xref: /freebsd/contrib/wpa/src/crypto/crypto_openssl.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33 
34 static BIGNUM * get_group5_prime(void)
35 {
36 #ifdef OPENSSL_IS_BORINGSSL
37 	static const unsigned char RFC3526_PRIME_1536[] = {
38 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
39 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
40 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
41 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
42 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
43 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
44 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
45 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
46 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
47 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
48 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
49 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
50 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
51 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
52 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
53 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
54 	};
55         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
56 #else /* OPENSSL_IS_BORINGSSL */
57 	return get_rfc3526_prime_1536(NULL);
58 #endif /* OPENSSL_IS_BORINGSSL */
59 }
60 
61 #ifdef OPENSSL_NO_SHA256
62 #define NO_SHA256_WRAPPER
63 #endif
64 
65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
66 				 const u8 *addr[], const size_t *len, u8 *mac)
67 {
68 	EVP_MD_CTX ctx;
69 	size_t i;
70 	unsigned int mac_len;
71 
72 	EVP_MD_CTX_init(&ctx);
73 	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
74 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
75 			   ERR_error_string(ERR_get_error(), NULL));
76 		return -1;
77 	}
78 	for (i = 0; i < num_elem; i++) {
79 		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
80 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
81 				   "failed: %s",
82 				   ERR_error_string(ERR_get_error(), NULL));
83 			return -1;
84 		}
85 	}
86 	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
87 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
88 			   ERR_error_string(ERR_get_error(), NULL));
89 		return -1;
90 	}
91 
92 	return 0;
93 }
94 
95 
96 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
97 {
98 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
99 }
100 
101 
102 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
103 {
104 	u8 pkey[8], next, tmp;
105 	int i;
106 	DES_key_schedule ks;
107 
108 	/* Add parity bits to the key */
109 	next = 0;
110 	for (i = 0; i < 7; i++) {
111 		tmp = key[i];
112 		pkey[i] = (tmp >> i) | next | 1;
113 		next = tmp << (7 - i);
114 	}
115 	pkey[i] = next | 1;
116 
117 	DES_set_key((DES_cblock *) &pkey, &ks);
118 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
119 			DES_ENCRYPT);
120 }
121 
122 
123 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
124 	     u8 *data, size_t data_len)
125 {
126 #ifdef OPENSSL_NO_RC4
127 	return -1;
128 #else /* OPENSSL_NO_RC4 */
129 	EVP_CIPHER_CTX ctx;
130 	int outl;
131 	int res = -1;
132 	unsigned char skip_buf[16];
133 
134 	EVP_CIPHER_CTX_init(&ctx);
135 	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
136 	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
137 	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
138 	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
139 		goto out;
140 
141 	while (skip >= sizeof(skip_buf)) {
142 		size_t len = skip;
143 		if (len > sizeof(skip_buf))
144 			len = sizeof(skip_buf);
145 		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
146 			goto out;
147 		skip -= len;
148 	}
149 
150 	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
151 		res = 0;
152 
153 out:
154 	EVP_CIPHER_CTX_cleanup(&ctx);
155 	return res;
156 #endif /* OPENSSL_NO_RC4 */
157 }
158 
159 
160 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
161 {
162 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
163 }
164 
165 
166 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
167 {
168 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
169 }
170 
171 
172 #ifndef NO_SHA256_WRAPPER
173 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
174 		  u8 *mac)
175 {
176 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
177 }
178 #endif /* NO_SHA256_WRAPPER */
179 
180 
181 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
182 {
183 	switch (keylen) {
184 	case 16:
185 		return EVP_aes_128_ecb();
186 #ifndef OPENSSL_IS_BORINGSSL
187 	case 24:
188 		return EVP_aes_192_ecb();
189 #endif /* OPENSSL_IS_BORINGSSL */
190 	case 32:
191 		return EVP_aes_256_ecb();
192 	}
193 
194 	return NULL;
195 }
196 
197 
198 void * aes_encrypt_init(const u8 *key, size_t len)
199 {
200 	EVP_CIPHER_CTX *ctx;
201 	const EVP_CIPHER *type;
202 
203 	type = aes_get_evp_cipher(len);
204 	if (type == NULL)
205 		return NULL;
206 
207 	ctx = os_malloc(sizeof(*ctx));
208 	if (ctx == NULL)
209 		return NULL;
210 	EVP_CIPHER_CTX_init(ctx);
211 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
212 		os_free(ctx);
213 		return NULL;
214 	}
215 	EVP_CIPHER_CTX_set_padding(ctx, 0);
216 	return ctx;
217 }
218 
219 
220 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
221 {
222 	EVP_CIPHER_CTX *c = ctx;
223 	int clen = 16;
224 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
225 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
226 			   ERR_error_string(ERR_get_error(), NULL));
227 	}
228 }
229 
230 
231 void aes_encrypt_deinit(void *ctx)
232 {
233 	EVP_CIPHER_CTX *c = ctx;
234 	u8 buf[16];
235 	int len = sizeof(buf);
236 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
237 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
238 			   "%s", ERR_error_string(ERR_get_error(), NULL));
239 	}
240 	if (len != 0) {
241 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
242 			   "in AES encrypt", len);
243 	}
244 	EVP_CIPHER_CTX_cleanup(c);
245 	bin_clear_free(c, sizeof(*c));
246 }
247 
248 
249 void * aes_decrypt_init(const u8 *key, size_t len)
250 {
251 	EVP_CIPHER_CTX *ctx;
252 	const EVP_CIPHER *type;
253 
254 	type = aes_get_evp_cipher(len);
255 	if (type == NULL)
256 		return NULL;
257 
258 	ctx = os_malloc(sizeof(*ctx));
259 	if (ctx == NULL)
260 		return NULL;
261 	EVP_CIPHER_CTX_init(ctx);
262 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
263 		os_free(ctx);
264 		return NULL;
265 	}
266 	EVP_CIPHER_CTX_set_padding(ctx, 0);
267 	return ctx;
268 }
269 
270 
271 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
272 {
273 	EVP_CIPHER_CTX *c = ctx;
274 	int plen = 16;
275 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
276 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
277 			   ERR_error_string(ERR_get_error(), NULL));
278 	}
279 }
280 
281 
282 void aes_decrypt_deinit(void *ctx)
283 {
284 	EVP_CIPHER_CTX *c = ctx;
285 	u8 buf[16];
286 	int len = sizeof(buf);
287 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
288 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
289 			   "%s", ERR_error_string(ERR_get_error(), NULL));
290 	}
291 	if (len != 0) {
292 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
293 			   "in AES decrypt", len);
294 	}
295 	EVP_CIPHER_CTX_cleanup(c);
296 	bin_clear_free(c, sizeof(*c));
297 }
298 
299 
300 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
301 {
302 	AES_KEY actx;
303 	int res;
304 
305 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
306 		return -1;
307 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
308 	OPENSSL_cleanse(&actx, sizeof(actx));
309 	return res <= 0 ? -1 : 0;
310 }
311 
312 
313 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
314 	       u8 *plain)
315 {
316 	AES_KEY actx;
317 	int res;
318 
319 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
320 		return -1;
321 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
322 	OPENSSL_cleanse(&actx, sizeof(actx));
323 	return res <= 0 ? -1 : 0;
324 }
325 
326 
327 int crypto_mod_exp(const u8 *base, size_t base_len,
328 		   const u8 *power, size_t power_len,
329 		   const u8 *modulus, size_t modulus_len,
330 		   u8 *result, size_t *result_len)
331 {
332 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
333 	int ret = -1;
334 	BN_CTX *ctx;
335 
336 	ctx = BN_CTX_new();
337 	if (ctx == NULL)
338 		return -1;
339 
340 	bn_base = BN_bin2bn(base, base_len, NULL);
341 	bn_exp = BN_bin2bn(power, power_len, NULL);
342 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
343 	bn_result = BN_new();
344 
345 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
346 	    bn_result == NULL)
347 		goto error;
348 
349 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
350 		goto error;
351 
352 	*result_len = BN_bn2bin(bn_result, result);
353 	ret = 0;
354 
355 error:
356 	BN_clear_free(bn_base);
357 	BN_clear_free(bn_exp);
358 	BN_clear_free(bn_modulus);
359 	BN_clear_free(bn_result);
360 	BN_CTX_free(ctx);
361 	return ret;
362 }
363 
364 
365 struct crypto_cipher {
366 	EVP_CIPHER_CTX enc;
367 	EVP_CIPHER_CTX dec;
368 };
369 
370 
371 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
372 					  const u8 *iv, const u8 *key,
373 					  size_t key_len)
374 {
375 	struct crypto_cipher *ctx;
376 	const EVP_CIPHER *cipher;
377 
378 	ctx = os_zalloc(sizeof(*ctx));
379 	if (ctx == NULL)
380 		return NULL;
381 
382 	switch (alg) {
383 #ifndef OPENSSL_NO_RC4
384 	case CRYPTO_CIPHER_ALG_RC4:
385 		cipher = EVP_rc4();
386 		break;
387 #endif /* OPENSSL_NO_RC4 */
388 #ifndef OPENSSL_NO_AES
389 	case CRYPTO_CIPHER_ALG_AES:
390 		switch (key_len) {
391 		case 16:
392 			cipher = EVP_aes_128_cbc();
393 			break;
394 #ifndef OPENSSL_IS_BORINGSSL
395 		case 24:
396 			cipher = EVP_aes_192_cbc();
397 			break;
398 #endif /* OPENSSL_IS_BORINGSSL */
399 		case 32:
400 			cipher = EVP_aes_256_cbc();
401 			break;
402 		default:
403 			os_free(ctx);
404 			return NULL;
405 		}
406 		break;
407 #endif /* OPENSSL_NO_AES */
408 #ifndef OPENSSL_NO_DES
409 	case CRYPTO_CIPHER_ALG_3DES:
410 		cipher = EVP_des_ede3_cbc();
411 		break;
412 	case CRYPTO_CIPHER_ALG_DES:
413 		cipher = EVP_des_cbc();
414 		break;
415 #endif /* OPENSSL_NO_DES */
416 #ifndef OPENSSL_NO_RC2
417 	case CRYPTO_CIPHER_ALG_RC2:
418 		cipher = EVP_rc2_ecb();
419 		break;
420 #endif /* OPENSSL_NO_RC2 */
421 	default:
422 		os_free(ctx);
423 		return NULL;
424 	}
425 
426 	EVP_CIPHER_CTX_init(&ctx->enc);
427 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
428 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
429 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
430 	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
431 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
432 		os_free(ctx);
433 		return NULL;
434 	}
435 
436 	EVP_CIPHER_CTX_init(&ctx->dec);
437 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
438 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
439 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
440 	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
441 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
442 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
443 		os_free(ctx);
444 		return NULL;
445 	}
446 
447 	return ctx;
448 }
449 
450 
451 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
452 			  u8 *crypt, size_t len)
453 {
454 	int outl;
455 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
456 		return -1;
457 	return 0;
458 }
459 
460 
461 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
462 			  u8 *plain, size_t len)
463 {
464 	int outl;
465 	outl = len;
466 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
467 		return -1;
468 	return 0;
469 }
470 
471 
472 void crypto_cipher_deinit(struct crypto_cipher *ctx)
473 {
474 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
475 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
476 	os_free(ctx);
477 }
478 
479 
480 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
481 {
482 	DH *dh;
483 	struct wpabuf *pubkey = NULL, *privkey = NULL;
484 	size_t publen, privlen;
485 
486 	*priv = NULL;
487 	*publ = NULL;
488 
489 	dh = DH_new();
490 	if (dh == NULL)
491 		return NULL;
492 
493 	dh->g = BN_new();
494 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
495 		goto err;
496 
497 	dh->p = get_group5_prime();
498 	if (dh->p == NULL)
499 		goto err;
500 
501 	if (DH_generate_key(dh) != 1)
502 		goto err;
503 
504 	publen = BN_num_bytes(dh->pub_key);
505 	pubkey = wpabuf_alloc(publen);
506 	if (pubkey == NULL)
507 		goto err;
508 	privlen = BN_num_bytes(dh->priv_key);
509 	privkey = wpabuf_alloc(privlen);
510 	if (privkey == NULL)
511 		goto err;
512 
513 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
514 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
515 
516 	*priv = privkey;
517 	*publ = pubkey;
518 	return dh;
519 
520 err:
521 	wpabuf_clear_free(pubkey);
522 	wpabuf_clear_free(privkey);
523 	DH_free(dh);
524 	return NULL;
525 }
526 
527 
528 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
529 {
530 	DH *dh;
531 
532 	dh = DH_new();
533 	if (dh == NULL)
534 		return NULL;
535 
536 	dh->g = BN_new();
537 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
538 		goto err;
539 
540 	dh->p = get_group5_prime();
541 	if (dh->p == NULL)
542 		goto err;
543 
544 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
545 	if (dh->priv_key == NULL)
546 		goto err;
547 
548 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
549 	if (dh->pub_key == NULL)
550 		goto err;
551 
552 	if (DH_generate_key(dh) != 1)
553 		goto err;
554 
555 	return dh;
556 
557 err:
558 	DH_free(dh);
559 	return NULL;
560 }
561 
562 
563 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
564 				  const struct wpabuf *own_private)
565 {
566 	BIGNUM *pub_key;
567 	struct wpabuf *res = NULL;
568 	size_t rlen;
569 	DH *dh = ctx;
570 	int keylen;
571 
572 	if (ctx == NULL)
573 		return NULL;
574 
575 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
576 			    NULL);
577 	if (pub_key == NULL)
578 		return NULL;
579 
580 	rlen = DH_size(dh);
581 	res = wpabuf_alloc(rlen);
582 	if (res == NULL)
583 		goto err;
584 
585 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
586 	if (keylen < 0)
587 		goto err;
588 	wpabuf_put(res, keylen);
589 	BN_clear_free(pub_key);
590 
591 	return res;
592 
593 err:
594 	BN_clear_free(pub_key);
595 	wpabuf_clear_free(res);
596 	return NULL;
597 }
598 
599 
600 void dh5_free(void *ctx)
601 {
602 	DH *dh;
603 	if (ctx == NULL)
604 		return;
605 	dh = ctx;
606 	DH_free(dh);
607 }
608 
609 
610 struct crypto_hash {
611 	HMAC_CTX ctx;
612 };
613 
614 
615 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
616 				      size_t key_len)
617 {
618 	struct crypto_hash *ctx;
619 	const EVP_MD *md;
620 
621 	switch (alg) {
622 #ifndef OPENSSL_NO_MD5
623 	case CRYPTO_HASH_ALG_HMAC_MD5:
624 		md = EVP_md5();
625 		break;
626 #endif /* OPENSSL_NO_MD5 */
627 #ifndef OPENSSL_NO_SHA
628 	case CRYPTO_HASH_ALG_HMAC_SHA1:
629 		md = EVP_sha1();
630 		break;
631 #endif /* OPENSSL_NO_SHA */
632 #ifndef OPENSSL_NO_SHA256
633 #ifdef CONFIG_SHA256
634 	case CRYPTO_HASH_ALG_HMAC_SHA256:
635 		md = EVP_sha256();
636 		break;
637 #endif /* CONFIG_SHA256 */
638 #endif /* OPENSSL_NO_SHA256 */
639 	default:
640 		return NULL;
641 	}
642 
643 	ctx = os_zalloc(sizeof(*ctx));
644 	if (ctx == NULL)
645 		return NULL;
646 	HMAC_CTX_init(&ctx->ctx);
647 
648 #if OPENSSL_VERSION_NUMBER < 0x00909000
649 	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
650 #else /* openssl < 0.9.9 */
651 	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
652 		bin_clear_free(ctx, sizeof(*ctx));
653 		return NULL;
654 	}
655 #endif /* openssl < 0.9.9 */
656 
657 	return ctx;
658 }
659 
660 
661 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
662 {
663 	if (ctx == NULL)
664 		return;
665 	HMAC_Update(&ctx->ctx, data, len);
666 }
667 
668 
669 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
670 {
671 	unsigned int mdlen;
672 	int res;
673 
674 	if (ctx == NULL)
675 		return -2;
676 
677 	if (mac == NULL || len == NULL) {
678 		bin_clear_free(ctx, sizeof(*ctx));
679 		return 0;
680 	}
681 
682 	mdlen = *len;
683 #if OPENSSL_VERSION_NUMBER < 0x00909000
684 	HMAC_Final(&ctx->ctx, mac, &mdlen);
685 	res = 1;
686 #else /* openssl < 0.9.9 */
687 	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
688 #endif /* openssl < 0.9.9 */
689 	HMAC_CTX_cleanup(&ctx->ctx);
690 	bin_clear_free(ctx, sizeof(*ctx));
691 
692 	if (res == 1) {
693 		*len = mdlen;
694 		return 0;
695 	}
696 
697 	return -1;
698 }
699 
700 
701 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
702 			       size_t key_len, size_t num_elem,
703 			       const u8 *addr[], const size_t *len, u8 *mac,
704 			       unsigned int mdlen)
705 {
706 	HMAC_CTX ctx;
707 	size_t i;
708 	int res;
709 
710 	HMAC_CTX_init(&ctx);
711 #if OPENSSL_VERSION_NUMBER < 0x00909000
712 	HMAC_Init_ex(&ctx, key, key_len, type, NULL);
713 #else /* openssl < 0.9.9 */
714 	if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1)
715 		return -1;
716 #endif /* openssl < 0.9.9 */
717 
718 	for (i = 0; i < num_elem; i++)
719 		HMAC_Update(&ctx, addr[i], len[i]);
720 
721 #if OPENSSL_VERSION_NUMBER < 0x00909000
722 	HMAC_Final(&ctx, mac, &mdlen);
723 	res = 1;
724 #else /* openssl < 0.9.9 */
725 	res = HMAC_Final(&ctx, mac, &mdlen);
726 #endif /* openssl < 0.9.9 */
727 	HMAC_CTX_cleanup(&ctx);
728 
729 	return res == 1 ? 0 : -1;
730 }
731 
732 
733 #ifndef CONFIG_FIPS
734 
735 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
736 		    const u8 *addr[], const size_t *len, u8 *mac)
737 {
738 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
739 				   mac, 16);
740 }
741 
742 
743 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
744 	     u8 *mac)
745 {
746 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
747 }
748 
749 #endif /* CONFIG_FIPS */
750 
751 
752 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
753 		int iterations, u8 *buf, size_t buflen)
754 {
755 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
756 				   ssid_len, iterations, buflen, buf) != 1)
757 		return -1;
758 	return 0;
759 }
760 
761 
762 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
763 		     const u8 *addr[], const size_t *len, u8 *mac)
764 {
765 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
766 				   len, mac, 20);
767 }
768 
769 
770 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
771 	       u8 *mac)
772 {
773 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
774 }
775 
776 
777 #ifdef CONFIG_SHA256
778 
779 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
780 		       const u8 *addr[], const size_t *len, u8 *mac)
781 {
782 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
783 				   len, mac, 32);
784 }
785 
786 
787 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
788 		size_t data_len, u8 *mac)
789 {
790 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
791 }
792 
793 #endif /* CONFIG_SHA256 */
794 
795 
796 #ifdef CONFIG_SHA384
797 
798 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
799 		       const u8 *addr[], const size_t *len, u8 *mac)
800 {
801 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
802 				   len, mac, 32);
803 }
804 
805 
806 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
807 		size_t data_len, u8 *mac)
808 {
809 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
810 }
811 
812 #endif /* CONFIG_SHA384 */
813 
814 
815 int crypto_get_random(void *buf, size_t len)
816 {
817 	if (RAND_bytes(buf, len) != 1)
818 		return -1;
819 	return 0;
820 }
821 
822 
823 #ifdef CONFIG_OPENSSL_CMAC
824 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
825 		     const u8 *addr[], const size_t *len, u8 *mac)
826 {
827 	CMAC_CTX *ctx;
828 	int ret = -1;
829 	size_t outlen, i;
830 
831 	ctx = CMAC_CTX_new();
832 	if (ctx == NULL)
833 		return -1;
834 
835 	if (key_len == 32) {
836 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
837 			goto fail;
838 	} else if (key_len == 16) {
839 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
840 			goto fail;
841 	} else {
842 		goto fail;
843 	}
844 	for (i = 0; i < num_elem; i++) {
845 		if (!CMAC_Update(ctx, addr[i], len[i]))
846 			goto fail;
847 	}
848 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
849 		goto fail;
850 
851 	ret = 0;
852 fail:
853 	CMAC_CTX_free(ctx);
854 	return ret;
855 }
856 
857 
858 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
859 			 const u8 *addr[], const size_t *len, u8 *mac)
860 {
861 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
862 }
863 
864 
865 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
866 {
867 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
868 }
869 
870 
871 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
872 {
873 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
874 }
875 #endif /* CONFIG_OPENSSL_CMAC */
876 
877 
878 struct crypto_bignum * crypto_bignum_init(void)
879 {
880 	return (struct crypto_bignum *) BN_new();
881 }
882 
883 
884 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
885 {
886 	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
887 	return (struct crypto_bignum *) bn;
888 }
889 
890 
891 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
892 {
893 	if (clear)
894 		BN_clear_free((BIGNUM *) n);
895 	else
896 		BN_free((BIGNUM *) n);
897 }
898 
899 
900 int crypto_bignum_to_bin(const struct crypto_bignum *a,
901 			 u8 *buf, size_t buflen, size_t padlen)
902 {
903 	int num_bytes, offset;
904 
905 	if (padlen > buflen)
906 		return -1;
907 
908 	num_bytes = BN_num_bytes((const BIGNUM *) a);
909 	if ((size_t) num_bytes > buflen)
910 		return -1;
911 	if (padlen > (size_t) num_bytes)
912 		offset = padlen - num_bytes;
913 	else
914 		offset = 0;
915 
916 	os_memset(buf, 0, offset);
917 	BN_bn2bin((const BIGNUM *) a, buf + offset);
918 
919 	return num_bytes + offset;
920 }
921 
922 
923 int crypto_bignum_add(const struct crypto_bignum *a,
924 		      const struct crypto_bignum *b,
925 		      struct crypto_bignum *c)
926 {
927 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
928 		0 : -1;
929 }
930 
931 
932 int crypto_bignum_mod(const struct crypto_bignum *a,
933 		      const struct crypto_bignum *b,
934 		      struct crypto_bignum *c)
935 {
936 	int res;
937 	BN_CTX *bnctx;
938 
939 	bnctx = BN_CTX_new();
940 	if (bnctx == NULL)
941 		return -1;
942 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
943 		     bnctx);
944 	BN_CTX_free(bnctx);
945 
946 	return res ? 0 : -1;
947 }
948 
949 
950 int crypto_bignum_exptmod(const struct crypto_bignum *a,
951 			  const struct crypto_bignum *b,
952 			  const struct crypto_bignum *c,
953 			  struct crypto_bignum *d)
954 {
955 	int res;
956 	BN_CTX *bnctx;
957 
958 	bnctx = BN_CTX_new();
959 	if (bnctx == NULL)
960 		return -1;
961 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
962 			 (const BIGNUM *) c, bnctx);
963 	BN_CTX_free(bnctx);
964 
965 	return res ? 0 : -1;
966 }
967 
968 
969 int crypto_bignum_inverse(const struct crypto_bignum *a,
970 			  const struct crypto_bignum *b,
971 			  struct crypto_bignum *c)
972 {
973 	BIGNUM *res;
974 	BN_CTX *bnctx;
975 
976 	bnctx = BN_CTX_new();
977 	if (bnctx == NULL)
978 		return -1;
979 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
980 			     (const BIGNUM *) b, bnctx);
981 	BN_CTX_free(bnctx);
982 
983 	return res ? 0 : -1;
984 }
985 
986 
987 int crypto_bignum_sub(const struct crypto_bignum *a,
988 		      const struct crypto_bignum *b,
989 		      struct crypto_bignum *c)
990 {
991 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
992 		0 : -1;
993 }
994 
995 
996 int crypto_bignum_div(const struct crypto_bignum *a,
997 		      const struct crypto_bignum *b,
998 		      struct crypto_bignum *c)
999 {
1000 	int res;
1001 
1002 	BN_CTX *bnctx;
1003 
1004 	bnctx = BN_CTX_new();
1005 	if (bnctx == NULL)
1006 		return -1;
1007 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1008 		     (const BIGNUM *) b, bnctx);
1009 	BN_CTX_free(bnctx);
1010 
1011 	return res ? 0 : -1;
1012 }
1013 
1014 
1015 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1016 			 const struct crypto_bignum *b,
1017 			 const struct crypto_bignum *c,
1018 			 struct crypto_bignum *d)
1019 {
1020 	int res;
1021 
1022 	BN_CTX *bnctx;
1023 
1024 	bnctx = BN_CTX_new();
1025 	if (bnctx == NULL)
1026 		return -1;
1027 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1028 			 (const BIGNUM *) c, bnctx);
1029 	BN_CTX_free(bnctx);
1030 
1031 	return res ? 0 : -1;
1032 }
1033 
1034 
1035 int crypto_bignum_cmp(const struct crypto_bignum *a,
1036 		      const struct crypto_bignum *b)
1037 {
1038 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1039 }
1040 
1041 
1042 int crypto_bignum_bits(const struct crypto_bignum *a)
1043 {
1044 	return BN_num_bits((const BIGNUM *) a);
1045 }
1046 
1047 
1048 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1049 {
1050 	return BN_is_zero((const BIGNUM *) a);
1051 }
1052 
1053 
1054 int crypto_bignum_is_one(const struct crypto_bignum *a)
1055 {
1056 	return BN_is_one((const BIGNUM *) a);
1057 }
1058 
1059 
1060 #ifdef CONFIG_ECC
1061 
1062 struct crypto_ec {
1063 	EC_GROUP *group;
1064 	BN_CTX *bnctx;
1065 	BIGNUM *prime;
1066 	BIGNUM *order;
1067 };
1068 
1069 struct crypto_ec * crypto_ec_init(int group)
1070 {
1071 	struct crypto_ec *e;
1072 	int nid;
1073 
1074 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1075 	switch (group) {
1076 	case 19:
1077 		nid = NID_X9_62_prime256v1;
1078 		break;
1079 	case 20:
1080 		nid = NID_secp384r1;
1081 		break;
1082 	case 21:
1083 		nid = NID_secp521r1;
1084 		break;
1085 	case 25:
1086 		nid = NID_X9_62_prime192v1;
1087 		break;
1088 	case 26:
1089 		nid = NID_secp224r1;
1090 		break;
1091 	default:
1092 		return NULL;
1093 	}
1094 
1095 	e = os_zalloc(sizeof(*e));
1096 	if (e == NULL)
1097 		return NULL;
1098 
1099 	e->bnctx = BN_CTX_new();
1100 	e->group = EC_GROUP_new_by_curve_name(nid);
1101 	e->prime = BN_new();
1102 	e->order = BN_new();
1103 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1104 	    e->order == NULL ||
1105 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1106 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1107 		crypto_ec_deinit(e);
1108 		e = NULL;
1109 	}
1110 
1111 	return e;
1112 }
1113 
1114 
1115 void crypto_ec_deinit(struct crypto_ec *e)
1116 {
1117 	if (e == NULL)
1118 		return;
1119 	BN_clear_free(e->order);
1120 	BN_clear_free(e->prime);
1121 	EC_GROUP_free(e->group);
1122 	BN_CTX_free(e->bnctx);
1123 	os_free(e);
1124 }
1125 
1126 
1127 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1128 {
1129 	if (e == NULL)
1130 		return NULL;
1131 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1132 }
1133 
1134 
1135 size_t crypto_ec_prime_len(struct crypto_ec *e)
1136 {
1137 	return BN_num_bytes(e->prime);
1138 }
1139 
1140 
1141 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1142 {
1143 	return BN_num_bits(e->prime);
1144 }
1145 
1146 
1147 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1148 {
1149 	return (const struct crypto_bignum *) e->prime;
1150 }
1151 
1152 
1153 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1154 {
1155 	return (const struct crypto_bignum *) e->order;
1156 }
1157 
1158 
1159 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1160 {
1161 	if (clear)
1162 		EC_POINT_clear_free((EC_POINT *) p);
1163 	else
1164 		EC_POINT_free((EC_POINT *) p);
1165 }
1166 
1167 
1168 int crypto_ec_point_to_bin(struct crypto_ec *e,
1169 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1170 {
1171 	BIGNUM *x_bn, *y_bn;
1172 	int ret = -1;
1173 	int len = BN_num_bytes(e->prime);
1174 
1175 	x_bn = BN_new();
1176 	y_bn = BN_new();
1177 
1178 	if (x_bn && y_bn &&
1179 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1180 						x_bn, y_bn, e->bnctx)) {
1181 		if (x) {
1182 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1183 					     x, len, len);
1184 		}
1185 		if (y) {
1186 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1187 					     y, len, len);
1188 		}
1189 		ret = 0;
1190 	}
1191 
1192 	BN_clear_free(x_bn);
1193 	BN_clear_free(y_bn);
1194 	return ret;
1195 }
1196 
1197 
1198 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1199 						  const u8 *val)
1200 {
1201 	BIGNUM *x, *y;
1202 	EC_POINT *elem;
1203 	int len = BN_num_bytes(e->prime);
1204 
1205 	x = BN_bin2bn(val, len, NULL);
1206 	y = BN_bin2bn(val + len, len, NULL);
1207 	elem = EC_POINT_new(e->group);
1208 	if (x == NULL || y == NULL || elem == NULL) {
1209 		BN_clear_free(x);
1210 		BN_clear_free(y);
1211 		EC_POINT_clear_free(elem);
1212 		return NULL;
1213 	}
1214 
1215 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1216 						 e->bnctx)) {
1217 		EC_POINT_clear_free(elem);
1218 		elem = NULL;
1219 	}
1220 
1221 	BN_clear_free(x);
1222 	BN_clear_free(y);
1223 
1224 	return (struct crypto_ec_point *) elem;
1225 }
1226 
1227 
1228 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1229 			const struct crypto_ec_point *b,
1230 			struct crypto_ec_point *c)
1231 {
1232 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1233 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1234 }
1235 
1236 
1237 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1238 			const struct crypto_bignum *b,
1239 			struct crypto_ec_point *res)
1240 {
1241 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1242 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1243 		? 0 : -1;
1244 }
1245 
1246 
1247 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1248 {
1249 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1250 }
1251 
1252 
1253 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1254 				  struct crypto_ec_point *p,
1255 				  const struct crypto_bignum *x, int y_bit)
1256 {
1257 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1258 						     (const BIGNUM *) x, y_bit,
1259 						     e->bnctx) ||
1260 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1261 		return -1;
1262 	return 0;
1263 }
1264 
1265 
1266 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1267 				   const struct crypto_ec_point *p)
1268 {
1269 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1270 }
1271 
1272 
1273 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1274 				const struct crypto_ec_point *p)
1275 {
1276 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1277 }
1278 
1279 #endif /* CONFIG_ECC */
1280