1 /* 2 * Wrapper functions for OpenSSL libcrypto 3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 #include <openssl/opensslv.h> 11 #include <openssl/err.h> 12 #include <openssl/des.h> 13 #include <openssl/aes.h> 14 #include <openssl/bn.h> 15 #include <openssl/evp.h> 16 #include <openssl/dh.h> 17 #include <openssl/hmac.h> 18 #include <openssl/rand.h> 19 #ifdef CONFIG_OPENSSL_CMAC 20 #include <openssl/cmac.h> 21 #endif /* CONFIG_OPENSSL_CMAC */ 22 #ifdef CONFIG_ECC 23 #include <openssl/ec.h> 24 #endif /* CONFIG_ECC */ 25 26 #include "common.h" 27 #include "utils/const_time.h" 28 #include "wpabuf.h" 29 #include "dh_group5.h" 30 #include "sha1.h" 31 #include "sha256.h" 32 #include "sha384.h" 33 #include "sha512.h" 34 #include "md5.h" 35 #include "aes_wrap.h" 36 #include "crypto.h" 37 38 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ 39 (defined(LIBRESSL_VERSION_NUMBER) && \ 40 LIBRESSL_VERSION_NUMBER < 0x20700000L) 41 /* Compatibility wrappers for older versions. */ 42 43 static HMAC_CTX * HMAC_CTX_new(void) 44 { 45 HMAC_CTX *ctx; 46 47 ctx = os_zalloc(sizeof(*ctx)); 48 if (ctx) 49 HMAC_CTX_init(ctx); 50 return ctx; 51 } 52 53 54 static void HMAC_CTX_free(HMAC_CTX *ctx) 55 { 56 if (!ctx) 57 return; 58 HMAC_CTX_cleanup(ctx); 59 bin_clear_free(ctx, sizeof(*ctx)); 60 } 61 62 63 static EVP_MD_CTX * EVP_MD_CTX_new(void) 64 { 65 EVP_MD_CTX *ctx; 66 67 ctx = os_zalloc(sizeof(*ctx)); 68 if (ctx) 69 EVP_MD_CTX_init(ctx); 70 return ctx; 71 } 72 73 74 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx) 75 { 76 if (!ctx) 77 return; 78 EVP_MD_CTX_cleanup(ctx); 79 bin_clear_free(ctx, sizeof(*ctx)); 80 } 81 82 #endif /* OpenSSL version < 1.1.0 */ 83 84 static BIGNUM * get_group5_prime(void) 85 { 86 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && \ 87 !(defined(LIBRESSL_VERSION_NUMBER) && \ 88 LIBRESSL_VERSION_NUMBER < 0x20700000L) 89 return BN_get_rfc3526_prime_1536(NULL); 90 #elif !defined(OPENSSL_IS_BORINGSSL) 91 return get_rfc3526_prime_1536(NULL); 92 #else 93 static const unsigned char RFC3526_PRIME_1536[] = { 94 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, 95 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 96 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, 97 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 98 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, 99 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 100 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, 101 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 102 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, 103 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 104 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, 105 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 106 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, 107 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 108 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, 109 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 110 }; 111 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); 112 #endif 113 } 114 115 116 static BIGNUM * get_group5_order(void) 117 { 118 static const unsigned char RFC3526_ORDER_1536[] = { 119 0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xE4,0x87,0xED,0x51, 120 0x10,0xB4,0x61,0x1A,0x62,0x63,0x31,0x45,0xC0,0x6E,0x0E,0x68, 121 0x94,0x81,0x27,0x04,0x45,0x33,0xE6,0x3A,0x01,0x05,0xDF,0x53, 122 0x1D,0x89,0xCD,0x91,0x28,0xA5,0x04,0x3C,0xC7,0x1A,0x02,0x6E, 123 0xF7,0xCA,0x8C,0xD9,0xE6,0x9D,0x21,0x8D,0x98,0x15,0x85,0x36, 124 0xF9,0x2F,0x8A,0x1B,0xA7,0xF0,0x9A,0xB6,0xB6,0xA8,0xE1,0x22, 125 0xF2,0x42,0xDA,0xBB,0x31,0x2F,0x3F,0x63,0x7A,0x26,0x21,0x74, 126 0xD3,0x1B,0xF6,0xB5,0x85,0xFF,0xAE,0x5B,0x7A,0x03,0x5B,0xF6, 127 0xF7,0x1C,0x35,0xFD,0xAD,0x44,0xCF,0xD2,0xD7,0x4F,0x92,0x08, 128 0xBE,0x25,0x8F,0xF3,0x24,0x94,0x33,0x28,0xF6,0x72,0x2D,0x9E, 129 0xE1,0x00,0x3E,0x5C,0x50,0xB1,0xDF,0x82,0xCC,0x6D,0x24,0x1B, 130 0x0E,0x2A,0xE9,0xCD,0x34,0x8B,0x1F,0xD4,0x7E,0x92,0x67,0xAF, 131 0xC1,0xB2,0xAE,0x91,0xEE,0x51,0xD6,0xCB,0x0E,0x31,0x79,0xAB, 132 0x10,0x42,0xA9,0x5D,0xCF,0x6A,0x94,0x83,0xB8,0x4B,0x4B,0x36, 133 0xB3,0x86,0x1A,0xA7,0x25,0x5E,0x4C,0x02,0x78,0xBA,0x36,0x04, 134 0x65,0x11,0xB9,0x93,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF 135 }; 136 return BN_bin2bn(RFC3526_ORDER_1536, sizeof(RFC3526_ORDER_1536), NULL); 137 } 138 139 140 #ifdef OPENSSL_NO_SHA256 141 #define NO_SHA256_WRAPPER 142 #endif 143 #ifdef OPENSSL_NO_SHA512 144 #define NO_SHA384_WRAPPER 145 #endif 146 147 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, 148 const u8 *addr[], const size_t *len, u8 *mac) 149 { 150 EVP_MD_CTX *ctx; 151 size_t i; 152 unsigned int mac_len; 153 154 if (TEST_FAIL()) 155 return -1; 156 157 ctx = EVP_MD_CTX_new(); 158 if (!ctx) 159 return -1; 160 if (!EVP_DigestInit_ex(ctx, type, NULL)) { 161 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", 162 ERR_error_string(ERR_get_error(), NULL)); 163 EVP_MD_CTX_free(ctx); 164 return -1; 165 } 166 for (i = 0; i < num_elem; i++) { 167 if (!EVP_DigestUpdate(ctx, addr[i], len[i])) { 168 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " 169 "failed: %s", 170 ERR_error_string(ERR_get_error(), NULL)); 171 EVP_MD_CTX_free(ctx); 172 return -1; 173 } 174 } 175 if (!EVP_DigestFinal(ctx, mac, &mac_len)) { 176 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", 177 ERR_error_string(ERR_get_error(), NULL)); 178 EVP_MD_CTX_free(ctx); 179 return -1; 180 } 181 EVP_MD_CTX_free(ctx); 182 183 return 0; 184 } 185 186 187 #ifndef CONFIG_FIPS 188 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 189 { 190 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); 191 } 192 #endif /* CONFIG_FIPS */ 193 194 195 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) 196 { 197 u8 pkey[8], next, tmp; 198 int i; 199 DES_key_schedule ks; 200 201 /* Add parity bits to the key */ 202 next = 0; 203 for (i = 0; i < 7; i++) { 204 tmp = key[i]; 205 pkey[i] = (tmp >> i) | next | 1; 206 next = tmp << (7 - i); 207 } 208 pkey[i] = next | 1; 209 210 DES_set_key((DES_cblock *) &pkey, &ks); 211 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, 212 DES_ENCRYPT); 213 return 0; 214 } 215 216 217 #ifndef CONFIG_NO_RC4 218 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 219 u8 *data, size_t data_len) 220 { 221 #ifdef OPENSSL_NO_RC4 222 return -1; 223 #else /* OPENSSL_NO_RC4 */ 224 EVP_CIPHER_CTX *ctx; 225 int outl; 226 int res = -1; 227 unsigned char skip_buf[16]; 228 229 ctx = EVP_CIPHER_CTX_new(); 230 if (!ctx || 231 !EVP_CIPHER_CTX_set_padding(ctx, 0) || 232 !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) || 233 !EVP_CIPHER_CTX_set_key_length(ctx, keylen) || 234 !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1)) 235 goto out; 236 237 while (skip >= sizeof(skip_buf)) { 238 size_t len = skip; 239 if (len > sizeof(skip_buf)) 240 len = sizeof(skip_buf); 241 if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len)) 242 goto out; 243 skip -= len; 244 } 245 246 if (EVP_CipherUpdate(ctx, data, &outl, data, data_len)) 247 res = 0; 248 249 out: 250 if (ctx) 251 EVP_CIPHER_CTX_free(ctx); 252 return res; 253 #endif /* OPENSSL_NO_RC4 */ 254 } 255 #endif /* CONFIG_NO_RC4 */ 256 257 258 #ifndef CONFIG_FIPS 259 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 260 { 261 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); 262 } 263 #endif /* CONFIG_FIPS */ 264 265 266 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 267 { 268 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); 269 } 270 271 272 #ifndef NO_SHA256_WRAPPER 273 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 274 u8 *mac) 275 { 276 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); 277 } 278 #endif /* NO_SHA256_WRAPPER */ 279 280 281 #ifndef NO_SHA384_WRAPPER 282 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, 283 u8 *mac) 284 { 285 return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac); 286 } 287 #endif /* NO_SHA384_WRAPPER */ 288 289 290 #ifndef NO_SHA512_WRAPPER 291 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, 292 u8 *mac) 293 { 294 return openssl_digest_vector(EVP_sha512(), num_elem, addr, len, mac); 295 } 296 #endif /* NO_SHA512_WRAPPER */ 297 298 299 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) 300 { 301 switch (keylen) { 302 case 16: 303 return EVP_aes_128_ecb(); 304 case 24: 305 return EVP_aes_192_ecb(); 306 case 32: 307 return EVP_aes_256_ecb(); 308 } 309 310 return NULL; 311 } 312 313 314 void * aes_encrypt_init(const u8 *key, size_t len) 315 { 316 EVP_CIPHER_CTX *ctx; 317 const EVP_CIPHER *type; 318 319 if (TEST_FAIL()) 320 return NULL; 321 322 type = aes_get_evp_cipher(len); 323 if (!type) { 324 wpa_printf(MSG_INFO, "%s: Unsupported len=%u", 325 __func__, (unsigned int) len); 326 return NULL; 327 } 328 329 ctx = EVP_CIPHER_CTX_new(); 330 if (ctx == NULL) 331 return NULL; 332 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 333 os_free(ctx); 334 return NULL; 335 } 336 EVP_CIPHER_CTX_set_padding(ctx, 0); 337 return ctx; 338 } 339 340 341 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) 342 { 343 EVP_CIPHER_CTX *c = ctx; 344 int clen = 16; 345 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { 346 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", 347 ERR_error_string(ERR_get_error(), NULL)); 348 return -1; 349 } 350 return 0; 351 } 352 353 354 void aes_encrypt_deinit(void *ctx) 355 { 356 EVP_CIPHER_CTX *c = ctx; 357 u8 buf[16]; 358 int len = sizeof(buf); 359 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { 360 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " 361 "%s", ERR_error_string(ERR_get_error(), NULL)); 362 } 363 if (len != 0) { 364 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 365 "in AES encrypt", len); 366 } 367 EVP_CIPHER_CTX_free(c); 368 } 369 370 371 void * aes_decrypt_init(const u8 *key, size_t len) 372 { 373 EVP_CIPHER_CTX *ctx; 374 const EVP_CIPHER *type; 375 376 if (TEST_FAIL()) 377 return NULL; 378 379 type = aes_get_evp_cipher(len); 380 if (!type) { 381 wpa_printf(MSG_INFO, "%s: Unsupported len=%u", 382 __func__, (unsigned int) len); 383 return NULL; 384 } 385 386 ctx = EVP_CIPHER_CTX_new(); 387 if (ctx == NULL) 388 return NULL; 389 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 390 EVP_CIPHER_CTX_free(ctx); 391 return NULL; 392 } 393 EVP_CIPHER_CTX_set_padding(ctx, 0); 394 return ctx; 395 } 396 397 398 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) 399 { 400 EVP_CIPHER_CTX *c = ctx; 401 int plen = 16; 402 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { 403 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", 404 ERR_error_string(ERR_get_error(), NULL)); 405 return -1; 406 } 407 return 0; 408 } 409 410 411 void aes_decrypt_deinit(void *ctx) 412 { 413 EVP_CIPHER_CTX *c = ctx; 414 u8 buf[16]; 415 int len = sizeof(buf); 416 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { 417 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " 418 "%s", ERR_error_string(ERR_get_error(), NULL)); 419 } 420 if (len != 0) { 421 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 422 "in AES decrypt", len); 423 } 424 EVP_CIPHER_CTX_free(c); 425 } 426 427 428 #ifndef CONFIG_FIPS 429 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP 430 431 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher) 432 { 433 AES_KEY actx; 434 int res; 435 436 if (TEST_FAIL()) 437 return -1; 438 if (AES_set_encrypt_key(kek, kek_len << 3, &actx)) 439 return -1; 440 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8); 441 OPENSSL_cleanse(&actx, sizeof(actx)); 442 return res <= 0 ? -1 : 0; 443 } 444 445 446 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher, 447 u8 *plain) 448 { 449 AES_KEY actx; 450 int res; 451 452 if (TEST_FAIL()) 453 return -1; 454 if (AES_set_decrypt_key(kek, kek_len << 3, &actx)) 455 return -1; 456 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8); 457 OPENSSL_cleanse(&actx, sizeof(actx)); 458 return res <= 0 ? -1 : 0; 459 } 460 461 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */ 462 #endif /* CONFIG_FIPS */ 463 464 465 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 466 { 467 EVP_CIPHER_CTX *ctx; 468 int clen, len; 469 u8 buf[16]; 470 int res = -1; 471 472 if (TEST_FAIL()) 473 return -1; 474 475 ctx = EVP_CIPHER_CTX_new(); 476 if (!ctx) 477 return -1; 478 clen = data_len; 479 len = sizeof(buf); 480 if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 && 481 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 && 482 EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 && 483 clen == (int) data_len && 484 EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0) 485 res = 0; 486 EVP_CIPHER_CTX_free(ctx); 487 488 return res; 489 } 490 491 492 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 493 { 494 EVP_CIPHER_CTX *ctx; 495 int plen, len; 496 u8 buf[16]; 497 int res = -1; 498 499 if (TEST_FAIL()) 500 return -1; 501 502 ctx = EVP_CIPHER_CTX_new(); 503 if (!ctx) 504 return -1; 505 plen = data_len; 506 len = sizeof(buf); 507 if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 && 508 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 && 509 EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 && 510 plen == (int) data_len && 511 EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0) 512 res = 0; 513 EVP_CIPHER_CTX_free(ctx); 514 515 return res; 516 517 } 518 519 520 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, 521 u8 *pubkey) 522 { 523 size_t pubkey_len, pad; 524 525 if (os_get_random(privkey, prime_len) < 0) 526 return -1; 527 if (os_memcmp(privkey, prime, prime_len) > 0) { 528 /* Make sure private value is smaller than prime */ 529 privkey[0] = 0; 530 } 531 532 pubkey_len = prime_len; 533 if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len, 534 pubkey, &pubkey_len) < 0) 535 return -1; 536 if (pubkey_len < prime_len) { 537 pad = prime_len - pubkey_len; 538 os_memmove(pubkey + pad, pubkey, pubkey_len); 539 os_memset(pubkey, 0, pad); 540 } 541 542 return 0; 543 } 544 545 546 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, 547 const u8 *order, size_t order_len, 548 const u8 *privkey, size_t privkey_len, 549 const u8 *pubkey, size_t pubkey_len, 550 u8 *secret, size_t *len) 551 { 552 BIGNUM *pub, *p; 553 int res = -1; 554 555 pub = BN_bin2bn(pubkey, pubkey_len, NULL); 556 p = BN_bin2bn(prime, prime_len, NULL); 557 if (!pub || !p || BN_is_zero(pub) || BN_is_one(pub) || 558 BN_cmp(pub, p) >= 0) 559 goto fail; 560 561 if (order) { 562 BN_CTX *ctx; 563 BIGNUM *q, *tmp; 564 int failed; 565 566 /* verify: pubkey^q == 1 mod p */ 567 q = BN_bin2bn(order, order_len, NULL); 568 ctx = BN_CTX_new(); 569 tmp = BN_new(); 570 failed = !q || !ctx || !tmp || 571 !BN_mod_exp(tmp, pub, q, p, ctx) || 572 !BN_is_one(tmp); 573 BN_clear_free(q); 574 BN_clear_free(tmp); 575 BN_CTX_free(ctx); 576 if (failed) 577 goto fail; 578 } 579 580 res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len, 581 prime, prime_len, secret, len); 582 fail: 583 BN_clear_free(pub); 584 BN_clear_free(p); 585 return res; 586 } 587 588 589 int crypto_mod_exp(const u8 *base, size_t base_len, 590 const u8 *power, size_t power_len, 591 const u8 *modulus, size_t modulus_len, 592 u8 *result, size_t *result_len) 593 { 594 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; 595 int ret = -1; 596 BN_CTX *ctx; 597 598 ctx = BN_CTX_new(); 599 if (ctx == NULL) 600 return -1; 601 602 bn_base = BN_bin2bn(base, base_len, NULL); 603 bn_exp = BN_bin2bn(power, power_len, NULL); 604 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); 605 bn_result = BN_new(); 606 607 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || 608 bn_result == NULL) 609 goto error; 610 611 if (BN_mod_exp_mont_consttime(bn_result, bn_base, bn_exp, bn_modulus, 612 ctx, NULL) != 1) 613 goto error; 614 615 *result_len = BN_bn2bin(bn_result, result); 616 ret = 0; 617 618 error: 619 BN_clear_free(bn_base); 620 BN_clear_free(bn_exp); 621 BN_clear_free(bn_modulus); 622 BN_clear_free(bn_result); 623 BN_CTX_free(ctx); 624 return ret; 625 } 626 627 628 struct crypto_cipher { 629 EVP_CIPHER_CTX *enc; 630 EVP_CIPHER_CTX *dec; 631 }; 632 633 634 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 635 const u8 *iv, const u8 *key, 636 size_t key_len) 637 { 638 struct crypto_cipher *ctx; 639 const EVP_CIPHER *cipher; 640 641 ctx = os_zalloc(sizeof(*ctx)); 642 if (ctx == NULL) 643 return NULL; 644 645 switch (alg) { 646 #ifndef CONFIG_NO_RC4 647 #ifndef OPENSSL_NO_RC4 648 case CRYPTO_CIPHER_ALG_RC4: 649 cipher = EVP_rc4(); 650 break; 651 #endif /* OPENSSL_NO_RC4 */ 652 #endif /* CONFIG_NO_RC4 */ 653 #ifndef OPENSSL_NO_AES 654 case CRYPTO_CIPHER_ALG_AES: 655 switch (key_len) { 656 case 16: 657 cipher = EVP_aes_128_cbc(); 658 break; 659 #ifndef OPENSSL_IS_BORINGSSL 660 case 24: 661 cipher = EVP_aes_192_cbc(); 662 break; 663 #endif /* OPENSSL_IS_BORINGSSL */ 664 case 32: 665 cipher = EVP_aes_256_cbc(); 666 break; 667 default: 668 os_free(ctx); 669 return NULL; 670 } 671 break; 672 #endif /* OPENSSL_NO_AES */ 673 #ifndef OPENSSL_NO_DES 674 case CRYPTO_CIPHER_ALG_3DES: 675 cipher = EVP_des_ede3_cbc(); 676 break; 677 case CRYPTO_CIPHER_ALG_DES: 678 cipher = EVP_des_cbc(); 679 break; 680 #endif /* OPENSSL_NO_DES */ 681 #ifndef OPENSSL_NO_RC2 682 case CRYPTO_CIPHER_ALG_RC2: 683 cipher = EVP_rc2_ecb(); 684 break; 685 #endif /* OPENSSL_NO_RC2 */ 686 default: 687 os_free(ctx); 688 return NULL; 689 } 690 691 if (!(ctx->enc = EVP_CIPHER_CTX_new()) || 692 !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) || 693 !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) || 694 !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) || 695 !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) { 696 if (ctx->enc) 697 EVP_CIPHER_CTX_free(ctx->enc); 698 os_free(ctx); 699 return NULL; 700 } 701 702 if (!(ctx->dec = EVP_CIPHER_CTX_new()) || 703 !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) || 704 !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) || 705 !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) || 706 !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) { 707 EVP_CIPHER_CTX_free(ctx->enc); 708 if (ctx->dec) 709 EVP_CIPHER_CTX_free(ctx->dec); 710 os_free(ctx); 711 return NULL; 712 } 713 714 return ctx; 715 } 716 717 718 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, 719 u8 *crypt, size_t len) 720 { 721 int outl; 722 if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len)) 723 return -1; 724 return 0; 725 } 726 727 728 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, 729 u8 *plain, size_t len) 730 { 731 int outl; 732 outl = len; 733 if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len)) 734 return -1; 735 return 0; 736 } 737 738 739 void crypto_cipher_deinit(struct crypto_cipher *ctx) 740 { 741 EVP_CIPHER_CTX_free(ctx->enc); 742 EVP_CIPHER_CTX_free(ctx->dec); 743 os_free(ctx); 744 } 745 746 747 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) 748 { 749 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ 750 (defined(LIBRESSL_VERSION_NUMBER) && \ 751 LIBRESSL_VERSION_NUMBER < 0x20700000L) 752 DH *dh; 753 struct wpabuf *pubkey = NULL, *privkey = NULL; 754 size_t publen, privlen; 755 756 *priv = NULL; 757 wpabuf_free(*publ); 758 *publ = NULL; 759 760 dh = DH_new(); 761 if (dh == NULL) 762 return NULL; 763 764 dh->g = BN_new(); 765 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 766 goto err; 767 768 dh->p = get_group5_prime(); 769 if (dh->p == NULL) 770 goto err; 771 772 dh->q = get_group5_order(); 773 if (!dh->q) 774 goto err; 775 776 if (DH_generate_key(dh) != 1) 777 goto err; 778 779 publen = BN_num_bytes(dh->pub_key); 780 pubkey = wpabuf_alloc(publen); 781 if (pubkey == NULL) 782 goto err; 783 privlen = BN_num_bytes(dh->priv_key); 784 privkey = wpabuf_alloc(privlen); 785 if (privkey == NULL) 786 goto err; 787 788 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); 789 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); 790 791 *priv = privkey; 792 *publ = pubkey; 793 return dh; 794 795 err: 796 wpabuf_clear_free(pubkey); 797 wpabuf_clear_free(privkey); 798 DH_free(dh); 799 return NULL; 800 #else 801 DH *dh; 802 struct wpabuf *pubkey = NULL, *privkey = NULL; 803 size_t publen, privlen; 804 BIGNUM *p, *g, *q; 805 const BIGNUM *priv_key = NULL, *pub_key = NULL; 806 807 *priv = NULL; 808 wpabuf_free(*publ); 809 *publ = NULL; 810 811 dh = DH_new(); 812 if (dh == NULL) 813 return NULL; 814 815 g = BN_new(); 816 p = get_group5_prime(); 817 q = get_group5_order(); 818 if (!g || BN_set_word(g, 2) != 1 || !p || !q || 819 DH_set0_pqg(dh, p, q, g) != 1) 820 goto err; 821 p = NULL; 822 q = NULL; 823 g = NULL; 824 825 if (DH_generate_key(dh) != 1) 826 goto err; 827 828 DH_get0_key(dh, &pub_key, &priv_key); 829 publen = BN_num_bytes(pub_key); 830 pubkey = wpabuf_alloc(publen); 831 if (!pubkey) 832 goto err; 833 privlen = BN_num_bytes(priv_key); 834 privkey = wpabuf_alloc(privlen); 835 if (!privkey) 836 goto err; 837 838 BN_bn2bin(pub_key, wpabuf_put(pubkey, publen)); 839 BN_bn2bin(priv_key, wpabuf_put(privkey, privlen)); 840 841 *priv = privkey; 842 *publ = pubkey; 843 return dh; 844 845 err: 846 BN_free(p); 847 BN_free(q); 848 BN_free(g); 849 wpabuf_clear_free(pubkey); 850 wpabuf_clear_free(privkey); 851 DH_free(dh); 852 return NULL; 853 #endif 854 } 855 856 857 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) 858 { 859 #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ 860 (defined(LIBRESSL_VERSION_NUMBER) && \ 861 LIBRESSL_VERSION_NUMBER < 0x20700000L) 862 DH *dh; 863 864 dh = DH_new(); 865 if (dh == NULL) 866 return NULL; 867 868 dh->g = BN_new(); 869 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 870 goto err; 871 872 dh->p = get_group5_prime(); 873 if (dh->p == NULL) 874 goto err; 875 876 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); 877 if (dh->priv_key == NULL) 878 goto err; 879 880 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); 881 if (dh->pub_key == NULL) 882 goto err; 883 884 if (DH_generate_key(dh) != 1) 885 goto err; 886 887 return dh; 888 889 err: 890 DH_free(dh); 891 return NULL; 892 #else 893 DH *dh; 894 BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL; 895 896 dh = DH_new(); 897 if (dh == NULL) 898 return NULL; 899 900 g = BN_new(); 901 p = get_group5_prime(); 902 if (!g || BN_set_word(g, 2) != 1 || !p || 903 DH_set0_pqg(dh, p, NULL, g) != 1) 904 goto err; 905 p = NULL; 906 g = NULL; 907 908 priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); 909 pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); 910 if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1) 911 goto err; 912 pub_key = NULL; 913 priv_key = NULL; 914 915 if (DH_generate_key(dh) != 1) 916 goto err; 917 918 return dh; 919 920 err: 921 BN_free(p); 922 BN_free(g); 923 BN_free(pub_key); 924 BN_clear_free(priv_key); 925 DH_free(dh); 926 return NULL; 927 #endif 928 } 929 930 931 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, 932 const struct wpabuf *own_private) 933 { 934 BIGNUM *pub_key; 935 struct wpabuf *res = NULL; 936 size_t rlen; 937 DH *dh = ctx; 938 int keylen; 939 940 if (ctx == NULL) 941 return NULL; 942 943 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), 944 NULL); 945 if (pub_key == NULL) 946 return NULL; 947 948 rlen = DH_size(dh); 949 res = wpabuf_alloc(rlen); 950 if (res == NULL) 951 goto err; 952 953 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); 954 if (keylen < 0) 955 goto err; 956 wpabuf_put(res, keylen); 957 BN_clear_free(pub_key); 958 959 return res; 960 961 err: 962 BN_clear_free(pub_key); 963 wpabuf_clear_free(res); 964 return NULL; 965 } 966 967 968 void dh5_free(void *ctx) 969 { 970 DH *dh; 971 if (ctx == NULL) 972 return; 973 dh = ctx; 974 DH_free(dh); 975 } 976 977 978 struct crypto_hash { 979 HMAC_CTX *ctx; 980 }; 981 982 983 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 984 size_t key_len) 985 { 986 struct crypto_hash *ctx; 987 const EVP_MD *md; 988 989 switch (alg) { 990 #ifndef OPENSSL_NO_MD5 991 case CRYPTO_HASH_ALG_HMAC_MD5: 992 md = EVP_md5(); 993 break; 994 #endif /* OPENSSL_NO_MD5 */ 995 #ifndef OPENSSL_NO_SHA 996 case CRYPTO_HASH_ALG_HMAC_SHA1: 997 md = EVP_sha1(); 998 break; 999 #endif /* OPENSSL_NO_SHA */ 1000 #ifndef OPENSSL_NO_SHA256 1001 #ifdef CONFIG_SHA256 1002 case CRYPTO_HASH_ALG_HMAC_SHA256: 1003 md = EVP_sha256(); 1004 break; 1005 #endif /* CONFIG_SHA256 */ 1006 #endif /* OPENSSL_NO_SHA256 */ 1007 default: 1008 return NULL; 1009 } 1010 1011 ctx = os_zalloc(sizeof(*ctx)); 1012 if (ctx == NULL) 1013 return NULL; 1014 ctx->ctx = HMAC_CTX_new(); 1015 if (!ctx->ctx) { 1016 os_free(ctx); 1017 return NULL; 1018 } 1019 1020 if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) { 1021 HMAC_CTX_free(ctx->ctx); 1022 bin_clear_free(ctx, sizeof(*ctx)); 1023 return NULL; 1024 } 1025 1026 return ctx; 1027 } 1028 1029 1030 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) 1031 { 1032 if (ctx == NULL) 1033 return; 1034 HMAC_Update(ctx->ctx, data, len); 1035 } 1036 1037 1038 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) 1039 { 1040 unsigned int mdlen; 1041 int res; 1042 1043 if (ctx == NULL) 1044 return -2; 1045 1046 if (mac == NULL || len == NULL) { 1047 HMAC_CTX_free(ctx->ctx); 1048 bin_clear_free(ctx, sizeof(*ctx)); 1049 return 0; 1050 } 1051 1052 mdlen = *len; 1053 res = HMAC_Final(ctx->ctx, mac, &mdlen); 1054 HMAC_CTX_free(ctx->ctx); 1055 bin_clear_free(ctx, sizeof(*ctx)); 1056 1057 if (TEST_FAIL()) 1058 return -1; 1059 1060 if (res == 1) { 1061 *len = mdlen; 1062 return 0; 1063 } 1064 1065 return -1; 1066 } 1067 1068 1069 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key, 1070 size_t key_len, size_t num_elem, 1071 const u8 *addr[], const size_t *len, u8 *mac, 1072 unsigned int mdlen) 1073 { 1074 HMAC_CTX *ctx; 1075 size_t i; 1076 int res; 1077 1078 if (TEST_FAIL()) 1079 return -1; 1080 1081 ctx = HMAC_CTX_new(); 1082 if (!ctx) 1083 return -1; 1084 res = HMAC_Init_ex(ctx, key, key_len, type, NULL); 1085 if (res != 1) 1086 goto done; 1087 1088 for (i = 0; i < num_elem; i++) 1089 HMAC_Update(ctx, addr[i], len[i]); 1090 1091 res = HMAC_Final(ctx, mac, &mdlen); 1092 done: 1093 HMAC_CTX_free(ctx); 1094 1095 return res == 1 ? 0 : -1; 1096 } 1097 1098 1099 #ifndef CONFIG_FIPS 1100 1101 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, 1102 const u8 *addr[], const size_t *len, u8 *mac) 1103 { 1104 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len, 1105 mac, 16); 1106 } 1107 1108 1109 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 1110 u8 *mac) 1111 { 1112 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); 1113 } 1114 1115 #endif /* CONFIG_FIPS */ 1116 1117 1118 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, 1119 int iterations, u8 *buf, size_t buflen) 1120 { 1121 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, 1122 ssid_len, iterations, buflen, buf) != 1) 1123 return -1; 1124 return 0; 1125 } 1126 1127 1128 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, 1129 const u8 *addr[], const size_t *len, u8 *mac) 1130 { 1131 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr, 1132 len, mac, 20); 1133 } 1134 1135 1136 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 1137 u8 *mac) 1138 { 1139 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); 1140 } 1141 1142 1143 #ifdef CONFIG_SHA256 1144 1145 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, 1146 const u8 *addr[], const size_t *len, u8 *mac) 1147 { 1148 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr, 1149 len, mac, 32); 1150 } 1151 1152 1153 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, 1154 size_t data_len, u8 *mac) 1155 { 1156 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); 1157 } 1158 1159 #endif /* CONFIG_SHA256 */ 1160 1161 1162 #ifdef CONFIG_SHA384 1163 1164 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, 1165 const u8 *addr[], const size_t *len, u8 *mac) 1166 { 1167 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr, 1168 len, mac, 48); 1169 } 1170 1171 1172 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, 1173 size_t data_len, u8 *mac) 1174 { 1175 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); 1176 } 1177 1178 #endif /* CONFIG_SHA384 */ 1179 1180 1181 #ifdef CONFIG_SHA512 1182 1183 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem, 1184 const u8 *addr[], const size_t *len, u8 *mac) 1185 { 1186 return openssl_hmac_vector(EVP_sha512(), key, key_len, num_elem, addr, 1187 len, mac, 64); 1188 } 1189 1190 1191 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data, 1192 size_t data_len, u8 *mac) 1193 { 1194 return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac); 1195 } 1196 1197 #endif /* CONFIG_SHA512 */ 1198 1199 1200 int crypto_get_random(void *buf, size_t len) 1201 { 1202 if (RAND_bytes(buf, len) != 1) 1203 return -1; 1204 return 0; 1205 } 1206 1207 1208 #ifdef CONFIG_OPENSSL_CMAC 1209 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem, 1210 const u8 *addr[], const size_t *len, u8 *mac) 1211 { 1212 CMAC_CTX *ctx; 1213 int ret = -1; 1214 size_t outlen, i; 1215 1216 if (TEST_FAIL()) 1217 return -1; 1218 1219 ctx = CMAC_CTX_new(); 1220 if (ctx == NULL) 1221 return -1; 1222 1223 if (key_len == 32) { 1224 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL)) 1225 goto fail; 1226 } else if (key_len == 16) { 1227 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) 1228 goto fail; 1229 } else { 1230 goto fail; 1231 } 1232 for (i = 0; i < num_elem; i++) { 1233 if (!CMAC_Update(ctx, addr[i], len[i])) 1234 goto fail; 1235 } 1236 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) 1237 goto fail; 1238 1239 ret = 0; 1240 fail: 1241 CMAC_CTX_free(ctx); 1242 return ret; 1243 } 1244 1245 1246 int omac1_aes_128_vector(const u8 *key, size_t num_elem, 1247 const u8 *addr[], const size_t *len, u8 *mac) 1248 { 1249 return omac1_aes_vector(key, 16, num_elem, addr, len, mac); 1250 } 1251 1252 1253 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 1254 { 1255 return omac1_aes_128_vector(key, 1, &data, &data_len, mac); 1256 } 1257 1258 1259 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 1260 { 1261 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac); 1262 } 1263 #endif /* CONFIG_OPENSSL_CMAC */ 1264 1265 1266 struct crypto_bignum * crypto_bignum_init(void) 1267 { 1268 if (TEST_FAIL()) 1269 return NULL; 1270 return (struct crypto_bignum *) BN_new(); 1271 } 1272 1273 1274 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) 1275 { 1276 BIGNUM *bn; 1277 1278 if (TEST_FAIL()) 1279 return NULL; 1280 1281 bn = BN_bin2bn(buf, len, NULL); 1282 return (struct crypto_bignum *) bn; 1283 } 1284 1285 1286 void crypto_bignum_deinit(struct crypto_bignum *n, int clear) 1287 { 1288 if (clear) 1289 BN_clear_free((BIGNUM *) n); 1290 else 1291 BN_free((BIGNUM *) n); 1292 } 1293 1294 1295 int crypto_bignum_to_bin(const struct crypto_bignum *a, 1296 u8 *buf, size_t buflen, size_t padlen) 1297 { 1298 int num_bytes, offset; 1299 1300 if (TEST_FAIL()) 1301 return -1; 1302 1303 if (padlen > buflen) 1304 return -1; 1305 1306 if (padlen) { 1307 #ifdef OPENSSL_IS_BORINGSSL 1308 if (BN_bn2bin_padded(buf, padlen, (const BIGNUM *) a) == 0) 1309 return -1; 1310 return padlen; 1311 #else /* OPENSSL_IS_BORINGSSL */ 1312 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER) 1313 return BN_bn2binpad((const BIGNUM *) a, buf, padlen); 1314 #endif 1315 #endif 1316 } 1317 1318 num_bytes = BN_num_bytes((const BIGNUM *) a); 1319 if ((size_t) num_bytes > buflen) 1320 return -1; 1321 if (padlen > (size_t) num_bytes) 1322 offset = padlen - num_bytes; 1323 else 1324 offset = 0; 1325 1326 os_memset(buf, 0, offset); 1327 BN_bn2bin((const BIGNUM *) a, buf + offset); 1328 1329 return num_bytes + offset; 1330 } 1331 1332 1333 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m) 1334 { 1335 if (TEST_FAIL()) 1336 return -1; 1337 return BN_rand_range((BIGNUM *) r, (const BIGNUM *) m) == 1 ? 0 : -1; 1338 } 1339 1340 1341 int crypto_bignum_add(const struct crypto_bignum *a, 1342 const struct crypto_bignum *b, 1343 struct crypto_bignum *c) 1344 { 1345 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 1346 0 : -1; 1347 } 1348 1349 1350 int crypto_bignum_mod(const struct crypto_bignum *a, 1351 const struct crypto_bignum *b, 1352 struct crypto_bignum *c) 1353 { 1354 int res; 1355 BN_CTX *bnctx; 1356 1357 bnctx = BN_CTX_new(); 1358 if (bnctx == NULL) 1359 return -1; 1360 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, 1361 bnctx); 1362 BN_CTX_free(bnctx); 1363 1364 return res ? 0 : -1; 1365 } 1366 1367 1368 int crypto_bignum_exptmod(const struct crypto_bignum *a, 1369 const struct crypto_bignum *b, 1370 const struct crypto_bignum *c, 1371 struct crypto_bignum *d) 1372 { 1373 int res; 1374 BN_CTX *bnctx; 1375 1376 if (TEST_FAIL()) 1377 return -1; 1378 1379 bnctx = BN_CTX_new(); 1380 if (bnctx == NULL) 1381 return -1; 1382 res = BN_mod_exp_mont_consttime((BIGNUM *) d, (const BIGNUM *) a, 1383 (const BIGNUM *) b, (const BIGNUM *) c, 1384 bnctx, NULL); 1385 BN_CTX_free(bnctx); 1386 1387 return res ? 0 : -1; 1388 } 1389 1390 1391 int crypto_bignum_inverse(const struct crypto_bignum *a, 1392 const struct crypto_bignum *b, 1393 struct crypto_bignum *c) 1394 { 1395 BIGNUM *res; 1396 BN_CTX *bnctx; 1397 1398 if (TEST_FAIL()) 1399 return -1; 1400 bnctx = BN_CTX_new(); 1401 if (bnctx == NULL) 1402 return -1; 1403 #ifdef OPENSSL_IS_BORINGSSL 1404 /* TODO: use BN_mod_inverse_blinded() ? */ 1405 #else /* OPENSSL_IS_BORINGSSL */ 1406 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME); 1407 #endif /* OPENSSL_IS_BORINGSSL */ 1408 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, 1409 (const BIGNUM *) b, bnctx); 1410 BN_CTX_free(bnctx); 1411 1412 return res ? 0 : -1; 1413 } 1414 1415 1416 int crypto_bignum_sub(const struct crypto_bignum *a, 1417 const struct crypto_bignum *b, 1418 struct crypto_bignum *c) 1419 { 1420 if (TEST_FAIL()) 1421 return -1; 1422 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 1423 0 : -1; 1424 } 1425 1426 1427 int crypto_bignum_div(const struct crypto_bignum *a, 1428 const struct crypto_bignum *b, 1429 struct crypto_bignum *c) 1430 { 1431 int res; 1432 1433 BN_CTX *bnctx; 1434 1435 if (TEST_FAIL()) 1436 return -1; 1437 1438 bnctx = BN_CTX_new(); 1439 if (bnctx == NULL) 1440 return -1; 1441 #ifndef OPENSSL_IS_BORINGSSL 1442 BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME); 1443 #endif /* OPENSSL_IS_BORINGSSL */ 1444 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, 1445 (const BIGNUM *) b, bnctx); 1446 BN_CTX_free(bnctx); 1447 1448 return res ? 0 : -1; 1449 } 1450 1451 1452 int crypto_bignum_mulmod(const struct crypto_bignum *a, 1453 const struct crypto_bignum *b, 1454 const struct crypto_bignum *c, 1455 struct crypto_bignum *d) 1456 { 1457 int res; 1458 1459 BN_CTX *bnctx; 1460 1461 if (TEST_FAIL()) 1462 return -1; 1463 1464 bnctx = BN_CTX_new(); 1465 if (bnctx == NULL) 1466 return -1; 1467 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 1468 (const BIGNUM *) c, bnctx); 1469 BN_CTX_free(bnctx); 1470 1471 return res ? 0 : -1; 1472 } 1473 1474 1475 int crypto_bignum_rshift(const struct crypto_bignum *a, int n, 1476 struct crypto_bignum *r) 1477 { 1478 /* Note: BN_rshift() does not modify the first argument even though it 1479 * has not been marked const. */ 1480 return BN_rshift((BIGNUM *) a, (BIGNUM *) r, n) == 1 ? 0 : -1; 1481 } 1482 1483 1484 int crypto_bignum_cmp(const struct crypto_bignum *a, 1485 const struct crypto_bignum *b) 1486 { 1487 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); 1488 } 1489 1490 1491 int crypto_bignum_is_zero(const struct crypto_bignum *a) 1492 { 1493 return BN_is_zero((const BIGNUM *) a); 1494 } 1495 1496 1497 int crypto_bignum_is_one(const struct crypto_bignum *a) 1498 { 1499 return BN_is_one((const BIGNUM *) a); 1500 } 1501 1502 1503 int crypto_bignum_is_odd(const struct crypto_bignum *a) 1504 { 1505 return BN_is_odd((const BIGNUM *) a); 1506 } 1507 1508 1509 int crypto_bignum_legendre(const struct crypto_bignum *a, 1510 const struct crypto_bignum *p) 1511 { 1512 BN_CTX *bnctx; 1513 BIGNUM *exp = NULL, *tmp = NULL; 1514 int res = -2; 1515 unsigned int mask; 1516 1517 if (TEST_FAIL()) 1518 return -2; 1519 1520 bnctx = BN_CTX_new(); 1521 if (bnctx == NULL) 1522 return -2; 1523 1524 exp = BN_new(); 1525 tmp = BN_new(); 1526 if (!exp || !tmp || 1527 /* exp = (p-1) / 2 */ 1528 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) || 1529 !BN_rshift1(exp, exp) || 1530 !BN_mod_exp_mont_consttime(tmp, (const BIGNUM *) a, exp, 1531 (const BIGNUM *) p, bnctx, NULL)) 1532 goto fail; 1533 1534 /* Return 1 if tmp == 1, 0 if tmp == 0, or -1 otherwise. Need to use 1535 * constant time selection to avoid branches here. */ 1536 res = -1; 1537 mask = const_time_eq(BN_is_word(tmp, 1), 1); 1538 res = const_time_select_int(mask, 1, res); 1539 mask = const_time_eq(BN_is_zero(tmp), 1); 1540 res = const_time_select_int(mask, 0, res); 1541 1542 fail: 1543 BN_clear_free(tmp); 1544 BN_clear_free(exp); 1545 BN_CTX_free(bnctx); 1546 return res; 1547 } 1548 1549 1550 #ifdef CONFIG_ECC 1551 1552 struct crypto_ec { 1553 EC_GROUP *group; 1554 int nid; 1555 BN_CTX *bnctx; 1556 BIGNUM *prime; 1557 BIGNUM *order; 1558 BIGNUM *a; 1559 BIGNUM *b; 1560 }; 1561 1562 struct crypto_ec * crypto_ec_init(int group) 1563 { 1564 struct crypto_ec *e; 1565 int nid; 1566 1567 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ 1568 switch (group) { 1569 case 19: 1570 nid = NID_X9_62_prime256v1; 1571 break; 1572 case 20: 1573 nid = NID_secp384r1; 1574 break; 1575 case 21: 1576 nid = NID_secp521r1; 1577 break; 1578 case 25: 1579 nid = NID_X9_62_prime192v1; 1580 break; 1581 case 26: 1582 nid = NID_secp224r1; 1583 break; 1584 #ifdef NID_brainpoolP224r1 1585 case 27: 1586 nid = NID_brainpoolP224r1; 1587 break; 1588 #endif /* NID_brainpoolP224r1 */ 1589 #ifdef NID_brainpoolP256r1 1590 case 28: 1591 nid = NID_brainpoolP256r1; 1592 break; 1593 #endif /* NID_brainpoolP256r1 */ 1594 #ifdef NID_brainpoolP384r1 1595 case 29: 1596 nid = NID_brainpoolP384r1; 1597 break; 1598 #endif /* NID_brainpoolP384r1 */ 1599 #ifdef NID_brainpoolP512r1 1600 case 30: 1601 nid = NID_brainpoolP512r1; 1602 break; 1603 #endif /* NID_brainpoolP512r1 */ 1604 default: 1605 return NULL; 1606 } 1607 1608 e = os_zalloc(sizeof(*e)); 1609 if (e == NULL) 1610 return NULL; 1611 1612 e->nid = nid; 1613 e->bnctx = BN_CTX_new(); 1614 e->group = EC_GROUP_new_by_curve_name(nid); 1615 e->prime = BN_new(); 1616 e->order = BN_new(); 1617 e->a = BN_new(); 1618 e->b = BN_new(); 1619 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || 1620 e->order == NULL || e->a == NULL || e->b == NULL || 1621 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) || 1622 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { 1623 crypto_ec_deinit(e); 1624 e = NULL; 1625 } 1626 1627 return e; 1628 } 1629 1630 1631 void crypto_ec_deinit(struct crypto_ec *e) 1632 { 1633 if (e == NULL) 1634 return; 1635 BN_clear_free(e->b); 1636 BN_clear_free(e->a); 1637 BN_clear_free(e->order); 1638 BN_clear_free(e->prime); 1639 EC_GROUP_free(e->group); 1640 BN_CTX_free(e->bnctx); 1641 os_free(e); 1642 } 1643 1644 1645 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) 1646 { 1647 if (TEST_FAIL()) 1648 return NULL; 1649 if (e == NULL) 1650 return NULL; 1651 return (struct crypto_ec_point *) EC_POINT_new(e->group); 1652 } 1653 1654 1655 size_t crypto_ec_prime_len(struct crypto_ec *e) 1656 { 1657 return BN_num_bytes(e->prime); 1658 } 1659 1660 1661 size_t crypto_ec_prime_len_bits(struct crypto_ec *e) 1662 { 1663 return BN_num_bits(e->prime); 1664 } 1665 1666 1667 size_t crypto_ec_order_len(struct crypto_ec *e) 1668 { 1669 return BN_num_bytes(e->order); 1670 } 1671 1672 1673 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) 1674 { 1675 return (const struct crypto_bignum *) e->prime; 1676 } 1677 1678 1679 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) 1680 { 1681 return (const struct crypto_bignum *) e->order; 1682 } 1683 1684 1685 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) 1686 { 1687 if (clear) 1688 EC_POINT_clear_free((EC_POINT *) p); 1689 else 1690 EC_POINT_free((EC_POINT *) p); 1691 } 1692 1693 1694 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p, 1695 struct crypto_bignum *x) 1696 { 1697 return EC_POINT_get_affine_coordinates_GFp(e->group, 1698 (const EC_POINT *) p, 1699 (BIGNUM *) x, NULL, 1700 e->bnctx) == 1 ? 0 : -1; 1701 } 1702 1703 1704 int crypto_ec_point_to_bin(struct crypto_ec *e, 1705 const struct crypto_ec_point *point, u8 *x, u8 *y) 1706 { 1707 BIGNUM *x_bn, *y_bn; 1708 int ret = -1; 1709 int len = BN_num_bytes(e->prime); 1710 1711 if (TEST_FAIL()) 1712 return -1; 1713 1714 x_bn = BN_new(); 1715 y_bn = BN_new(); 1716 1717 if (x_bn && y_bn && 1718 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, 1719 x_bn, y_bn, e->bnctx)) { 1720 if (x) { 1721 crypto_bignum_to_bin((struct crypto_bignum *) x_bn, 1722 x, len, len); 1723 } 1724 if (y) { 1725 crypto_bignum_to_bin((struct crypto_bignum *) y_bn, 1726 y, len, len); 1727 } 1728 ret = 0; 1729 } 1730 1731 BN_clear_free(x_bn); 1732 BN_clear_free(y_bn); 1733 return ret; 1734 } 1735 1736 1737 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 1738 const u8 *val) 1739 { 1740 BIGNUM *x, *y; 1741 EC_POINT *elem; 1742 int len = BN_num_bytes(e->prime); 1743 1744 if (TEST_FAIL()) 1745 return NULL; 1746 1747 x = BN_bin2bn(val, len, NULL); 1748 y = BN_bin2bn(val + len, len, NULL); 1749 elem = EC_POINT_new(e->group); 1750 if (x == NULL || y == NULL || elem == NULL) { 1751 BN_clear_free(x); 1752 BN_clear_free(y); 1753 EC_POINT_clear_free(elem); 1754 return NULL; 1755 } 1756 1757 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, 1758 e->bnctx)) { 1759 EC_POINT_clear_free(elem); 1760 elem = NULL; 1761 } 1762 1763 BN_clear_free(x); 1764 BN_clear_free(y); 1765 1766 return (struct crypto_ec_point *) elem; 1767 } 1768 1769 1770 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 1771 const struct crypto_ec_point *b, 1772 struct crypto_ec_point *c) 1773 { 1774 if (TEST_FAIL()) 1775 return -1; 1776 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, 1777 (const EC_POINT *) b, e->bnctx) ? 0 : -1; 1778 } 1779 1780 1781 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 1782 const struct crypto_bignum *b, 1783 struct crypto_ec_point *res) 1784 { 1785 if (TEST_FAIL()) 1786 return -1; 1787 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, 1788 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) 1789 ? 0 : -1; 1790 } 1791 1792 1793 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) 1794 { 1795 if (TEST_FAIL()) 1796 return -1; 1797 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; 1798 } 1799 1800 1801 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 1802 struct crypto_ec_point *p, 1803 const struct crypto_bignum *x, int y_bit) 1804 { 1805 if (TEST_FAIL()) 1806 return -1; 1807 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, 1808 (const BIGNUM *) x, y_bit, 1809 e->bnctx) || 1810 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) 1811 return -1; 1812 return 0; 1813 } 1814 1815 1816 struct crypto_bignum * 1817 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 1818 const struct crypto_bignum *x) 1819 { 1820 BIGNUM *tmp, *tmp2, *y_sqr = NULL; 1821 1822 if (TEST_FAIL()) 1823 return NULL; 1824 1825 tmp = BN_new(); 1826 tmp2 = BN_new(); 1827 1828 /* y^2 = x^3 + ax + b */ 1829 if (tmp && tmp2 && 1830 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1831 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1832 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) && 1833 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) && 1834 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) { 1835 y_sqr = tmp2; 1836 tmp2 = NULL; 1837 } 1838 1839 BN_clear_free(tmp); 1840 BN_clear_free(tmp2); 1841 1842 return (struct crypto_bignum *) y_sqr; 1843 } 1844 1845 1846 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 1847 const struct crypto_ec_point *p) 1848 { 1849 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); 1850 } 1851 1852 1853 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 1854 const struct crypto_ec_point *p) 1855 { 1856 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, 1857 e->bnctx) == 1; 1858 } 1859 1860 1861 int crypto_ec_point_cmp(const struct crypto_ec *e, 1862 const struct crypto_ec_point *a, 1863 const struct crypto_ec_point *b) 1864 { 1865 return EC_POINT_cmp(e->group, (const EC_POINT *) a, 1866 (const EC_POINT *) b, e->bnctx); 1867 } 1868 1869 1870 struct crypto_ecdh { 1871 struct crypto_ec *ec; 1872 EVP_PKEY *pkey; 1873 }; 1874 1875 struct crypto_ecdh * crypto_ecdh_init(int group) 1876 { 1877 struct crypto_ecdh *ecdh; 1878 EVP_PKEY *params = NULL; 1879 EC_KEY *ec_params = NULL; 1880 EVP_PKEY_CTX *kctx = NULL; 1881 1882 ecdh = os_zalloc(sizeof(*ecdh)); 1883 if (!ecdh) 1884 goto fail; 1885 1886 ecdh->ec = crypto_ec_init(group); 1887 if (!ecdh->ec) 1888 goto fail; 1889 1890 ec_params = EC_KEY_new_by_curve_name(ecdh->ec->nid); 1891 if (!ec_params) { 1892 wpa_printf(MSG_ERROR, 1893 "OpenSSL: Failed to generate EC_KEY parameters"); 1894 goto fail; 1895 } 1896 EC_KEY_set_asn1_flag(ec_params, OPENSSL_EC_NAMED_CURVE); 1897 params = EVP_PKEY_new(); 1898 if (!params || EVP_PKEY_set1_EC_KEY(params, ec_params) != 1) { 1899 wpa_printf(MSG_ERROR, 1900 "OpenSSL: Failed to generate EVP_PKEY parameters"); 1901 goto fail; 1902 } 1903 1904 kctx = EVP_PKEY_CTX_new(params, NULL); 1905 if (!kctx) 1906 goto fail; 1907 1908 if (EVP_PKEY_keygen_init(kctx) != 1) { 1909 wpa_printf(MSG_ERROR, 1910 "OpenSSL: EVP_PKEY_keygen_init failed: %s", 1911 ERR_error_string(ERR_get_error(), NULL)); 1912 goto fail; 1913 } 1914 1915 if (EVP_PKEY_keygen(kctx, &ecdh->pkey) != 1) { 1916 wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_keygen failed: %s", 1917 ERR_error_string(ERR_get_error(), NULL)); 1918 goto fail; 1919 } 1920 1921 done: 1922 EC_KEY_free(ec_params); 1923 EVP_PKEY_free(params); 1924 EVP_PKEY_CTX_free(kctx); 1925 1926 return ecdh; 1927 fail: 1928 crypto_ecdh_deinit(ecdh); 1929 ecdh = NULL; 1930 goto done; 1931 } 1932 1933 1934 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y) 1935 { 1936 struct wpabuf *buf = NULL; 1937 EC_KEY *eckey; 1938 const EC_POINT *pubkey; 1939 BIGNUM *x, *y = NULL; 1940 int len = BN_num_bytes(ecdh->ec->prime); 1941 int res; 1942 1943 eckey = EVP_PKEY_get1_EC_KEY(ecdh->pkey); 1944 if (!eckey) 1945 return NULL; 1946 1947 pubkey = EC_KEY_get0_public_key(eckey); 1948 if (!pubkey) 1949 return NULL; 1950 1951 x = BN_new(); 1952 if (inc_y) { 1953 y = BN_new(); 1954 if (!y) 1955 goto fail; 1956 } 1957 buf = wpabuf_alloc(inc_y ? 2 * len : len); 1958 if (!x || !buf) 1959 goto fail; 1960 1961 if (EC_POINT_get_affine_coordinates_GFp(ecdh->ec->group, pubkey, 1962 x, y, ecdh->ec->bnctx) != 1) { 1963 wpa_printf(MSG_ERROR, 1964 "OpenSSL: EC_POINT_get_affine_coordinates_GFp failed: %s", 1965 ERR_error_string(ERR_get_error(), NULL)); 1966 goto fail; 1967 } 1968 1969 res = crypto_bignum_to_bin((struct crypto_bignum *) x, 1970 wpabuf_put(buf, len), len, len); 1971 if (res < 0) 1972 goto fail; 1973 1974 if (inc_y) { 1975 res = crypto_bignum_to_bin((struct crypto_bignum *) y, 1976 wpabuf_put(buf, len), len, len); 1977 if (res < 0) 1978 goto fail; 1979 } 1980 1981 done: 1982 BN_clear_free(x); 1983 BN_clear_free(y); 1984 EC_KEY_free(eckey); 1985 1986 return buf; 1987 fail: 1988 wpabuf_free(buf); 1989 buf = NULL; 1990 goto done; 1991 } 1992 1993 1994 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, 1995 const u8 *key, size_t len) 1996 { 1997 BIGNUM *x, *y = NULL; 1998 EVP_PKEY_CTX *ctx = NULL; 1999 EVP_PKEY *peerkey = NULL; 2000 struct wpabuf *secret = NULL; 2001 size_t secret_len; 2002 EC_POINT *pub; 2003 EC_KEY *eckey = NULL; 2004 2005 x = BN_bin2bn(key, inc_y ? len / 2 : len, NULL); 2006 pub = EC_POINT_new(ecdh->ec->group); 2007 if (!x || !pub) 2008 goto fail; 2009 2010 if (inc_y) { 2011 y = BN_bin2bn(key + len / 2, len / 2, NULL); 2012 if (!y) 2013 goto fail; 2014 if (!EC_POINT_set_affine_coordinates_GFp(ecdh->ec->group, pub, 2015 x, y, 2016 ecdh->ec->bnctx)) { 2017 wpa_printf(MSG_ERROR, 2018 "OpenSSL: EC_POINT_set_affine_coordinates_GFp failed: %s", 2019 ERR_error_string(ERR_get_error(), NULL)); 2020 goto fail; 2021 } 2022 } else if (!EC_POINT_set_compressed_coordinates_GFp(ecdh->ec->group, 2023 pub, x, 0, 2024 ecdh->ec->bnctx)) { 2025 wpa_printf(MSG_ERROR, 2026 "OpenSSL: EC_POINT_set_compressed_coordinates_GFp failed: %s", 2027 ERR_error_string(ERR_get_error(), NULL)); 2028 goto fail; 2029 } 2030 2031 if (!EC_POINT_is_on_curve(ecdh->ec->group, pub, ecdh->ec->bnctx)) { 2032 wpa_printf(MSG_ERROR, 2033 "OpenSSL: ECDH peer public key is not on curve"); 2034 goto fail; 2035 } 2036 2037 eckey = EC_KEY_new_by_curve_name(ecdh->ec->nid); 2038 if (!eckey || EC_KEY_set_public_key(eckey, pub) != 1) { 2039 wpa_printf(MSG_ERROR, 2040 "OpenSSL: EC_KEY_set_public_key failed: %s", 2041 ERR_error_string(ERR_get_error(), NULL)); 2042 goto fail; 2043 } 2044 2045 peerkey = EVP_PKEY_new(); 2046 if (!peerkey || EVP_PKEY_set1_EC_KEY(peerkey, eckey) != 1) 2047 goto fail; 2048 2049 ctx = EVP_PKEY_CTX_new(ecdh->pkey, NULL); 2050 if (!ctx || EVP_PKEY_derive_init(ctx) != 1 || 2051 EVP_PKEY_derive_set_peer(ctx, peerkey) != 1 || 2052 EVP_PKEY_derive(ctx, NULL, &secret_len) != 1) { 2053 wpa_printf(MSG_ERROR, 2054 "OpenSSL: EVP_PKEY_derive(1) failed: %s", 2055 ERR_error_string(ERR_get_error(), NULL)); 2056 goto fail; 2057 } 2058 2059 secret = wpabuf_alloc(secret_len); 2060 if (!secret) 2061 goto fail; 2062 if (EVP_PKEY_derive(ctx, wpabuf_put(secret, 0), &secret_len) != 1) { 2063 wpa_printf(MSG_ERROR, 2064 "OpenSSL: EVP_PKEY_derive(2) failed: %s", 2065 ERR_error_string(ERR_get_error(), NULL)); 2066 goto fail; 2067 } 2068 if (secret->size != secret_len) 2069 wpa_printf(MSG_DEBUG, 2070 "OpenSSL: EVP_PKEY_derive(2) changed secret_len %d -> %d", 2071 (int) secret->size, (int) secret_len); 2072 wpabuf_put(secret, secret_len); 2073 2074 done: 2075 BN_free(x); 2076 BN_free(y); 2077 EC_KEY_free(eckey); 2078 EC_POINT_free(pub); 2079 EVP_PKEY_CTX_free(ctx); 2080 EVP_PKEY_free(peerkey); 2081 return secret; 2082 fail: 2083 wpabuf_free(secret); 2084 secret = NULL; 2085 goto done; 2086 } 2087 2088 2089 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh) 2090 { 2091 if (ecdh) { 2092 crypto_ec_deinit(ecdh->ec); 2093 EVP_PKEY_free(ecdh->pkey); 2094 os_free(ecdh); 2095 } 2096 } 2097 2098 #endif /* CONFIG_ECC */ 2099