1 /* 2 * MD4 hash implementation 3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 11 #include "common.h" 12 #include "crypto.h" 13 14 #define MD4_BLOCK_LENGTH 64 15 #define MD4_DIGEST_LENGTH 16 16 17 typedef struct MD4Context { 18 u32 state[4]; /* state */ 19 u64 count; /* number of bits, mod 2^64 */ 20 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */ 21 } MD4_CTX; 22 23 24 static void MD4Init(MD4_CTX *ctx); 25 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len); 26 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx); 27 28 29 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 30 { 31 MD4_CTX ctx; 32 size_t i; 33 34 MD4Init(&ctx); 35 for (i = 0; i < num_elem; i++) 36 MD4Update(&ctx, addr[i], len[i]); 37 MD4Final(mac, &ctx); 38 return 0; 39 } 40 41 42 /* ===== start - public domain MD4 implementation ===== */ 43 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */ 44 45 /* 46 * This code implements the MD4 message-digest algorithm. 47 * The algorithm is due to Ron Rivest. This code was 48 * written by Colin Plumb in 1993, no copyright is claimed. 49 * This code is in the public domain; do with it what you wish. 50 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. 51 * 52 * Equivalent code is available from RSA Data Security, Inc. 53 * This code has been tested against that, and is equivalent, 54 * except that you don't need to include two pages of legalese 55 * with every copy. 56 * 57 * To compute the message digest of a chunk of bytes, declare an 58 * MD4Context structure, pass it to MD4Init, call MD4Update as 59 * needed on buffers full of bytes, and then call MD4Final, which 60 * will fill a supplied 16-byte array with the digest. 61 */ 62 63 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1) 64 65 66 static void 67 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]); 68 69 #define PUT_64BIT_LE(cp, value) do { \ 70 (cp)[7] = (value) >> 56; \ 71 (cp)[6] = (value) >> 48; \ 72 (cp)[5] = (value) >> 40; \ 73 (cp)[4] = (value) >> 32; \ 74 (cp)[3] = (value) >> 24; \ 75 (cp)[2] = (value) >> 16; \ 76 (cp)[1] = (value) >> 8; \ 77 (cp)[0] = (value); } while (0) 78 79 #define PUT_32BIT_LE(cp, value) do { \ 80 (cp)[3] = (value) >> 24; \ 81 (cp)[2] = (value) >> 16; \ 82 (cp)[1] = (value) >> 8; \ 83 (cp)[0] = (value); } while (0) 84 85 static u8 PADDING[MD4_BLOCK_LENGTH] = { 86 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 89 }; 90 91 /* 92 * Start MD4 accumulation. 93 * Set bit count to 0 and buffer to mysterious initialization constants. 94 */ 95 static void MD4Init(MD4_CTX *ctx) 96 { 97 ctx->count = 0; 98 ctx->state[0] = 0x67452301; 99 ctx->state[1] = 0xefcdab89; 100 ctx->state[2] = 0x98badcfe; 101 ctx->state[3] = 0x10325476; 102 } 103 104 /* 105 * Update context to reflect the concatenation of another buffer full 106 * of bytes. 107 */ 108 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) 109 { 110 size_t have, need; 111 112 /* Check how many bytes we already have and how many more we need. */ 113 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 114 need = MD4_BLOCK_LENGTH - have; 115 116 /* Update bitcount */ 117 ctx->count += (u64)len << 3; 118 119 if (len >= need) { 120 if (have != 0) { 121 os_memcpy(ctx->buffer + have, input, need); 122 MD4Transform(ctx->state, ctx->buffer); 123 input += need; 124 len -= need; 125 have = 0; 126 } 127 128 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */ 129 while (len >= MD4_BLOCK_LENGTH) { 130 MD4Transform(ctx->state, input); 131 input += MD4_BLOCK_LENGTH; 132 len -= MD4_BLOCK_LENGTH; 133 } 134 } 135 136 /* Handle any remaining bytes of data. */ 137 if (len != 0) 138 os_memcpy(ctx->buffer + have, input, len); 139 } 140 141 /* 142 * Pad pad to 64-byte boundary with the bit pattern 143 * 1 0* (64-bit count of bits processed, MSB-first) 144 */ 145 static void MD4Pad(MD4_CTX *ctx) 146 { 147 u8 count[8]; 148 size_t padlen; 149 150 /* Convert count to 8 bytes in little endian order. */ 151 PUT_64BIT_LE(count, ctx->count); 152 153 /* Pad out to 56 mod 64. */ 154 padlen = MD4_BLOCK_LENGTH - 155 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 156 if (padlen < 1 + 8) 157 padlen += MD4_BLOCK_LENGTH; 158 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ 159 MD4Update(ctx, count, 8); 160 } 161 162 /* 163 * Final wrapup--call MD4Pad, fill in digest and zero out ctx. 164 */ 165 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) 166 { 167 int i; 168 169 MD4Pad(ctx); 170 if (digest != NULL) { 171 for (i = 0; i < 4; i++) 172 PUT_32BIT_LE(digest + i * 4, ctx->state[i]); 173 os_memset(ctx, 0, sizeof(*ctx)); 174 } 175 } 176 177 178 /* The three core functions - F1 is optimized somewhat */ 179 180 /* #define F1(x, y, z) (x & y | ~x & z) */ 181 #define F1(x, y, z) (z ^ (x & (y ^ z))) 182 #define F2(x, y, z) ((x & y) | (x & z) | (y & z)) 183 #define F3(x, y, z) (x ^ y ^ z) 184 185 /* This is the central step in the MD4 algorithm. */ 186 #define MD4STEP(f, w, x, y, z, data, s) \ 187 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) 188 189 /* 190 * The core of the MD4 algorithm, this alters an existing MD4 hash to 191 * reflect the addition of 16 longwords of new data. MD4Update blocks 192 * the data and converts bytes into longwords for this routine. 193 */ 194 static void 195 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]) 196 { 197 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; 198 199 #if BYTE_ORDER == LITTLE_ENDIAN 200 os_memcpy(in, block, sizeof(in)); 201 #else 202 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { 203 in[a] = (u32)( 204 (u32)(block[a * 4 + 0]) | 205 (u32)(block[a * 4 + 1]) << 8 | 206 (u32)(block[a * 4 + 2]) << 16 | 207 (u32)(block[a * 4 + 3]) << 24); 208 } 209 #endif 210 211 a = state[0]; 212 b = state[1]; 213 c = state[2]; 214 d = state[3]; 215 216 MD4STEP(F1, a, b, c, d, in[ 0], 3); 217 MD4STEP(F1, d, a, b, c, in[ 1], 7); 218 MD4STEP(F1, c, d, a, b, in[ 2], 11); 219 MD4STEP(F1, b, c, d, a, in[ 3], 19); 220 MD4STEP(F1, a, b, c, d, in[ 4], 3); 221 MD4STEP(F1, d, a, b, c, in[ 5], 7); 222 MD4STEP(F1, c, d, a, b, in[ 6], 11); 223 MD4STEP(F1, b, c, d, a, in[ 7], 19); 224 MD4STEP(F1, a, b, c, d, in[ 8], 3); 225 MD4STEP(F1, d, a, b, c, in[ 9], 7); 226 MD4STEP(F1, c, d, a, b, in[10], 11); 227 MD4STEP(F1, b, c, d, a, in[11], 19); 228 MD4STEP(F1, a, b, c, d, in[12], 3); 229 MD4STEP(F1, d, a, b, c, in[13], 7); 230 MD4STEP(F1, c, d, a, b, in[14], 11); 231 MD4STEP(F1, b, c, d, a, in[15], 19); 232 233 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); 234 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); 235 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); 236 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); 237 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); 238 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); 239 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); 240 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); 241 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); 242 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); 243 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); 244 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); 245 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); 246 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); 247 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); 248 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); 249 250 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); 251 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); 252 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); 253 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); 254 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); 255 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); 256 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); 257 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); 258 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); 259 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); 260 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); 261 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); 262 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); 263 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); 264 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); 265 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); 266 267 state[0] += a; 268 state[1] += b; 269 state[2] += c; 270 state[3] += d; 271 } 272 /* ===== end - public domain MD4 implementation ===== */ 273