xref: /freebsd/contrib/wpa/src/crypto/crypto_openssl.c (revision 448897d366c218f9fd6208427eef1e6dd51f78d0)
1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33 
34 static BIGNUM * get_group5_prime(void)
35 {
36 #ifdef OPENSSL_IS_BORINGSSL
37 	static const unsigned char RFC3526_PRIME_1536[] = {
38 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
39 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
40 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
41 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
42 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
43 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
44 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
45 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
46 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
47 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
48 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
49 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
50 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
51 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
52 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
53 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
54 	};
55         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
56 #else /* OPENSSL_IS_BORINGSSL */
57 	return get_rfc3526_prime_1536(NULL);
58 #endif /* OPENSSL_IS_BORINGSSL */
59 }
60 
61 #ifdef OPENSSL_NO_SHA256
62 #define NO_SHA256_WRAPPER
63 #endif
64 
65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
66 				 const u8 *addr[], const size_t *len, u8 *mac)
67 {
68 	EVP_MD_CTX ctx;
69 	size_t i;
70 	unsigned int mac_len;
71 
72 	EVP_MD_CTX_init(&ctx);
73 	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
74 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
75 			   ERR_error_string(ERR_get_error(), NULL));
76 		return -1;
77 	}
78 	for (i = 0; i < num_elem; i++) {
79 		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
80 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
81 				   "failed: %s",
82 				   ERR_error_string(ERR_get_error(), NULL));
83 			return -1;
84 		}
85 	}
86 	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
87 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
88 			   ERR_error_string(ERR_get_error(), NULL));
89 		return -1;
90 	}
91 
92 	return 0;
93 }
94 
95 
96 #ifndef CONFIG_FIPS
97 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
98 {
99 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
100 }
101 #endif /* CONFIG_FIPS */
102 
103 
104 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
105 {
106 	u8 pkey[8], next, tmp;
107 	int i;
108 	DES_key_schedule ks;
109 
110 	/* Add parity bits to the key */
111 	next = 0;
112 	for (i = 0; i < 7; i++) {
113 		tmp = key[i];
114 		pkey[i] = (tmp >> i) | next | 1;
115 		next = tmp << (7 - i);
116 	}
117 	pkey[i] = next | 1;
118 
119 	DES_set_key((DES_cblock *) &pkey, &ks);
120 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
121 			DES_ENCRYPT);
122 }
123 
124 
125 #ifndef CONFIG_NO_RC4
126 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
127 	     u8 *data, size_t data_len)
128 {
129 #ifdef OPENSSL_NO_RC4
130 	return -1;
131 #else /* OPENSSL_NO_RC4 */
132 	EVP_CIPHER_CTX ctx;
133 	int outl;
134 	int res = -1;
135 	unsigned char skip_buf[16];
136 
137 	EVP_CIPHER_CTX_init(&ctx);
138 	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
139 	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
140 	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
141 	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
142 		goto out;
143 
144 	while (skip >= sizeof(skip_buf)) {
145 		size_t len = skip;
146 		if (len > sizeof(skip_buf))
147 			len = sizeof(skip_buf);
148 		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
149 			goto out;
150 		skip -= len;
151 	}
152 
153 	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
154 		res = 0;
155 
156 out:
157 	EVP_CIPHER_CTX_cleanup(&ctx);
158 	return res;
159 #endif /* OPENSSL_NO_RC4 */
160 }
161 #endif /* CONFIG_NO_RC4 */
162 
163 
164 #ifndef CONFIG_FIPS
165 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
166 {
167 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
168 }
169 #endif /* CONFIG_FIPS */
170 
171 
172 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
173 {
174 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
175 }
176 
177 
178 #ifndef NO_SHA256_WRAPPER
179 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
180 		  u8 *mac)
181 {
182 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
183 }
184 #endif /* NO_SHA256_WRAPPER */
185 
186 
187 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
188 {
189 	switch (keylen) {
190 	case 16:
191 		return EVP_aes_128_ecb();
192 #ifndef OPENSSL_IS_BORINGSSL
193 	case 24:
194 		return EVP_aes_192_ecb();
195 #endif /* OPENSSL_IS_BORINGSSL */
196 	case 32:
197 		return EVP_aes_256_ecb();
198 	}
199 
200 	return NULL;
201 }
202 
203 
204 void * aes_encrypt_init(const u8 *key, size_t len)
205 {
206 	EVP_CIPHER_CTX *ctx;
207 	const EVP_CIPHER *type;
208 
209 	type = aes_get_evp_cipher(len);
210 	if (type == NULL)
211 		return NULL;
212 
213 	ctx = os_malloc(sizeof(*ctx));
214 	if (ctx == NULL)
215 		return NULL;
216 	EVP_CIPHER_CTX_init(ctx);
217 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
218 		os_free(ctx);
219 		return NULL;
220 	}
221 	EVP_CIPHER_CTX_set_padding(ctx, 0);
222 	return ctx;
223 }
224 
225 
226 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
227 {
228 	EVP_CIPHER_CTX *c = ctx;
229 	int clen = 16;
230 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
231 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
232 			   ERR_error_string(ERR_get_error(), NULL));
233 	}
234 }
235 
236 
237 void aes_encrypt_deinit(void *ctx)
238 {
239 	EVP_CIPHER_CTX *c = ctx;
240 	u8 buf[16];
241 	int len = sizeof(buf);
242 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
243 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
244 			   "%s", ERR_error_string(ERR_get_error(), NULL));
245 	}
246 	if (len != 0) {
247 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
248 			   "in AES encrypt", len);
249 	}
250 	EVP_CIPHER_CTX_cleanup(c);
251 	bin_clear_free(c, sizeof(*c));
252 }
253 
254 
255 void * aes_decrypt_init(const u8 *key, size_t len)
256 {
257 	EVP_CIPHER_CTX *ctx;
258 	const EVP_CIPHER *type;
259 
260 	type = aes_get_evp_cipher(len);
261 	if (type == NULL)
262 		return NULL;
263 
264 	ctx = os_malloc(sizeof(*ctx));
265 	if (ctx == NULL)
266 		return NULL;
267 	EVP_CIPHER_CTX_init(ctx);
268 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
269 		os_free(ctx);
270 		return NULL;
271 	}
272 	EVP_CIPHER_CTX_set_padding(ctx, 0);
273 	return ctx;
274 }
275 
276 
277 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
278 {
279 	EVP_CIPHER_CTX *c = ctx;
280 	int plen = 16;
281 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
282 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
283 			   ERR_error_string(ERR_get_error(), NULL));
284 	}
285 }
286 
287 
288 void aes_decrypt_deinit(void *ctx)
289 {
290 	EVP_CIPHER_CTX *c = ctx;
291 	u8 buf[16];
292 	int len = sizeof(buf);
293 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
294 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
295 			   "%s", ERR_error_string(ERR_get_error(), NULL));
296 	}
297 	if (len != 0) {
298 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
299 			   "in AES decrypt", len);
300 	}
301 	EVP_CIPHER_CTX_cleanup(c);
302 	bin_clear_free(c, sizeof(*c));
303 }
304 
305 
306 #ifndef CONFIG_FIPS
307 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
308 
309 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
310 {
311 	AES_KEY actx;
312 	int res;
313 
314 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
315 		return -1;
316 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
317 	OPENSSL_cleanse(&actx, sizeof(actx));
318 	return res <= 0 ? -1 : 0;
319 }
320 
321 
322 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
323 	       u8 *plain)
324 {
325 	AES_KEY actx;
326 	int res;
327 
328 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
329 		return -1;
330 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
331 	OPENSSL_cleanse(&actx, sizeof(actx));
332 	return res <= 0 ? -1 : 0;
333 }
334 
335 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
336 #endif /* CONFIG_FIPS */
337 
338 
339 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
340 {
341 	EVP_CIPHER_CTX ctx;
342 	int clen, len;
343 	u8 buf[16];
344 
345 	EVP_CIPHER_CTX_init(&ctx);
346 	if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
347 		return -1;
348 	EVP_CIPHER_CTX_set_padding(&ctx, 0);
349 
350 	clen = data_len;
351 	if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 ||
352 	    clen != (int) data_len)
353 		return -1;
354 
355 	len = sizeof(buf);
356 	if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
357 		return -1;
358 	EVP_CIPHER_CTX_cleanup(&ctx);
359 
360 	return 0;
361 }
362 
363 
364 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
365 {
366 	EVP_CIPHER_CTX ctx;
367 	int plen, len;
368 	u8 buf[16];
369 
370 	EVP_CIPHER_CTX_init(&ctx);
371 	if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
372 		return -1;
373 	EVP_CIPHER_CTX_set_padding(&ctx, 0);
374 
375 	plen = data_len;
376 	if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 ||
377 	    plen != (int) data_len)
378 		return -1;
379 
380 	len = sizeof(buf);
381 	if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
382 		return -1;
383 	EVP_CIPHER_CTX_cleanup(&ctx);
384 
385 	return 0;
386 }
387 
388 
389 int crypto_mod_exp(const u8 *base, size_t base_len,
390 		   const u8 *power, size_t power_len,
391 		   const u8 *modulus, size_t modulus_len,
392 		   u8 *result, size_t *result_len)
393 {
394 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
395 	int ret = -1;
396 	BN_CTX *ctx;
397 
398 	ctx = BN_CTX_new();
399 	if (ctx == NULL)
400 		return -1;
401 
402 	bn_base = BN_bin2bn(base, base_len, NULL);
403 	bn_exp = BN_bin2bn(power, power_len, NULL);
404 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
405 	bn_result = BN_new();
406 
407 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
408 	    bn_result == NULL)
409 		goto error;
410 
411 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
412 		goto error;
413 
414 	*result_len = BN_bn2bin(bn_result, result);
415 	ret = 0;
416 
417 error:
418 	BN_clear_free(bn_base);
419 	BN_clear_free(bn_exp);
420 	BN_clear_free(bn_modulus);
421 	BN_clear_free(bn_result);
422 	BN_CTX_free(ctx);
423 	return ret;
424 }
425 
426 
427 struct crypto_cipher {
428 	EVP_CIPHER_CTX enc;
429 	EVP_CIPHER_CTX dec;
430 };
431 
432 
433 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
434 					  const u8 *iv, const u8 *key,
435 					  size_t key_len)
436 {
437 	struct crypto_cipher *ctx;
438 	const EVP_CIPHER *cipher;
439 
440 	ctx = os_zalloc(sizeof(*ctx));
441 	if (ctx == NULL)
442 		return NULL;
443 
444 	switch (alg) {
445 #ifndef CONFIG_NO_RC4
446 #ifndef OPENSSL_NO_RC4
447 	case CRYPTO_CIPHER_ALG_RC4:
448 		cipher = EVP_rc4();
449 		break;
450 #endif /* OPENSSL_NO_RC4 */
451 #endif /* CONFIG_NO_RC4 */
452 #ifndef OPENSSL_NO_AES
453 	case CRYPTO_CIPHER_ALG_AES:
454 		switch (key_len) {
455 		case 16:
456 			cipher = EVP_aes_128_cbc();
457 			break;
458 #ifndef OPENSSL_IS_BORINGSSL
459 		case 24:
460 			cipher = EVP_aes_192_cbc();
461 			break;
462 #endif /* OPENSSL_IS_BORINGSSL */
463 		case 32:
464 			cipher = EVP_aes_256_cbc();
465 			break;
466 		default:
467 			os_free(ctx);
468 			return NULL;
469 		}
470 		break;
471 #endif /* OPENSSL_NO_AES */
472 #ifndef OPENSSL_NO_DES
473 	case CRYPTO_CIPHER_ALG_3DES:
474 		cipher = EVP_des_ede3_cbc();
475 		break;
476 	case CRYPTO_CIPHER_ALG_DES:
477 		cipher = EVP_des_cbc();
478 		break;
479 #endif /* OPENSSL_NO_DES */
480 #ifndef OPENSSL_NO_RC2
481 	case CRYPTO_CIPHER_ALG_RC2:
482 		cipher = EVP_rc2_ecb();
483 		break;
484 #endif /* OPENSSL_NO_RC2 */
485 	default:
486 		os_free(ctx);
487 		return NULL;
488 	}
489 
490 	EVP_CIPHER_CTX_init(&ctx->enc);
491 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
492 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
493 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
494 	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
495 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
496 		os_free(ctx);
497 		return NULL;
498 	}
499 
500 	EVP_CIPHER_CTX_init(&ctx->dec);
501 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
502 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
503 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
504 	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
505 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
506 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
507 		os_free(ctx);
508 		return NULL;
509 	}
510 
511 	return ctx;
512 }
513 
514 
515 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
516 			  u8 *crypt, size_t len)
517 {
518 	int outl;
519 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
520 		return -1;
521 	return 0;
522 }
523 
524 
525 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
526 			  u8 *plain, size_t len)
527 {
528 	int outl;
529 	outl = len;
530 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
531 		return -1;
532 	return 0;
533 }
534 
535 
536 void crypto_cipher_deinit(struct crypto_cipher *ctx)
537 {
538 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
539 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
540 	os_free(ctx);
541 }
542 
543 
544 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
545 {
546 	DH *dh;
547 	struct wpabuf *pubkey = NULL, *privkey = NULL;
548 	size_t publen, privlen;
549 
550 	*priv = NULL;
551 	*publ = NULL;
552 
553 	dh = DH_new();
554 	if (dh == NULL)
555 		return NULL;
556 
557 	dh->g = BN_new();
558 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
559 		goto err;
560 
561 	dh->p = get_group5_prime();
562 	if (dh->p == NULL)
563 		goto err;
564 
565 	if (DH_generate_key(dh) != 1)
566 		goto err;
567 
568 	publen = BN_num_bytes(dh->pub_key);
569 	pubkey = wpabuf_alloc(publen);
570 	if (pubkey == NULL)
571 		goto err;
572 	privlen = BN_num_bytes(dh->priv_key);
573 	privkey = wpabuf_alloc(privlen);
574 	if (privkey == NULL)
575 		goto err;
576 
577 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
578 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
579 
580 	*priv = privkey;
581 	*publ = pubkey;
582 	return dh;
583 
584 err:
585 	wpabuf_clear_free(pubkey);
586 	wpabuf_clear_free(privkey);
587 	DH_free(dh);
588 	return NULL;
589 }
590 
591 
592 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
593 {
594 	DH *dh;
595 
596 	dh = DH_new();
597 	if (dh == NULL)
598 		return NULL;
599 
600 	dh->g = BN_new();
601 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
602 		goto err;
603 
604 	dh->p = get_group5_prime();
605 	if (dh->p == NULL)
606 		goto err;
607 
608 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
609 	if (dh->priv_key == NULL)
610 		goto err;
611 
612 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
613 	if (dh->pub_key == NULL)
614 		goto err;
615 
616 	if (DH_generate_key(dh) != 1)
617 		goto err;
618 
619 	return dh;
620 
621 err:
622 	DH_free(dh);
623 	return NULL;
624 }
625 
626 
627 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
628 				  const struct wpabuf *own_private)
629 {
630 	BIGNUM *pub_key;
631 	struct wpabuf *res = NULL;
632 	size_t rlen;
633 	DH *dh = ctx;
634 	int keylen;
635 
636 	if (ctx == NULL)
637 		return NULL;
638 
639 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
640 			    NULL);
641 	if (pub_key == NULL)
642 		return NULL;
643 
644 	rlen = DH_size(dh);
645 	res = wpabuf_alloc(rlen);
646 	if (res == NULL)
647 		goto err;
648 
649 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
650 	if (keylen < 0)
651 		goto err;
652 	wpabuf_put(res, keylen);
653 	BN_clear_free(pub_key);
654 
655 	return res;
656 
657 err:
658 	BN_clear_free(pub_key);
659 	wpabuf_clear_free(res);
660 	return NULL;
661 }
662 
663 
664 void dh5_free(void *ctx)
665 {
666 	DH *dh;
667 	if (ctx == NULL)
668 		return;
669 	dh = ctx;
670 	DH_free(dh);
671 }
672 
673 
674 struct crypto_hash {
675 	HMAC_CTX ctx;
676 };
677 
678 
679 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
680 				      size_t key_len)
681 {
682 	struct crypto_hash *ctx;
683 	const EVP_MD *md;
684 
685 	switch (alg) {
686 #ifndef OPENSSL_NO_MD5
687 	case CRYPTO_HASH_ALG_HMAC_MD5:
688 		md = EVP_md5();
689 		break;
690 #endif /* OPENSSL_NO_MD5 */
691 #ifndef OPENSSL_NO_SHA
692 	case CRYPTO_HASH_ALG_HMAC_SHA1:
693 		md = EVP_sha1();
694 		break;
695 #endif /* OPENSSL_NO_SHA */
696 #ifndef OPENSSL_NO_SHA256
697 #ifdef CONFIG_SHA256
698 	case CRYPTO_HASH_ALG_HMAC_SHA256:
699 		md = EVP_sha256();
700 		break;
701 #endif /* CONFIG_SHA256 */
702 #endif /* OPENSSL_NO_SHA256 */
703 	default:
704 		return NULL;
705 	}
706 
707 	ctx = os_zalloc(sizeof(*ctx));
708 	if (ctx == NULL)
709 		return NULL;
710 	HMAC_CTX_init(&ctx->ctx);
711 
712 #if OPENSSL_VERSION_NUMBER < 0x00909000
713 	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
714 #else /* openssl < 0.9.9 */
715 	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
716 		bin_clear_free(ctx, sizeof(*ctx));
717 		return NULL;
718 	}
719 #endif /* openssl < 0.9.9 */
720 
721 	return ctx;
722 }
723 
724 
725 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
726 {
727 	if (ctx == NULL)
728 		return;
729 	HMAC_Update(&ctx->ctx, data, len);
730 }
731 
732 
733 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
734 {
735 	unsigned int mdlen;
736 	int res;
737 
738 	if (ctx == NULL)
739 		return -2;
740 
741 	if (mac == NULL || len == NULL) {
742 		bin_clear_free(ctx, sizeof(*ctx));
743 		return 0;
744 	}
745 
746 	mdlen = *len;
747 #if OPENSSL_VERSION_NUMBER < 0x00909000
748 	HMAC_Final(&ctx->ctx, mac, &mdlen);
749 	res = 1;
750 #else /* openssl < 0.9.9 */
751 	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
752 #endif /* openssl < 0.9.9 */
753 	HMAC_CTX_cleanup(&ctx->ctx);
754 	bin_clear_free(ctx, sizeof(*ctx));
755 
756 	if (res == 1) {
757 		*len = mdlen;
758 		return 0;
759 	}
760 
761 	return -1;
762 }
763 
764 
765 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
766 			       size_t key_len, size_t num_elem,
767 			       const u8 *addr[], const size_t *len, u8 *mac,
768 			       unsigned int mdlen)
769 {
770 	HMAC_CTX ctx;
771 	size_t i;
772 	int res;
773 
774 	HMAC_CTX_init(&ctx);
775 #if OPENSSL_VERSION_NUMBER < 0x00909000
776 	HMAC_Init_ex(&ctx, key, key_len, type, NULL);
777 #else /* openssl < 0.9.9 */
778 	if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1)
779 		return -1;
780 #endif /* openssl < 0.9.9 */
781 
782 	for (i = 0; i < num_elem; i++)
783 		HMAC_Update(&ctx, addr[i], len[i]);
784 
785 #if OPENSSL_VERSION_NUMBER < 0x00909000
786 	HMAC_Final(&ctx, mac, &mdlen);
787 	res = 1;
788 #else /* openssl < 0.9.9 */
789 	res = HMAC_Final(&ctx, mac, &mdlen);
790 #endif /* openssl < 0.9.9 */
791 	HMAC_CTX_cleanup(&ctx);
792 
793 	return res == 1 ? 0 : -1;
794 }
795 
796 
797 #ifndef CONFIG_FIPS
798 
799 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
800 		    const u8 *addr[], const size_t *len, u8 *mac)
801 {
802 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
803 				   mac, 16);
804 }
805 
806 
807 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
808 	     u8 *mac)
809 {
810 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
811 }
812 
813 #endif /* CONFIG_FIPS */
814 
815 
816 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
817 		int iterations, u8 *buf, size_t buflen)
818 {
819 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
820 				   ssid_len, iterations, buflen, buf) != 1)
821 		return -1;
822 	return 0;
823 }
824 
825 
826 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
827 		     const u8 *addr[], const size_t *len, u8 *mac)
828 {
829 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
830 				   len, mac, 20);
831 }
832 
833 
834 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
835 	       u8 *mac)
836 {
837 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
838 }
839 
840 
841 #ifdef CONFIG_SHA256
842 
843 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
844 		       const u8 *addr[], const size_t *len, u8 *mac)
845 {
846 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
847 				   len, mac, 32);
848 }
849 
850 
851 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
852 		size_t data_len, u8 *mac)
853 {
854 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
855 }
856 
857 #endif /* CONFIG_SHA256 */
858 
859 
860 #ifdef CONFIG_SHA384
861 
862 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
863 		       const u8 *addr[], const size_t *len, u8 *mac)
864 {
865 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
866 				   len, mac, 32);
867 }
868 
869 
870 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
871 		size_t data_len, u8 *mac)
872 {
873 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
874 }
875 
876 #endif /* CONFIG_SHA384 */
877 
878 
879 int crypto_get_random(void *buf, size_t len)
880 {
881 	if (RAND_bytes(buf, len) != 1)
882 		return -1;
883 	return 0;
884 }
885 
886 
887 #ifdef CONFIG_OPENSSL_CMAC
888 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
889 		     const u8 *addr[], const size_t *len, u8 *mac)
890 {
891 	CMAC_CTX *ctx;
892 	int ret = -1;
893 	size_t outlen, i;
894 
895 	ctx = CMAC_CTX_new();
896 	if (ctx == NULL)
897 		return -1;
898 
899 	if (key_len == 32) {
900 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
901 			goto fail;
902 	} else if (key_len == 16) {
903 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
904 			goto fail;
905 	} else {
906 		goto fail;
907 	}
908 	for (i = 0; i < num_elem; i++) {
909 		if (!CMAC_Update(ctx, addr[i], len[i]))
910 			goto fail;
911 	}
912 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
913 		goto fail;
914 
915 	ret = 0;
916 fail:
917 	CMAC_CTX_free(ctx);
918 	return ret;
919 }
920 
921 
922 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
923 			 const u8 *addr[], const size_t *len, u8 *mac)
924 {
925 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
926 }
927 
928 
929 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
930 {
931 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
932 }
933 
934 
935 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
936 {
937 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
938 }
939 #endif /* CONFIG_OPENSSL_CMAC */
940 
941 
942 struct crypto_bignum * crypto_bignum_init(void)
943 {
944 	return (struct crypto_bignum *) BN_new();
945 }
946 
947 
948 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
949 {
950 	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
951 	return (struct crypto_bignum *) bn;
952 }
953 
954 
955 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
956 {
957 	if (clear)
958 		BN_clear_free((BIGNUM *) n);
959 	else
960 		BN_free((BIGNUM *) n);
961 }
962 
963 
964 int crypto_bignum_to_bin(const struct crypto_bignum *a,
965 			 u8 *buf, size_t buflen, size_t padlen)
966 {
967 	int num_bytes, offset;
968 
969 	if (padlen > buflen)
970 		return -1;
971 
972 	num_bytes = BN_num_bytes((const BIGNUM *) a);
973 	if ((size_t) num_bytes > buflen)
974 		return -1;
975 	if (padlen > (size_t) num_bytes)
976 		offset = padlen - num_bytes;
977 	else
978 		offset = 0;
979 
980 	os_memset(buf, 0, offset);
981 	BN_bn2bin((const BIGNUM *) a, buf + offset);
982 
983 	return num_bytes + offset;
984 }
985 
986 
987 int crypto_bignum_add(const struct crypto_bignum *a,
988 		      const struct crypto_bignum *b,
989 		      struct crypto_bignum *c)
990 {
991 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
992 		0 : -1;
993 }
994 
995 
996 int crypto_bignum_mod(const struct crypto_bignum *a,
997 		      const struct crypto_bignum *b,
998 		      struct crypto_bignum *c)
999 {
1000 	int res;
1001 	BN_CTX *bnctx;
1002 
1003 	bnctx = BN_CTX_new();
1004 	if (bnctx == NULL)
1005 		return -1;
1006 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1007 		     bnctx);
1008 	BN_CTX_free(bnctx);
1009 
1010 	return res ? 0 : -1;
1011 }
1012 
1013 
1014 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1015 			  const struct crypto_bignum *b,
1016 			  const struct crypto_bignum *c,
1017 			  struct crypto_bignum *d)
1018 {
1019 	int res;
1020 	BN_CTX *bnctx;
1021 
1022 	bnctx = BN_CTX_new();
1023 	if (bnctx == NULL)
1024 		return -1;
1025 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1026 			 (const BIGNUM *) c, bnctx);
1027 	BN_CTX_free(bnctx);
1028 
1029 	return res ? 0 : -1;
1030 }
1031 
1032 
1033 int crypto_bignum_inverse(const struct crypto_bignum *a,
1034 			  const struct crypto_bignum *b,
1035 			  struct crypto_bignum *c)
1036 {
1037 	BIGNUM *res;
1038 	BN_CTX *bnctx;
1039 
1040 	bnctx = BN_CTX_new();
1041 	if (bnctx == NULL)
1042 		return -1;
1043 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1044 			     (const BIGNUM *) b, bnctx);
1045 	BN_CTX_free(bnctx);
1046 
1047 	return res ? 0 : -1;
1048 }
1049 
1050 
1051 int crypto_bignum_sub(const struct crypto_bignum *a,
1052 		      const struct crypto_bignum *b,
1053 		      struct crypto_bignum *c)
1054 {
1055 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1056 		0 : -1;
1057 }
1058 
1059 
1060 int crypto_bignum_div(const struct crypto_bignum *a,
1061 		      const struct crypto_bignum *b,
1062 		      struct crypto_bignum *c)
1063 {
1064 	int res;
1065 
1066 	BN_CTX *bnctx;
1067 
1068 	bnctx = BN_CTX_new();
1069 	if (bnctx == NULL)
1070 		return -1;
1071 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1072 		     (const BIGNUM *) b, bnctx);
1073 	BN_CTX_free(bnctx);
1074 
1075 	return res ? 0 : -1;
1076 }
1077 
1078 
1079 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1080 			 const struct crypto_bignum *b,
1081 			 const struct crypto_bignum *c,
1082 			 struct crypto_bignum *d)
1083 {
1084 	int res;
1085 
1086 	BN_CTX *bnctx;
1087 
1088 	bnctx = BN_CTX_new();
1089 	if (bnctx == NULL)
1090 		return -1;
1091 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1092 			 (const BIGNUM *) c, bnctx);
1093 	BN_CTX_free(bnctx);
1094 
1095 	return res ? 0 : -1;
1096 }
1097 
1098 
1099 int crypto_bignum_cmp(const struct crypto_bignum *a,
1100 		      const struct crypto_bignum *b)
1101 {
1102 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1103 }
1104 
1105 
1106 int crypto_bignum_bits(const struct crypto_bignum *a)
1107 {
1108 	return BN_num_bits((const BIGNUM *) a);
1109 }
1110 
1111 
1112 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1113 {
1114 	return BN_is_zero((const BIGNUM *) a);
1115 }
1116 
1117 
1118 int crypto_bignum_is_one(const struct crypto_bignum *a)
1119 {
1120 	return BN_is_one((const BIGNUM *) a);
1121 }
1122 
1123 
1124 int crypto_bignum_legendre(const struct crypto_bignum *a,
1125 			   const struct crypto_bignum *p)
1126 {
1127 	BN_CTX *bnctx;
1128 	BIGNUM *exp = NULL, *tmp = NULL;
1129 	int res = -2;
1130 
1131 	bnctx = BN_CTX_new();
1132 	if (bnctx == NULL)
1133 		return -2;
1134 
1135 	exp = BN_new();
1136 	tmp = BN_new();
1137 	if (!exp || !tmp ||
1138 	    /* exp = (p-1) / 2 */
1139 	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1140 	    !BN_rshift1(exp, exp) ||
1141 	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1142 			bnctx))
1143 		goto fail;
1144 
1145 	if (BN_is_word(tmp, 1))
1146 		res = 1;
1147 	else if (BN_is_zero(tmp))
1148 		res = 0;
1149 	else
1150 		res = -1;
1151 
1152 fail:
1153 	BN_clear_free(tmp);
1154 	BN_clear_free(exp);
1155 	BN_CTX_free(bnctx);
1156 	return res;
1157 }
1158 
1159 
1160 #ifdef CONFIG_ECC
1161 
1162 struct crypto_ec {
1163 	EC_GROUP *group;
1164 	BN_CTX *bnctx;
1165 	BIGNUM *prime;
1166 	BIGNUM *order;
1167 	BIGNUM *a;
1168 	BIGNUM *b;
1169 };
1170 
1171 struct crypto_ec * crypto_ec_init(int group)
1172 {
1173 	struct crypto_ec *e;
1174 	int nid;
1175 
1176 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1177 	switch (group) {
1178 	case 19:
1179 		nid = NID_X9_62_prime256v1;
1180 		break;
1181 	case 20:
1182 		nid = NID_secp384r1;
1183 		break;
1184 	case 21:
1185 		nid = NID_secp521r1;
1186 		break;
1187 	case 25:
1188 		nid = NID_X9_62_prime192v1;
1189 		break;
1190 	case 26:
1191 		nid = NID_secp224r1;
1192 		break;
1193 #ifdef NID_brainpoolP224r1
1194 	case 27:
1195 		nid = NID_brainpoolP224r1;
1196 		break;
1197 #endif /* NID_brainpoolP224r1 */
1198 #ifdef NID_brainpoolP256r1
1199 	case 28:
1200 		nid = NID_brainpoolP256r1;
1201 		break;
1202 #endif /* NID_brainpoolP256r1 */
1203 #ifdef NID_brainpoolP384r1
1204 	case 29:
1205 		nid = NID_brainpoolP384r1;
1206 		break;
1207 #endif /* NID_brainpoolP384r1 */
1208 #ifdef NID_brainpoolP512r1
1209 	case 30:
1210 		nid = NID_brainpoolP512r1;
1211 		break;
1212 #endif /* NID_brainpoolP512r1 */
1213 	default:
1214 		return NULL;
1215 	}
1216 
1217 	e = os_zalloc(sizeof(*e));
1218 	if (e == NULL)
1219 		return NULL;
1220 
1221 	e->bnctx = BN_CTX_new();
1222 	e->group = EC_GROUP_new_by_curve_name(nid);
1223 	e->prime = BN_new();
1224 	e->order = BN_new();
1225 	e->a = BN_new();
1226 	e->b = BN_new();
1227 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1228 	    e->order == NULL || e->a == NULL || e->b == NULL ||
1229 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1230 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1231 		crypto_ec_deinit(e);
1232 		e = NULL;
1233 	}
1234 
1235 	return e;
1236 }
1237 
1238 
1239 void crypto_ec_deinit(struct crypto_ec *e)
1240 {
1241 	if (e == NULL)
1242 		return;
1243 	BN_clear_free(e->b);
1244 	BN_clear_free(e->a);
1245 	BN_clear_free(e->order);
1246 	BN_clear_free(e->prime);
1247 	EC_GROUP_free(e->group);
1248 	BN_CTX_free(e->bnctx);
1249 	os_free(e);
1250 }
1251 
1252 
1253 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1254 {
1255 	if (e == NULL)
1256 		return NULL;
1257 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1258 }
1259 
1260 
1261 size_t crypto_ec_prime_len(struct crypto_ec *e)
1262 {
1263 	return BN_num_bytes(e->prime);
1264 }
1265 
1266 
1267 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1268 {
1269 	return BN_num_bits(e->prime);
1270 }
1271 
1272 
1273 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1274 {
1275 	return (const struct crypto_bignum *) e->prime;
1276 }
1277 
1278 
1279 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1280 {
1281 	return (const struct crypto_bignum *) e->order;
1282 }
1283 
1284 
1285 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1286 {
1287 	if (clear)
1288 		EC_POINT_clear_free((EC_POINT *) p);
1289 	else
1290 		EC_POINT_free((EC_POINT *) p);
1291 }
1292 
1293 
1294 int crypto_ec_point_to_bin(struct crypto_ec *e,
1295 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1296 {
1297 	BIGNUM *x_bn, *y_bn;
1298 	int ret = -1;
1299 	int len = BN_num_bytes(e->prime);
1300 
1301 	x_bn = BN_new();
1302 	y_bn = BN_new();
1303 
1304 	if (x_bn && y_bn &&
1305 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1306 						x_bn, y_bn, e->bnctx)) {
1307 		if (x) {
1308 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1309 					     x, len, len);
1310 		}
1311 		if (y) {
1312 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1313 					     y, len, len);
1314 		}
1315 		ret = 0;
1316 	}
1317 
1318 	BN_clear_free(x_bn);
1319 	BN_clear_free(y_bn);
1320 	return ret;
1321 }
1322 
1323 
1324 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1325 						  const u8 *val)
1326 {
1327 	BIGNUM *x, *y;
1328 	EC_POINT *elem;
1329 	int len = BN_num_bytes(e->prime);
1330 
1331 	x = BN_bin2bn(val, len, NULL);
1332 	y = BN_bin2bn(val + len, len, NULL);
1333 	elem = EC_POINT_new(e->group);
1334 	if (x == NULL || y == NULL || elem == NULL) {
1335 		BN_clear_free(x);
1336 		BN_clear_free(y);
1337 		EC_POINT_clear_free(elem);
1338 		return NULL;
1339 	}
1340 
1341 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1342 						 e->bnctx)) {
1343 		EC_POINT_clear_free(elem);
1344 		elem = NULL;
1345 	}
1346 
1347 	BN_clear_free(x);
1348 	BN_clear_free(y);
1349 
1350 	return (struct crypto_ec_point *) elem;
1351 }
1352 
1353 
1354 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1355 			const struct crypto_ec_point *b,
1356 			struct crypto_ec_point *c)
1357 {
1358 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1359 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1360 }
1361 
1362 
1363 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1364 			const struct crypto_bignum *b,
1365 			struct crypto_ec_point *res)
1366 {
1367 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1368 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1369 		? 0 : -1;
1370 }
1371 
1372 
1373 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1374 {
1375 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1376 }
1377 
1378 
1379 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1380 				  struct crypto_ec_point *p,
1381 				  const struct crypto_bignum *x, int y_bit)
1382 {
1383 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1384 						     (const BIGNUM *) x, y_bit,
1385 						     e->bnctx) ||
1386 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1387 		return -1;
1388 	return 0;
1389 }
1390 
1391 
1392 struct crypto_bignum *
1393 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1394 			      const struct crypto_bignum *x)
1395 {
1396 	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1397 
1398 	tmp = BN_new();
1399 	tmp2 = BN_new();
1400 
1401 	/* y^2 = x^3 + ax + b */
1402 	if (tmp && tmp2 &&
1403 	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1404 	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1405 	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1406 	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1407 	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1408 		y_sqr = tmp2;
1409 		tmp2 = NULL;
1410 	}
1411 
1412 	BN_clear_free(tmp);
1413 	BN_clear_free(tmp2);
1414 
1415 	return (struct crypto_bignum *) y_sqr;
1416 }
1417 
1418 
1419 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1420 				   const struct crypto_ec_point *p)
1421 {
1422 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1423 }
1424 
1425 
1426 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1427 				const struct crypto_ec_point *p)
1428 {
1429 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1430 				    e->bnctx) == 1;
1431 }
1432 
1433 
1434 int crypto_ec_point_cmp(const struct crypto_ec *e,
1435 			const struct crypto_ec_point *a,
1436 			const struct crypto_ec_point *b)
1437 {
1438 	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1439 			    (const EC_POINT *) b, e->bnctx);
1440 }
1441 
1442 #endif /* CONFIG_ECC */
1443