*
95  * Start MD4 accumulation.
96  * Set bit count to 0 and buffer to mysterious initialization constants.
97  */
98 static void MD4Init(MD4_CTX *ctx)
99 {
100 	ctx->count = 0;
101 	ctx->state[0] = 0x67452301;
102 	ctx->state[1] = 0xefcdab89;
103 	ctx->state[2] = 0x98badcfe;
104 	ctx->state[3] = 0x10325476;
105 }
106 
107 /*
108  * Update context to reflect the concatenation of another buffer full
109  * of bytes.
110  */
111 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
112 {
113 	size_t have, need;
114 
115 	/* Check how many bytes we already have and how many more we need. */
116 	have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
117 	need = MD4_BLOCK_LENGTH - have;
118 
119 	/* Update bitcount */
120 	ctx->count += (u64)len << 3;
121 
122 	if (len >= need) {
123 		if (have != 0) {
124 			os_memcpy(ctx->buffer + have, input, need);
125 			MD4Transform(ctx->state, ctx->buffer);
126 			input += need;
127 			len -= need;
128 			have = 0;
129 		}
130 
131 		/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
132 		while (len >= MD4_BLOCK_LENGTH) {
133 			MD4Transform(ctx->state, input);
134 			input += MD4_BLOCK_LENGTH;
135 			len -= MD4_BLOCK_LENGTH;
136 		}
137 	}
138 
139 	/* Handle any remaining bytes of data. */
140 	if (len != 0)
141 		os_memcpy(ctx->buffer + have, input, len);
142 }
143 
144 /*
145  * Pad pad to 64-byte boundary with the bit pattern
146  * 1 0* (64-bit count of bits processed, MSB-first)
147  */
148 static void MD4Pad(MD4_CTX *ctx)
149 {
150 	u8 count[8];
151 	size_t padlen;
152 
153 	/* Convert count to 8 bytes in little endian order. */
154 	PUT_64BIT_LE(count, ctx->count);
155 
156 	/* Pad out to 56 mod 64. */
157 	padlen = MD4_BLOCK_LENGTH -
158 	    ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
159 	if (padlen < 1 + 8)
160 		padlen += MD4_BLOCK_LENGTH;
161 	MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
162 	MD4Update(ctx, count, 8);
163 }
164 
165 /*
166  * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
167  */
168 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
169 {
170 	int i;
171 
172 	MD4Pad(ctx);
173 	if (digest != NULL) {
174 		for (i = 0; i < 4; i++)
175 			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
176 		os_memset(ctx, 0, sizeof(*ctx));
177 	}
178 }
179 
180 
181 /* The three core functions - F1 is optimized somewhat */
182 
183 /* #define F1(x, y, z) (x & y | ~x & z) */
184 #define F1(x, y, z) (z ^ (x & (y ^ z)))
185 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
186 #define F3(x, y, z) (x ^ y ^ z)
187 
188 /* This is the central step in the MD4 algorithm. */
189 #define MD4STEP(f, w, x, y, z, data, s) \
190 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) )
191 
192 /*
193  * The core of the MD4 algorithm, this alters an existing MD4 hash to
194  * reflect the addition of 16 longwords of new data.  MD4Update blocks
195  * the data and converts bytes into longwords for this routine.
196  */
197 static void
198 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
199 {
200 	u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
201 
202 #if BYTE_ORDER == LITTLE_ENDIAN
203 	os_memcpy(in, block, sizeof(in));
204 #else
205 	for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
206 		in[a] = (u32)(
207 		    (u32)(block[a * 4 + 0]) |
208 		    (u32)(block[a * 4 + 1]) <<  8 |
209 		    (u32)(block[a * 4 + 2]) << 16 |
210 		    (u32)(block[a * 4 + 3]) << 24);
211 	}
212 #endif
213 
214 	a = state[0];
215 	b = state[1];
216 	c = state[2];
217 	d = state[3];
218 
219 	MD4STEP(F1, a, b, c, d, in[ 0],  3);
220 	MD4STEP(F1, d, a, b, c, in[ 1],  7);
221 	MD4STEP(F1, c, d, a, b, in[ 2], 11);
222 	MD4STEP(F1, b, c, d, a, in[ 3], 19);
223 	MD4STEP(F1, a, b, c, d, in[ 4],  3);
224 	MD4STEP(F1, d, a, b, c, in[ 5],  7);
225 	MD4STEP(F1, c, d, a, b, in[ 6], 11);
226 	MD4STEP(F1, b, c, d, a, in[ 7], 19);
227 	MD4STEP(F1, a, b, c, d, in[ 8],  3);
228 	MD4STEP(F1, d, a, b, c, in[ 9],  7);
229 	MD4STEP(F1, c, d, a, b, in[10], 11);
230 	MD4STEP(F1, b, c, d, a, in[11], 19);
231 	MD4STEP(F1, a, b, c, d, in[12],  3);
232 	MD4STEP(F1, d, a, b, c, in[13],  7);
233 	MD4STEP(F1, c, d, a, b, in[14], 11);
234 	MD4STEP(F1, b, c, d, a, in[15], 19);
235 
236 	MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3);
237 	MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5);
238 	MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9);
239 	MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
240 	MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3);
241 	MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5);
242 	MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9);
243 	MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
244 	MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3);
245 	MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5);
246 	MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9);
247 	MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
248 	MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3);
249 	MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5);
250 	MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9);
251 	MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
252 
253 	MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3);
254 	MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9);
255 	MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
256 	MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
257 	MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3);
258 	MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9);
259 	MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
260 	MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
261 	MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3);
262 	MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9);
263 	MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
264 	MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
265 	MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3);
266 	MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9);
267 	MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
268 	MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
269 
270 	state[0] += a;
271 	state[1] += b;
272 	state[2] += c;
273 	state[3] += d;
274 }
275 /* ===== end - public domain MD4 implementation ===== */
276