xref: /freebsd/contrib/wpa/src/crypto/crypto_openssl.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*
2  * WPA Supplicant / wrapper functions for libcrypto
3  * Copyright (c) 2004-2005, Jouni Malinen <j@w1.fi>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Alternatively, this software may be distributed under the terms of BSD
10  * license.
11  *
12  * See README and COPYING for more details.
13  */
14 
15 #include "includes.h"
16 #include <openssl/opensslv.h>
17 #include <openssl/md4.h>
18 #include <openssl/md5.h>
19 #include <openssl/sha.h>
20 #include <openssl/des.h>
21 #include <openssl/aes.h>
22 #include <openssl/bn.h>
23 #include <openssl/evp.h>
24 
25 #include "common.h"
26 #include "crypto.h"
27 
28 #if OPENSSL_VERSION_NUMBER < 0x00907000
29 #define DES_key_schedule des_key_schedule
30 #define DES_cblock des_cblock
31 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
32 #define DES_ecb_encrypt(input, output, ks, enc) \
33 	des_ecb_encrypt((input), (output), *(ks), (enc))
34 #endif /* openssl < 0.9.7 */
35 
36 
37 void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
38 {
39 	MD4_CTX ctx;
40 	size_t i;
41 
42 	MD4_Init(&ctx);
43 	for (i = 0; i < num_elem; i++)
44 		MD4_Update(&ctx, addr[i], len[i]);
45 	MD4_Final(mac, &ctx);
46 }
47 
48 
49 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
50 {
51 	u8 pkey[8], next, tmp;
52 	int i;
53 	DES_key_schedule ks;
54 
55 	/* Add parity bits to the key */
56 	next = 0;
57 	for (i = 0; i < 7; i++) {
58 		tmp = key[i];
59 		pkey[i] = (tmp >> i) | next | 1;
60 		next = tmp << (7 - i);
61 	}
62 	pkey[i] = next | 1;
63 
64 	DES_set_key(&pkey, &ks);
65 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
66 			DES_ENCRYPT);
67 }
68 
69 
70 void md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
71 {
72 	MD5_CTX ctx;
73 	size_t i;
74 
75 	MD5_Init(&ctx);
76 	for (i = 0; i < num_elem; i++)
77 		MD5_Update(&ctx, addr[i], len[i]);
78 	MD5_Final(mac, &ctx);
79 }
80 
81 
82 void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
83 {
84 	SHA_CTX ctx;
85 	size_t i;
86 
87 	SHA1_Init(&ctx);
88 	for (i = 0; i < num_elem; i++)
89 		SHA1_Update(&ctx, addr[i], len[i]);
90 	SHA1_Final(mac, &ctx);
91 }
92 
93 
94 #ifndef CONFIG_NO_FIPS186_2_PRF
95 static void sha1_transform(u8 *state, const u8 data[64])
96 {
97 	SHA_CTX context;
98 	os_memset(&context, 0, sizeof(context));
99 	os_memcpy(&context.h0, state, 5 * 4);
100 	SHA1_Transform(&context, data);
101 	os_memcpy(state, &context.h0, 5 * 4);
102 }
103 
104 
105 int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
106 {
107 	u8 xkey[64];
108 	u32 t[5], _t[5];
109 	int i, j, m, k;
110 	u8 *xpos = x;
111 	u32 carry;
112 
113 	if (seed_len > sizeof(xkey))
114 		seed_len = sizeof(xkey);
115 
116 	/* FIPS 186-2 + change notice 1 */
117 
118 	os_memcpy(xkey, seed, seed_len);
119 	os_memset(xkey + seed_len, 0, 64 - seed_len);
120 	t[0] = 0x67452301;
121 	t[1] = 0xEFCDAB89;
122 	t[2] = 0x98BADCFE;
123 	t[3] = 0x10325476;
124 	t[4] = 0xC3D2E1F0;
125 
126 	m = xlen / 40;
127 	for (j = 0; j < m; j++) {
128 		/* XSEED_j = 0 */
129 		for (i = 0; i < 2; i++) {
130 			/* XVAL = (XKEY + XSEED_j) mod 2^b */
131 
132 			/* w_i = G(t, XVAL) */
133 			os_memcpy(_t, t, 20);
134 			sha1_transform((u8 *) _t, xkey);
135 			_t[0] = host_to_be32(_t[0]);
136 			_t[1] = host_to_be32(_t[1]);
137 			_t[2] = host_to_be32(_t[2]);
138 			_t[3] = host_to_be32(_t[3]);
139 			_t[4] = host_to_be32(_t[4]);
140 			os_memcpy(xpos, _t, 20);
141 
142 			/* XKEY = (1 + XKEY + w_i) mod 2^b */
143 			carry = 1;
144 			for (k = 19; k >= 0; k--) {
145 				carry += xkey[k] + xpos[k];
146 				xkey[k] = carry & 0xff;
147 				carry >>= 8;
148 			}
149 
150 			xpos += 20;
151 		}
152 		/* x_j = w_0|w_1 */
153 	}
154 
155 	return 0;
156 }
157 #endif /* CONFIG_NO_FIPS186_2_PRF */
158 
159 
160 void * aes_encrypt_init(const u8 *key, size_t len)
161 {
162 	AES_KEY *ak;
163 	ak = os_malloc(sizeof(*ak));
164 	if (ak == NULL)
165 		return NULL;
166 	if (AES_set_encrypt_key(key, 8 * len, ak) < 0) {
167 		os_free(ak);
168 		return NULL;
169 	}
170 	return ak;
171 }
172 
173 
174 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
175 {
176 	AES_encrypt(plain, crypt, ctx);
177 }
178 
179 
180 void aes_encrypt_deinit(void *ctx)
181 {
182 	os_free(ctx);
183 }
184 
185 
186 void * aes_decrypt_init(const u8 *key, size_t len)
187 {
188 	AES_KEY *ak;
189 	ak = os_malloc(sizeof(*ak));
190 	if (ak == NULL)
191 		return NULL;
192 	if (AES_set_decrypt_key(key, 8 * len, ak) < 0) {
193 		os_free(ak);
194 		return NULL;
195 	}
196 	return ak;
197 }
198 
199 
200 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
201 {
202 	AES_decrypt(crypt, plain, ctx);
203 }
204 
205 
206 void aes_decrypt_deinit(void *ctx)
207 {
208 	os_free(ctx);
209 }
210 
211 
212 int crypto_mod_exp(const u8 *base, size_t base_len,
213 		   const u8 *power, size_t power_len,
214 		   const u8 *modulus, size_t modulus_len,
215 		   u8 *result, size_t *result_len)
216 {
217 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
218 	int ret = -1;
219 	BN_CTX *ctx;
220 
221 	ctx = BN_CTX_new();
222 	if (ctx == NULL)
223 		return -1;
224 
225 	bn_base = BN_bin2bn(base, base_len, NULL);
226 	bn_exp = BN_bin2bn(power, power_len, NULL);
227 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
228 	bn_result = BN_new();
229 
230 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
231 	    bn_result == NULL)
232 		goto error;
233 
234 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
235 		goto error;
236 
237 	*result_len = BN_bn2bin(bn_result, result);
238 	ret = 0;
239 
240 error:
241 	BN_free(bn_base);
242 	BN_free(bn_exp);
243 	BN_free(bn_modulus);
244 	BN_free(bn_result);
245 	BN_CTX_free(ctx);
246 	return ret;
247 }
248 
249 
250 struct crypto_cipher {
251 	EVP_CIPHER_CTX enc;
252 	EVP_CIPHER_CTX dec;
253 };
254 
255 
256 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
257 					  const u8 *iv, const u8 *key,
258 					  size_t key_len)
259 {
260 	struct crypto_cipher *ctx;
261 	const EVP_CIPHER *cipher;
262 
263 	ctx = os_zalloc(sizeof(*ctx));
264 	if (ctx == NULL)
265 		return NULL;
266 
267 	switch (alg) {
268 #ifndef OPENSSL_NO_RC4
269 	case CRYPTO_CIPHER_ALG_RC4:
270 		cipher = EVP_rc4();
271 		break;
272 #endif /* OPENSSL_NO_RC4 */
273 #ifndef OPENSSL_NO_AES
274 	case CRYPTO_CIPHER_ALG_AES:
275 		switch (key_len) {
276 		case 16:
277 			cipher = EVP_aes_128_cbc();
278 			break;
279 		case 24:
280 			cipher = EVP_aes_192_cbc();
281 			break;
282 		case 32:
283 			cipher = EVP_aes_256_cbc();
284 			break;
285 		default:
286 			os_free(ctx);
287 			return NULL;
288 		}
289 		break;
290 #endif /* OPENSSL_NO_AES */
291 #ifndef OPENSSL_NO_DES
292 	case CRYPTO_CIPHER_ALG_3DES:
293 		cipher = EVP_des_ede3_cbc();
294 		break;
295 	case CRYPTO_CIPHER_ALG_DES:
296 		cipher = EVP_des_cbc();
297 		break;
298 #endif /* OPENSSL_NO_DES */
299 #ifndef OPENSSL_NO_RC2
300 	case CRYPTO_CIPHER_ALG_RC2:
301 		cipher = EVP_rc2_ecb();
302 		break;
303 #endif /* OPENSSL_NO_RC2 */
304 	default:
305 		os_free(ctx);
306 		return NULL;
307 	}
308 
309 	EVP_CIPHER_CTX_init(&ctx->enc);
310 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
311 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
312 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
313 	    !EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, key, iv)) {
314 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
315 		os_free(ctx);
316 		return NULL;
317 	}
318 
319 	EVP_CIPHER_CTX_init(&ctx->dec);
320 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
321 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
322 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
323 	    !EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, key, iv)) {
324 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
325 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
326 		os_free(ctx);
327 		return NULL;
328 	}
329 
330 	return ctx;
331 }
332 
333 
334 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
335 			  u8 *crypt, size_t len)
336 {
337 	int outl;
338 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
339 		return -1;
340 	return 0;
341 }
342 
343 
344 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
345 			  u8 *plain, size_t len)
346 {
347 	int outl;
348 	outl = len;
349 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
350 		return -1;
351 	return 0;
352 }
353 
354 
355 void crypto_cipher_deinit(struct crypto_cipher *ctx)
356 {
357 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
358 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
359 	os_free(ctx);
360 }
361