1 /* 2 * Wrapper functions for OpenSSL libcrypto 3 * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 #include <openssl/opensslv.h> 11 #include <openssl/err.h> 12 #include <openssl/des.h> 13 #include <openssl/aes.h> 14 #include <openssl/bn.h> 15 #include <openssl/evp.h> 16 #include <openssl/dh.h> 17 #include <openssl/hmac.h> 18 #include <openssl/rand.h> 19 #ifdef CONFIG_OPENSSL_CMAC 20 #include <openssl/cmac.h> 21 #endif /* CONFIG_OPENSSL_CMAC */ 22 #ifdef CONFIG_ECC 23 #include <openssl/ec.h> 24 #endif /* CONFIG_ECC */ 25 26 #include "common.h" 27 #include "wpabuf.h" 28 #include "dh_group5.h" 29 #include "sha1.h" 30 #include "sha256.h" 31 #include "sha384.h" 32 #include "crypto.h" 33 34 static BIGNUM * get_group5_prime(void) 35 { 36 #ifdef OPENSSL_IS_BORINGSSL 37 static const unsigned char RFC3526_PRIME_1536[] = { 38 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, 39 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 40 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, 41 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 42 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, 43 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 44 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, 45 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 46 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, 47 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 48 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, 49 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 50 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, 51 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 52 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, 53 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 54 }; 55 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); 56 #else /* OPENSSL_IS_BORINGSSL */ 57 return get_rfc3526_prime_1536(NULL); 58 #endif /* OPENSSL_IS_BORINGSSL */ 59 } 60 61 #ifdef OPENSSL_NO_SHA256 62 #define NO_SHA256_WRAPPER 63 #endif 64 65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, 66 const u8 *addr[], const size_t *len, u8 *mac) 67 { 68 EVP_MD_CTX ctx; 69 size_t i; 70 unsigned int mac_len; 71 72 EVP_MD_CTX_init(&ctx); 73 if (!EVP_DigestInit_ex(&ctx, type, NULL)) { 74 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", 75 ERR_error_string(ERR_get_error(), NULL)); 76 return -1; 77 } 78 for (i = 0; i < num_elem; i++) { 79 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) { 80 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " 81 "failed: %s", 82 ERR_error_string(ERR_get_error(), NULL)); 83 return -1; 84 } 85 } 86 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) { 87 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", 88 ERR_error_string(ERR_get_error(), NULL)); 89 return -1; 90 } 91 92 return 0; 93 } 94 95 96 #ifndef CONFIG_FIPS 97 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 98 { 99 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); 100 } 101 #endif /* CONFIG_FIPS */ 102 103 104 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) 105 { 106 u8 pkey[8], next, tmp; 107 int i; 108 DES_key_schedule ks; 109 110 /* Add parity bits to the key */ 111 next = 0; 112 for (i = 0; i < 7; i++) { 113 tmp = key[i]; 114 pkey[i] = (tmp >> i) | next | 1; 115 next = tmp << (7 - i); 116 } 117 pkey[i] = next | 1; 118 119 DES_set_key((DES_cblock *) &pkey, &ks); 120 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, 121 DES_ENCRYPT); 122 } 123 124 125 #ifndef CONFIG_NO_RC4 126 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 127 u8 *data, size_t data_len) 128 { 129 #ifdef OPENSSL_NO_RC4 130 return -1; 131 #else /* OPENSSL_NO_RC4 */ 132 EVP_CIPHER_CTX ctx; 133 int outl; 134 int res = -1; 135 unsigned char skip_buf[16]; 136 137 EVP_CIPHER_CTX_init(&ctx); 138 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) || 139 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) || 140 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) || 141 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1)) 142 goto out; 143 144 while (skip >= sizeof(skip_buf)) { 145 size_t len = skip; 146 if (len > sizeof(skip_buf)) 147 len = sizeof(skip_buf); 148 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len)) 149 goto out; 150 skip -= len; 151 } 152 153 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len)) 154 res = 0; 155 156 out: 157 EVP_CIPHER_CTX_cleanup(&ctx); 158 return res; 159 #endif /* OPENSSL_NO_RC4 */ 160 } 161 #endif /* CONFIG_NO_RC4 */ 162 163 164 #ifndef CONFIG_FIPS 165 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 166 { 167 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); 168 } 169 #endif /* CONFIG_FIPS */ 170 171 172 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 173 { 174 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); 175 } 176 177 178 #ifndef NO_SHA256_WRAPPER 179 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 180 u8 *mac) 181 { 182 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); 183 } 184 #endif /* NO_SHA256_WRAPPER */ 185 186 187 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) 188 { 189 switch (keylen) { 190 case 16: 191 return EVP_aes_128_ecb(); 192 #ifndef OPENSSL_IS_BORINGSSL 193 case 24: 194 return EVP_aes_192_ecb(); 195 #endif /* OPENSSL_IS_BORINGSSL */ 196 case 32: 197 return EVP_aes_256_ecb(); 198 } 199 200 return NULL; 201 } 202 203 204 void * aes_encrypt_init(const u8 *key, size_t len) 205 { 206 EVP_CIPHER_CTX *ctx; 207 const EVP_CIPHER *type; 208 209 type = aes_get_evp_cipher(len); 210 if (type == NULL) 211 return NULL; 212 213 ctx = os_malloc(sizeof(*ctx)); 214 if (ctx == NULL) 215 return NULL; 216 EVP_CIPHER_CTX_init(ctx); 217 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 218 os_free(ctx); 219 return NULL; 220 } 221 EVP_CIPHER_CTX_set_padding(ctx, 0); 222 return ctx; 223 } 224 225 226 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) 227 { 228 EVP_CIPHER_CTX *c = ctx; 229 int clen = 16; 230 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { 231 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", 232 ERR_error_string(ERR_get_error(), NULL)); 233 } 234 } 235 236 237 void aes_encrypt_deinit(void *ctx) 238 { 239 EVP_CIPHER_CTX *c = ctx; 240 u8 buf[16]; 241 int len = sizeof(buf); 242 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { 243 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " 244 "%s", ERR_error_string(ERR_get_error(), NULL)); 245 } 246 if (len != 0) { 247 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 248 "in AES encrypt", len); 249 } 250 EVP_CIPHER_CTX_cleanup(c); 251 bin_clear_free(c, sizeof(*c)); 252 } 253 254 255 void * aes_decrypt_init(const u8 *key, size_t len) 256 { 257 EVP_CIPHER_CTX *ctx; 258 const EVP_CIPHER *type; 259 260 type = aes_get_evp_cipher(len); 261 if (type == NULL) 262 return NULL; 263 264 ctx = os_malloc(sizeof(*ctx)); 265 if (ctx == NULL) 266 return NULL; 267 EVP_CIPHER_CTX_init(ctx); 268 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 269 os_free(ctx); 270 return NULL; 271 } 272 EVP_CIPHER_CTX_set_padding(ctx, 0); 273 return ctx; 274 } 275 276 277 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) 278 { 279 EVP_CIPHER_CTX *c = ctx; 280 int plen = 16; 281 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { 282 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", 283 ERR_error_string(ERR_get_error(), NULL)); 284 } 285 } 286 287 288 void aes_decrypt_deinit(void *ctx) 289 { 290 EVP_CIPHER_CTX *c = ctx; 291 u8 buf[16]; 292 int len = sizeof(buf); 293 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { 294 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " 295 "%s", ERR_error_string(ERR_get_error(), NULL)); 296 } 297 if (len != 0) { 298 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 299 "in AES decrypt", len); 300 } 301 EVP_CIPHER_CTX_cleanup(c); 302 bin_clear_free(c, sizeof(*c)); 303 } 304 305 306 #ifndef CONFIG_FIPS 307 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP 308 309 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher) 310 { 311 AES_KEY actx; 312 int res; 313 314 if (AES_set_encrypt_key(kek, kek_len << 3, &actx)) 315 return -1; 316 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8); 317 OPENSSL_cleanse(&actx, sizeof(actx)); 318 return res <= 0 ? -1 : 0; 319 } 320 321 322 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher, 323 u8 *plain) 324 { 325 AES_KEY actx; 326 int res; 327 328 if (AES_set_decrypt_key(kek, kek_len << 3, &actx)) 329 return -1; 330 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8); 331 OPENSSL_cleanse(&actx, sizeof(actx)); 332 return res <= 0 ? -1 : 0; 333 } 334 335 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */ 336 #endif /* CONFIG_FIPS */ 337 338 339 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 340 { 341 EVP_CIPHER_CTX ctx; 342 int clen, len; 343 u8 buf[16]; 344 345 EVP_CIPHER_CTX_init(&ctx); 346 if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1) 347 return -1; 348 EVP_CIPHER_CTX_set_padding(&ctx, 0); 349 350 clen = data_len; 351 if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 || 352 clen != (int) data_len) 353 return -1; 354 355 len = sizeof(buf); 356 if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0) 357 return -1; 358 EVP_CIPHER_CTX_cleanup(&ctx); 359 360 return 0; 361 } 362 363 364 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) 365 { 366 EVP_CIPHER_CTX ctx; 367 int plen, len; 368 u8 buf[16]; 369 370 EVP_CIPHER_CTX_init(&ctx); 371 if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1) 372 return -1; 373 EVP_CIPHER_CTX_set_padding(&ctx, 0); 374 375 plen = data_len; 376 if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 || 377 plen != (int) data_len) 378 return -1; 379 380 len = sizeof(buf); 381 if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0) 382 return -1; 383 EVP_CIPHER_CTX_cleanup(&ctx); 384 385 return 0; 386 } 387 388 389 int crypto_mod_exp(const u8 *base, size_t base_len, 390 const u8 *power, size_t power_len, 391 const u8 *modulus, size_t modulus_len, 392 u8 *result, size_t *result_len) 393 { 394 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; 395 int ret = -1; 396 BN_CTX *ctx; 397 398 ctx = BN_CTX_new(); 399 if (ctx == NULL) 400 return -1; 401 402 bn_base = BN_bin2bn(base, base_len, NULL); 403 bn_exp = BN_bin2bn(power, power_len, NULL); 404 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); 405 bn_result = BN_new(); 406 407 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || 408 bn_result == NULL) 409 goto error; 410 411 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1) 412 goto error; 413 414 *result_len = BN_bn2bin(bn_result, result); 415 ret = 0; 416 417 error: 418 BN_clear_free(bn_base); 419 BN_clear_free(bn_exp); 420 BN_clear_free(bn_modulus); 421 BN_clear_free(bn_result); 422 BN_CTX_free(ctx); 423 return ret; 424 } 425 426 427 struct crypto_cipher { 428 EVP_CIPHER_CTX enc; 429 EVP_CIPHER_CTX dec; 430 }; 431 432 433 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 434 const u8 *iv, const u8 *key, 435 size_t key_len) 436 { 437 struct crypto_cipher *ctx; 438 const EVP_CIPHER *cipher; 439 440 ctx = os_zalloc(sizeof(*ctx)); 441 if (ctx == NULL) 442 return NULL; 443 444 switch (alg) { 445 #ifndef CONFIG_NO_RC4 446 #ifndef OPENSSL_NO_RC4 447 case CRYPTO_CIPHER_ALG_RC4: 448 cipher = EVP_rc4(); 449 break; 450 #endif /* OPENSSL_NO_RC4 */ 451 #endif /* CONFIG_NO_RC4 */ 452 #ifndef OPENSSL_NO_AES 453 case CRYPTO_CIPHER_ALG_AES: 454 switch (key_len) { 455 case 16: 456 cipher = EVP_aes_128_cbc(); 457 break; 458 #ifndef OPENSSL_IS_BORINGSSL 459 case 24: 460 cipher = EVP_aes_192_cbc(); 461 break; 462 #endif /* OPENSSL_IS_BORINGSSL */ 463 case 32: 464 cipher = EVP_aes_256_cbc(); 465 break; 466 default: 467 os_free(ctx); 468 return NULL; 469 } 470 break; 471 #endif /* OPENSSL_NO_AES */ 472 #ifndef OPENSSL_NO_DES 473 case CRYPTO_CIPHER_ALG_3DES: 474 cipher = EVP_des_ede3_cbc(); 475 break; 476 case CRYPTO_CIPHER_ALG_DES: 477 cipher = EVP_des_cbc(); 478 break; 479 #endif /* OPENSSL_NO_DES */ 480 #ifndef OPENSSL_NO_RC2 481 case CRYPTO_CIPHER_ALG_RC2: 482 cipher = EVP_rc2_ecb(); 483 break; 484 #endif /* OPENSSL_NO_RC2 */ 485 default: 486 os_free(ctx); 487 return NULL; 488 } 489 490 EVP_CIPHER_CTX_init(&ctx->enc); 491 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0); 492 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) || 493 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) || 494 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) { 495 EVP_CIPHER_CTX_cleanup(&ctx->enc); 496 os_free(ctx); 497 return NULL; 498 } 499 500 EVP_CIPHER_CTX_init(&ctx->dec); 501 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0); 502 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) || 503 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) || 504 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) { 505 EVP_CIPHER_CTX_cleanup(&ctx->enc); 506 EVP_CIPHER_CTX_cleanup(&ctx->dec); 507 os_free(ctx); 508 return NULL; 509 } 510 511 return ctx; 512 } 513 514 515 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, 516 u8 *crypt, size_t len) 517 { 518 int outl; 519 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len)) 520 return -1; 521 return 0; 522 } 523 524 525 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, 526 u8 *plain, size_t len) 527 { 528 int outl; 529 outl = len; 530 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len)) 531 return -1; 532 return 0; 533 } 534 535 536 void crypto_cipher_deinit(struct crypto_cipher *ctx) 537 { 538 EVP_CIPHER_CTX_cleanup(&ctx->enc); 539 EVP_CIPHER_CTX_cleanup(&ctx->dec); 540 os_free(ctx); 541 } 542 543 544 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) 545 { 546 DH *dh; 547 struct wpabuf *pubkey = NULL, *privkey = NULL; 548 size_t publen, privlen; 549 550 *priv = NULL; 551 *publ = NULL; 552 553 dh = DH_new(); 554 if (dh == NULL) 555 return NULL; 556 557 dh->g = BN_new(); 558 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 559 goto err; 560 561 dh->p = get_group5_prime(); 562 if (dh->p == NULL) 563 goto err; 564 565 if (DH_generate_key(dh) != 1) 566 goto err; 567 568 publen = BN_num_bytes(dh->pub_key); 569 pubkey = wpabuf_alloc(publen); 570 if (pubkey == NULL) 571 goto err; 572 privlen = BN_num_bytes(dh->priv_key); 573 privkey = wpabuf_alloc(privlen); 574 if (privkey == NULL) 575 goto err; 576 577 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); 578 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); 579 580 *priv = privkey; 581 *publ = pubkey; 582 return dh; 583 584 err: 585 wpabuf_clear_free(pubkey); 586 wpabuf_clear_free(privkey); 587 DH_free(dh); 588 return NULL; 589 } 590 591 592 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) 593 { 594 DH *dh; 595 596 dh = DH_new(); 597 if (dh == NULL) 598 return NULL; 599 600 dh->g = BN_new(); 601 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 602 goto err; 603 604 dh->p = get_group5_prime(); 605 if (dh->p == NULL) 606 goto err; 607 608 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); 609 if (dh->priv_key == NULL) 610 goto err; 611 612 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); 613 if (dh->pub_key == NULL) 614 goto err; 615 616 if (DH_generate_key(dh) != 1) 617 goto err; 618 619 return dh; 620 621 err: 622 DH_free(dh); 623 return NULL; 624 } 625 626 627 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, 628 const struct wpabuf *own_private) 629 { 630 BIGNUM *pub_key; 631 struct wpabuf *res = NULL; 632 size_t rlen; 633 DH *dh = ctx; 634 int keylen; 635 636 if (ctx == NULL) 637 return NULL; 638 639 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), 640 NULL); 641 if (pub_key == NULL) 642 return NULL; 643 644 rlen = DH_size(dh); 645 res = wpabuf_alloc(rlen); 646 if (res == NULL) 647 goto err; 648 649 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); 650 if (keylen < 0) 651 goto err; 652 wpabuf_put(res, keylen); 653 BN_clear_free(pub_key); 654 655 return res; 656 657 err: 658 BN_clear_free(pub_key); 659 wpabuf_clear_free(res); 660 return NULL; 661 } 662 663 664 void dh5_free(void *ctx) 665 { 666 DH *dh; 667 if (ctx == NULL) 668 return; 669 dh = ctx; 670 DH_free(dh); 671 } 672 673 674 struct crypto_hash { 675 HMAC_CTX ctx; 676 }; 677 678 679 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 680 size_t key_len) 681 { 682 struct crypto_hash *ctx; 683 const EVP_MD *md; 684 685 switch (alg) { 686 #ifndef OPENSSL_NO_MD5 687 case CRYPTO_HASH_ALG_HMAC_MD5: 688 md = EVP_md5(); 689 break; 690 #endif /* OPENSSL_NO_MD5 */ 691 #ifndef OPENSSL_NO_SHA 692 case CRYPTO_HASH_ALG_HMAC_SHA1: 693 md = EVP_sha1(); 694 break; 695 #endif /* OPENSSL_NO_SHA */ 696 #ifndef OPENSSL_NO_SHA256 697 #ifdef CONFIG_SHA256 698 case CRYPTO_HASH_ALG_HMAC_SHA256: 699 md = EVP_sha256(); 700 break; 701 #endif /* CONFIG_SHA256 */ 702 #endif /* OPENSSL_NO_SHA256 */ 703 default: 704 return NULL; 705 } 706 707 ctx = os_zalloc(sizeof(*ctx)); 708 if (ctx == NULL) 709 return NULL; 710 HMAC_CTX_init(&ctx->ctx); 711 712 #if OPENSSL_VERSION_NUMBER < 0x00909000 713 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL); 714 #else /* openssl < 0.9.9 */ 715 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) { 716 bin_clear_free(ctx, sizeof(*ctx)); 717 return NULL; 718 } 719 #endif /* openssl < 0.9.9 */ 720 721 return ctx; 722 } 723 724 725 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) 726 { 727 if (ctx == NULL) 728 return; 729 HMAC_Update(&ctx->ctx, data, len); 730 } 731 732 733 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) 734 { 735 unsigned int mdlen; 736 int res; 737 738 if (ctx == NULL) 739 return -2; 740 741 if (mac == NULL || len == NULL) { 742 bin_clear_free(ctx, sizeof(*ctx)); 743 return 0; 744 } 745 746 mdlen = *len; 747 #if OPENSSL_VERSION_NUMBER < 0x00909000 748 HMAC_Final(&ctx->ctx, mac, &mdlen); 749 res = 1; 750 #else /* openssl < 0.9.9 */ 751 res = HMAC_Final(&ctx->ctx, mac, &mdlen); 752 #endif /* openssl < 0.9.9 */ 753 HMAC_CTX_cleanup(&ctx->ctx); 754 bin_clear_free(ctx, sizeof(*ctx)); 755 756 if (res == 1) { 757 *len = mdlen; 758 return 0; 759 } 760 761 return -1; 762 } 763 764 765 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key, 766 size_t key_len, size_t num_elem, 767 const u8 *addr[], const size_t *len, u8 *mac, 768 unsigned int mdlen) 769 { 770 HMAC_CTX ctx; 771 size_t i; 772 int res; 773 774 HMAC_CTX_init(&ctx); 775 #if OPENSSL_VERSION_NUMBER < 0x00909000 776 HMAC_Init_ex(&ctx, key, key_len, type, NULL); 777 #else /* openssl < 0.9.9 */ 778 if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1) 779 return -1; 780 #endif /* openssl < 0.9.9 */ 781 782 for (i = 0; i < num_elem; i++) 783 HMAC_Update(&ctx, addr[i], len[i]); 784 785 #if OPENSSL_VERSION_NUMBER < 0x00909000 786 HMAC_Final(&ctx, mac, &mdlen); 787 res = 1; 788 #else /* openssl < 0.9.9 */ 789 res = HMAC_Final(&ctx, mac, &mdlen); 790 #endif /* openssl < 0.9.9 */ 791 HMAC_CTX_cleanup(&ctx); 792 793 return res == 1 ? 0 : -1; 794 } 795 796 797 #ifndef CONFIG_FIPS 798 799 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, 800 const u8 *addr[], const size_t *len, u8 *mac) 801 { 802 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len, 803 mac, 16); 804 } 805 806 807 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 808 u8 *mac) 809 { 810 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); 811 } 812 813 #endif /* CONFIG_FIPS */ 814 815 816 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, 817 int iterations, u8 *buf, size_t buflen) 818 { 819 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, 820 ssid_len, iterations, buflen, buf) != 1) 821 return -1; 822 return 0; 823 } 824 825 826 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, 827 const u8 *addr[], const size_t *len, u8 *mac) 828 { 829 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr, 830 len, mac, 20); 831 } 832 833 834 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 835 u8 *mac) 836 { 837 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); 838 } 839 840 841 #ifdef CONFIG_SHA256 842 843 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, 844 const u8 *addr[], const size_t *len, u8 *mac) 845 { 846 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr, 847 len, mac, 32); 848 } 849 850 851 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, 852 size_t data_len, u8 *mac) 853 { 854 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); 855 } 856 857 #endif /* CONFIG_SHA256 */ 858 859 860 #ifdef CONFIG_SHA384 861 862 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, 863 const u8 *addr[], const size_t *len, u8 *mac) 864 { 865 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr, 866 len, mac, 32); 867 } 868 869 870 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, 871 size_t data_len, u8 *mac) 872 { 873 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); 874 } 875 876 #endif /* CONFIG_SHA384 */ 877 878 879 int crypto_get_random(void *buf, size_t len) 880 { 881 if (RAND_bytes(buf, len) != 1) 882 return -1; 883 return 0; 884 } 885 886 887 #ifdef CONFIG_OPENSSL_CMAC 888 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem, 889 const u8 *addr[], const size_t *len, u8 *mac) 890 { 891 CMAC_CTX *ctx; 892 int ret = -1; 893 size_t outlen, i; 894 895 ctx = CMAC_CTX_new(); 896 if (ctx == NULL) 897 return -1; 898 899 if (key_len == 32) { 900 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL)) 901 goto fail; 902 } else if (key_len == 16) { 903 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) 904 goto fail; 905 } else { 906 goto fail; 907 } 908 for (i = 0; i < num_elem; i++) { 909 if (!CMAC_Update(ctx, addr[i], len[i])) 910 goto fail; 911 } 912 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) 913 goto fail; 914 915 ret = 0; 916 fail: 917 CMAC_CTX_free(ctx); 918 return ret; 919 } 920 921 922 int omac1_aes_128_vector(const u8 *key, size_t num_elem, 923 const u8 *addr[], const size_t *len, u8 *mac) 924 { 925 return omac1_aes_vector(key, 16, num_elem, addr, len, mac); 926 } 927 928 929 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 930 { 931 return omac1_aes_128_vector(key, 1, &data, &data_len, mac); 932 } 933 934 935 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 936 { 937 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac); 938 } 939 #endif /* CONFIG_OPENSSL_CMAC */ 940 941 942 struct crypto_bignum * crypto_bignum_init(void) 943 { 944 return (struct crypto_bignum *) BN_new(); 945 } 946 947 948 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) 949 { 950 BIGNUM *bn = BN_bin2bn(buf, len, NULL); 951 return (struct crypto_bignum *) bn; 952 } 953 954 955 void crypto_bignum_deinit(struct crypto_bignum *n, int clear) 956 { 957 if (clear) 958 BN_clear_free((BIGNUM *) n); 959 else 960 BN_free((BIGNUM *) n); 961 } 962 963 964 int crypto_bignum_to_bin(const struct crypto_bignum *a, 965 u8 *buf, size_t buflen, size_t padlen) 966 { 967 int num_bytes, offset; 968 969 if (padlen > buflen) 970 return -1; 971 972 num_bytes = BN_num_bytes((const BIGNUM *) a); 973 if ((size_t) num_bytes > buflen) 974 return -1; 975 if (padlen > (size_t) num_bytes) 976 offset = padlen - num_bytes; 977 else 978 offset = 0; 979 980 os_memset(buf, 0, offset); 981 BN_bn2bin((const BIGNUM *) a, buf + offset); 982 983 return num_bytes + offset; 984 } 985 986 987 int crypto_bignum_add(const struct crypto_bignum *a, 988 const struct crypto_bignum *b, 989 struct crypto_bignum *c) 990 { 991 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 992 0 : -1; 993 } 994 995 996 int crypto_bignum_mod(const struct crypto_bignum *a, 997 const struct crypto_bignum *b, 998 struct crypto_bignum *c) 999 { 1000 int res; 1001 BN_CTX *bnctx; 1002 1003 bnctx = BN_CTX_new(); 1004 if (bnctx == NULL) 1005 return -1; 1006 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, 1007 bnctx); 1008 BN_CTX_free(bnctx); 1009 1010 return res ? 0 : -1; 1011 } 1012 1013 1014 int crypto_bignum_exptmod(const struct crypto_bignum *a, 1015 const struct crypto_bignum *b, 1016 const struct crypto_bignum *c, 1017 struct crypto_bignum *d) 1018 { 1019 int res; 1020 BN_CTX *bnctx; 1021 1022 bnctx = BN_CTX_new(); 1023 if (bnctx == NULL) 1024 return -1; 1025 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 1026 (const BIGNUM *) c, bnctx); 1027 BN_CTX_free(bnctx); 1028 1029 return res ? 0 : -1; 1030 } 1031 1032 1033 int crypto_bignum_inverse(const struct crypto_bignum *a, 1034 const struct crypto_bignum *b, 1035 struct crypto_bignum *c) 1036 { 1037 BIGNUM *res; 1038 BN_CTX *bnctx; 1039 1040 bnctx = BN_CTX_new(); 1041 if (bnctx == NULL) 1042 return -1; 1043 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, 1044 (const BIGNUM *) b, bnctx); 1045 BN_CTX_free(bnctx); 1046 1047 return res ? 0 : -1; 1048 } 1049 1050 1051 int crypto_bignum_sub(const struct crypto_bignum *a, 1052 const struct crypto_bignum *b, 1053 struct crypto_bignum *c) 1054 { 1055 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 1056 0 : -1; 1057 } 1058 1059 1060 int crypto_bignum_div(const struct crypto_bignum *a, 1061 const struct crypto_bignum *b, 1062 struct crypto_bignum *c) 1063 { 1064 int res; 1065 1066 BN_CTX *bnctx; 1067 1068 bnctx = BN_CTX_new(); 1069 if (bnctx == NULL) 1070 return -1; 1071 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, 1072 (const BIGNUM *) b, bnctx); 1073 BN_CTX_free(bnctx); 1074 1075 return res ? 0 : -1; 1076 } 1077 1078 1079 int crypto_bignum_mulmod(const struct crypto_bignum *a, 1080 const struct crypto_bignum *b, 1081 const struct crypto_bignum *c, 1082 struct crypto_bignum *d) 1083 { 1084 int res; 1085 1086 BN_CTX *bnctx; 1087 1088 bnctx = BN_CTX_new(); 1089 if (bnctx == NULL) 1090 return -1; 1091 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 1092 (const BIGNUM *) c, bnctx); 1093 BN_CTX_free(bnctx); 1094 1095 return res ? 0 : -1; 1096 } 1097 1098 1099 int crypto_bignum_cmp(const struct crypto_bignum *a, 1100 const struct crypto_bignum *b) 1101 { 1102 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); 1103 } 1104 1105 1106 int crypto_bignum_bits(const struct crypto_bignum *a) 1107 { 1108 return BN_num_bits((const BIGNUM *) a); 1109 } 1110 1111 1112 int crypto_bignum_is_zero(const struct crypto_bignum *a) 1113 { 1114 return BN_is_zero((const BIGNUM *) a); 1115 } 1116 1117 1118 int crypto_bignum_is_one(const struct crypto_bignum *a) 1119 { 1120 return BN_is_one((const BIGNUM *) a); 1121 } 1122 1123 1124 int crypto_bignum_legendre(const struct crypto_bignum *a, 1125 const struct crypto_bignum *p) 1126 { 1127 BN_CTX *bnctx; 1128 BIGNUM *exp = NULL, *tmp = NULL; 1129 int res = -2; 1130 1131 bnctx = BN_CTX_new(); 1132 if (bnctx == NULL) 1133 return -2; 1134 1135 exp = BN_new(); 1136 tmp = BN_new(); 1137 if (!exp || !tmp || 1138 /* exp = (p-1) / 2 */ 1139 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) || 1140 !BN_rshift1(exp, exp) || 1141 !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p, 1142 bnctx)) 1143 goto fail; 1144 1145 if (BN_is_word(tmp, 1)) 1146 res = 1; 1147 else if (BN_is_zero(tmp)) 1148 res = 0; 1149 else 1150 res = -1; 1151 1152 fail: 1153 BN_clear_free(tmp); 1154 BN_clear_free(exp); 1155 BN_CTX_free(bnctx); 1156 return res; 1157 } 1158 1159 1160 #ifdef CONFIG_ECC 1161 1162 struct crypto_ec { 1163 EC_GROUP *group; 1164 BN_CTX *bnctx; 1165 BIGNUM *prime; 1166 BIGNUM *order; 1167 BIGNUM *a; 1168 BIGNUM *b; 1169 }; 1170 1171 struct crypto_ec * crypto_ec_init(int group) 1172 { 1173 struct crypto_ec *e; 1174 int nid; 1175 1176 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ 1177 switch (group) { 1178 case 19: 1179 nid = NID_X9_62_prime256v1; 1180 break; 1181 case 20: 1182 nid = NID_secp384r1; 1183 break; 1184 case 21: 1185 nid = NID_secp521r1; 1186 break; 1187 case 25: 1188 nid = NID_X9_62_prime192v1; 1189 break; 1190 case 26: 1191 nid = NID_secp224r1; 1192 break; 1193 #ifdef NID_brainpoolP224r1 1194 case 27: 1195 nid = NID_brainpoolP224r1; 1196 break; 1197 #endif /* NID_brainpoolP224r1 */ 1198 #ifdef NID_brainpoolP256r1 1199 case 28: 1200 nid = NID_brainpoolP256r1; 1201 break; 1202 #endif /* NID_brainpoolP256r1 */ 1203 #ifdef NID_brainpoolP384r1 1204 case 29: 1205 nid = NID_brainpoolP384r1; 1206 break; 1207 #endif /* NID_brainpoolP384r1 */ 1208 #ifdef NID_brainpoolP512r1 1209 case 30: 1210 nid = NID_brainpoolP512r1; 1211 break; 1212 #endif /* NID_brainpoolP512r1 */ 1213 default: 1214 return NULL; 1215 } 1216 1217 e = os_zalloc(sizeof(*e)); 1218 if (e == NULL) 1219 return NULL; 1220 1221 e->bnctx = BN_CTX_new(); 1222 e->group = EC_GROUP_new_by_curve_name(nid); 1223 e->prime = BN_new(); 1224 e->order = BN_new(); 1225 e->a = BN_new(); 1226 e->b = BN_new(); 1227 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || 1228 e->order == NULL || e->a == NULL || e->b == NULL || 1229 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) || 1230 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { 1231 crypto_ec_deinit(e); 1232 e = NULL; 1233 } 1234 1235 return e; 1236 } 1237 1238 1239 void crypto_ec_deinit(struct crypto_ec *e) 1240 { 1241 if (e == NULL) 1242 return; 1243 BN_clear_free(e->b); 1244 BN_clear_free(e->a); 1245 BN_clear_free(e->order); 1246 BN_clear_free(e->prime); 1247 EC_GROUP_free(e->group); 1248 BN_CTX_free(e->bnctx); 1249 os_free(e); 1250 } 1251 1252 1253 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) 1254 { 1255 if (e == NULL) 1256 return NULL; 1257 return (struct crypto_ec_point *) EC_POINT_new(e->group); 1258 } 1259 1260 1261 size_t crypto_ec_prime_len(struct crypto_ec *e) 1262 { 1263 return BN_num_bytes(e->prime); 1264 } 1265 1266 1267 size_t crypto_ec_prime_len_bits(struct crypto_ec *e) 1268 { 1269 return BN_num_bits(e->prime); 1270 } 1271 1272 1273 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) 1274 { 1275 return (const struct crypto_bignum *) e->prime; 1276 } 1277 1278 1279 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) 1280 { 1281 return (const struct crypto_bignum *) e->order; 1282 } 1283 1284 1285 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) 1286 { 1287 if (clear) 1288 EC_POINT_clear_free((EC_POINT *) p); 1289 else 1290 EC_POINT_free((EC_POINT *) p); 1291 } 1292 1293 1294 int crypto_ec_point_to_bin(struct crypto_ec *e, 1295 const struct crypto_ec_point *point, u8 *x, u8 *y) 1296 { 1297 BIGNUM *x_bn, *y_bn; 1298 int ret = -1; 1299 int len = BN_num_bytes(e->prime); 1300 1301 x_bn = BN_new(); 1302 y_bn = BN_new(); 1303 1304 if (x_bn && y_bn && 1305 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, 1306 x_bn, y_bn, e->bnctx)) { 1307 if (x) { 1308 crypto_bignum_to_bin((struct crypto_bignum *) x_bn, 1309 x, len, len); 1310 } 1311 if (y) { 1312 crypto_bignum_to_bin((struct crypto_bignum *) y_bn, 1313 y, len, len); 1314 } 1315 ret = 0; 1316 } 1317 1318 BN_clear_free(x_bn); 1319 BN_clear_free(y_bn); 1320 return ret; 1321 } 1322 1323 1324 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 1325 const u8 *val) 1326 { 1327 BIGNUM *x, *y; 1328 EC_POINT *elem; 1329 int len = BN_num_bytes(e->prime); 1330 1331 x = BN_bin2bn(val, len, NULL); 1332 y = BN_bin2bn(val + len, len, NULL); 1333 elem = EC_POINT_new(e->group); 1334 if (x == NULL || y == NULL || elem == NULL) { 1335 BN_clear_free(x); 1336 BN_clear_free(y); 1337 EC_POINT_clear_free(elem); 1338 return NULL; 1339 } 1340 1341 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, 1342 e->bnctx)) { 1343 EC_POINT_clear_free(elem); 1344 elem = NULL; 1345 } 1346 1347 BN_clear_free(x); 1348 BN_clear_free(y); 1349 1350 return (struct crypto_ec_point *) elem; 1351 } 1352 1353 1354 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 1355 const struct crypto_ec_point *b, 1356 struct crypto_ec_point *c) 1357 { 1358 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, 1359 (const EC_POINT *) b, e->bnctx) ? 0 : -1; 1360 } 1361 1362 1363 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 1364 const struct crypto_bignum *b, 1365 struct crypto_ec_point *res) 1366 { 1367 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, 1368 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) 1369 ? 0 : -1; 1370 } 1371 1372 1373 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) 1374 { 1375 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; 1376 } 1377 1378 1379 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 1380 struct crypto_ec_point *p, 1381 const struct crypto_bignum *x, int y_bit) 1382 { 1383 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, 1384 (const BIGNUM *) x, y_bit, 1385 e->bnctx) || 1386 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) 1387 return -1; 1388 return 0; 1389 } 1390 1391 1392 struct crypto_bignum * 1393 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 1394 const struct crypto_bignum *x) 1395 { 1396 BIGNUM *tmp, *tmp2, *y_sqr = NULL; 1397 1398 tmp = BN_new(); 1399 tmp2 = BN_new(); 1400 1401 /* y^2 = x^3 + ax + b */ 1402 if (tmp && tmp2 && 1403 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1404 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) && 1405 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) && 1406 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) && 1407 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) { 1408 y_sqr = tmp2; 1409 tmp2 = NULL; 1410 } 1411 1412 BN_clear_free(tmp); 1413 BN_clear_free(tmp2); 1414 1415 return (struct crypto_bignum *) y_sqr; 1416 } 1417 1418 1419 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 1420 const struct crypto_ec_point *p) 1421 { 1422 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); 1423 } 1424 1425 1426 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 1427 const struct crypto_ec_point *p) 1428 { 1429 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, 1430 e->bnctx) == 1; 1431 } 1432 1433 1434 int crypto_ec_point_cmp(const struct crypto_ec *e, 1435 const struct crypto_ec_point *a, 1436 const struct crypto_ec_point *b) 1437 { 1438 return EC_POINT_cmp(e->group, (const EC_POINT *) a, 1439 (const EC_POINT *) b, e->bnctx); 1440 } 1441 1442 #endif /* CONFIG_ECC */ 1443