1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * sha384_vector - SHA384 hash for data vector 84 * @num_elem: Number of elements in the data vector 85 * @addr: Pointers to the data areas 86 * @len: Lengths of the data blocks 87 * @mac: Buffer for the hash 88 * Returns: 0 on success, -1 on failure 89 */ 90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, 91 u8 *mac); 92 93 /** 94 * sha512_vector - SHA512 hash for data vector 95 * @num_elem: Number of elements in the data vector 96 * @addr: Pointers to the data areas 97 * @len: Lengths of the data blocks 98 * @mac: Buffer for the hash 99 * Returns: 0 on success, -1 on failure 100 */ 101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, 102 u8 *mac); 103 104 /** 105 * des_encrypt - Encrypt one block with DES 106 * @clear: 8 octets (in) 107 * @key: 7 octets (in) (no parity bits included) 108 * @cypher: 8 octets (out) 109 * Returns: 0 on success, -1 on failure 110 */ 111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 112 113 /** 114 * aes_encrypt_init - Initialize AES for encryption 115 * @key: Encryption key 116 * @len: Key length in bytes (usually 16, i.e., 128 bits) 117 * Returns: Pointer to context data or %NULL on failure 118 */ 119 void * aes_encrypt_init(const u8 *key, size_t len); 120 121 /** 122 * aes_encrypt - Encrypt one AES block 123 * @ctx: Context pointer from aes_encrypt_init() 124 * @plain: Plaintext data to be encrypted (16 bytes) 125 * @crypt: Buffer for the encrypted data (16 bytes) 126 * Returns: 0 on success, -1 on failure 127 */ 128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 129 130 /** 131 * aes_encrypt_deinit - Deinitialize AES encryption 132 * @ctx: Context pointer from aes_encrypt_init() 133 */ 134 void aes_encrypt_deinit(void *ctx); 135 136 /** 137 * aes_decrypt_init - Initialize AES for decryption 138 * @key: Decryption key 139 * @len: Key length in bytes (usually 16, i.e., 128 bits) 140 * Returns: Pointer to context data or %NULL on failure 141 */ 142 void * aes_decrypt_init(const u8 *key, size_t len); 143 144 /** 145 * aes_decrypt - Decrypt one AES block 146 * @ctx: Context pointer from aes_encrypt_init() 147 * @crypt: Encrypted data (16 bytes) 148 * @plain: Buffer for the decrypted data (16 bytes) 149 * Returns: 0 on success, -1 on failure 150 */ 151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 152 153 /** 154 * aes_decrypt_deinit - Deinitialize AES decryption 155 * @ctx: Context pointer from aes_encrypt_init() 156 */ 157 void aes_decrypt_deinit(void *ctx); 158 159 160 enum crypto_hash_alg { 161 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 162 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 163 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256, 164 CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512 165 }; 166 167 struct crypto_hash; 168 169 /** 170 * crypto_hash_init - Initialize hash/HMAC function 171 * @alg: Hash algorithm 172 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 173 * @key_len: Length of the key in bytes 174 * Returns: Pointer to hash context to use with other hash functions or %NULL 175 * on failure 176 * 177 * This function is only used with internal TLSv1 implementation 178 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 179 * to implement this. 180 */ 181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 182 size_t key_len); 183 184 /** 185 * crypto_hash_update - Add data to hash calculation 186 * @ctx: Context pointer from crypto_hash_init() 187 * @data: Data buffer to add 188 * @len: Length of the buffer 189 * 190 * This function is only used with internal TLSv1 implementation 191 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 192 * to implement this. 193 */ 194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 195 196 /** 197 * crypto_hash_finish - Complete hash calculation 198 * @ctx: Context pointer from crypto_hash_init() 199 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 200 * context 201 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 202 * hash context; on return, this is set to the actual length of the hash value 203 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 204 * or -2 on other failures (including failed crypto_hash_update() operations) 205 * 206 * This function calculates the hash value and frees the context buffer that 207 * was used for hash calculation. 208 * 209 * This function is only used with internal TLSv1 implementation 210 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 211 * to implement this. 212 */ 213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 214 215 216 enum crypto_cipher_alg { 217 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 218 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 219 }; 220 221 struct crypto_cipher; 222 223 /** 224 * crypto_cipher_init - Initialize block/stream cipher function 225 * @alg: Cipher algorithm 226 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 227 * @key: Cipher key 228 * @key_len: Length of key in bytes 229 * Returns: Pointer to cipher context to use with other cipher functions or 230 * %NULL on failure 231 * 232 * This function is only used with internal TLSv1 implementation 233 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 234 * to implement this. 235 */ 236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 237 const u8 *iv, const u8 *key, 238 size_t key_len); 239 240 /** 241 * crypto_cipher_encrypt - Cipher encrypt 242 * @ctx: Context pointer from crypto_cipher_init() 243 * @plain: Plaintext to cipher 244 * @crypt: Resulting ciphertext 245 * @len: Length of the plaintext 246 * Returns: 0 on success, -1 on failure 247 * 248 * This function is only used with internal TLSv1 implementation 249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 250 * to implement this. 251 */ 252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 253 const u8 *plain, u8 *crypt, size_t len); 254 255 /** 256 * crypto_cipher_decrypt - Cipher decrypt 257 * @ctx: Context pointer from crypto_cipher_init() 258 * @crypt: Ciphertext to decrypt 259 * @plain: Resulting plaintext 260 * @len: Length of the cipher text 261 * Returns: 0 on success, -1 on failure 262 * 263 * This function is only used with internal TLSv1 implementation 264 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 265 * to implement this. 266 */ 267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 268 const u8 *crypt, u8 *plain, size_t len); 269 270 /** 271 * crypto_cipher_decrypt - Free cipher context 272 * @ctx: Context pointer from crypto_cipher_init() 273 * 274 * This function is only used with internal TLSv1 implementation 275 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 276 * to implement this. 277 */ 278 void crypto_cipher_deinit(struct crypto_cipher *ctx); 279 280 281 struct crypto_public_key; 282 struct crypto_private_key; 283 284 /** 285 * crypto_public_key_import - Import an RSA public key 286 * @key: Key buffer (DER encoded RSA public key) 287 * @len: Key buffer length in bytes 288 * Returns: Pointer to the public key or %NULL on failure 289 * 290 * This function can just return %NULL if the crypto library supports X.509 291 * parsing. In that case, crypto_public_key_from_cert() is used to import the 292 * public key from a certificate. 293 * 294 * This function is only used with internal TLSv1 implementation 295 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 296 * to implement this. 297 */ 298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 299 300 struct crypto_public_key * 301 crypto_public_key_import_parts(const u8 *n, size_t n_len, 302 const u8 *e, size_t e_len); 303 304 /** 305 * crypto_private_key_import - Import an RSA private key 306 * @key: Key buffer (DER encoded RSA private key) 307 * @len: Key buffer length in bytes 308 * @passwd: Key encryption password or %NULL if key is not encrypted 309 * Returns: Pointer to the private key or %NULL on failure 310 * 311 * This function is only used with internal TLSv1 implementation 312 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 313 * to implement this. 314 */ 315 struct crypto_private_key * crypto_private_key_import(const u8 *key, 316 size_t len, 317 const char *passwd); 318 319 /** 320 * crypto_public_key_from_cert - Import an RSA public key from a certificate 321 * @buf: DER encoded X.509 certificate 322 * @len: Certificate buffer length in bytes 323 * Returns: Pointer to public key or %NULL on failure 324 * 325 * This function can just return %NULL if the crypto library does not support 326 * X.509 parsing. In that case, internal code will be used to parse the 327 * certificate and public key is imported using crypto_public_key_import(). 328 * 329 * This function is only used with internal TLSv1 implementation 330 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 331 * to implement this. 332 */ 333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 334 size_t len); 335 336 /** 337 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 338 * @key: Public key 339 * @in: Plaintext buffer 340 * @inlen: Length of plaintext buffer in bytes 341 * @out: Output buffer for encrypted data 342 * @outlen: Length of output buffer in bytes; set to used length on success 343 * Returns: 0 on success, -1 on failure 344 * 345 * This function is only used with internal TLSv1 implementation 346 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 347 * to implement this. 348 */ 349 int __must_check crypto_public_key_encrypt_pkcs1_v15( 350 struct crypto_public_key *key, const u8 *in, size_t inlen, 351 u8 *out, size_t *outlen); 352 353 /** 354 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 355 * @key: Private key 356 * @in: Encrypted buffer 357 * @inlen: Length of encrypted buffer in bytes 358 * @out: Output buffer for encrypted data 359 * @outlen: Length of output buffer in bytes; set to used length on success 360 * Returns: 0 on success, -1 on failure 361 * 362 * This function is only used with internal TLSv1 implementation 363 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 364 * to implement this. 365 */ 366 int __must_check crypto_private_key_decrypt_pkcs1_v15( 367 struct crypto_private_key *key, const u8 *in, size_t inlen, 368 u8 *out, size_t *outlen); 369 370 /** 371 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 372 * @key: Private key from crypto_private_key_import() 373 * @in: Plaintext buffer 374 * @inlen: Length of plaintext buffer in bytes 375 * @out: Output buffer for encrypted (signed) data 376 * @outlen: Length of output buffer in bytes; set to used length on success 377 * Returns: 0 on success, -1 on failure 378 * 379 * This function is only used with internal TLSv1 implementation 380 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 381 * to implement this. 382 */ 383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 384 const u8 *in, size_t inlen, 385 u8 *out, size_t *outlen); 386 387 /** 388 * crypto_public_key_free - Free public key 389 * @key: Public key 390 * 391 * This function is only used with internal TLSv1 implementation 392 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 393 * to implement this. 394 */ 395 void crypto_public_key_free(struct crypto_public_key *key); 396 397 /** 398 * crypto_private_key_free - Free private key 399 * @key: Private key from crypto_private_key_import() 400 * 401 * This function is only used with internal TLSv1 implementation 402 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 403 * to implement this. 404 */ 405 void crypto_private_key_free(struct crypto_private_key *key); 406 407 /** 408 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 409 * @key: Public key 410 * @crypt: Encrypted signature data (using the private key) 411 * @crypt_len: Encrypted signature data length 412 * @plain: Buffer for plaintext (at least crypt_len bytes) 413 * @plain_len: Plaintext length (max buffer size on input, real len on output); 414 * Returns: 0 on success, -1 on failure 415 */ 416 int __must_check crypto_public_key_decrypt_pkcs1( 417 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 418 u8 *plain, size_t *plain_len); 419 420 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, 421 u8 *pubkey); 422 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, 423 const u8 *privkey, size_t privkey_len, 424 const u8 *pubkey, size_t pubkey_len, 425 u8 *secret, size_t *len); 426 427 /** 428 * crypto_global_init - Initialize crypto wrapper 429 * 430 * This function is only used with internal TLSv1 implementation 431 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 432 * to implement this. 433 */ 434 int __must_check crypto_global_init(void); 435 436 /** 437 * crypto_global_deinit - Deinitialize crypto wrapper 438 * 439 * This function is only used with internal TLSv1 implementation 440 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 441 * to implement this. 442 */ 443 void crypto_global_deinit(void); 444 445 /** 446 * crypto_mod_exp - Modular exponentiation of large integers 447 * @base: Base integer (big endian byte array) 448 * @base_len: Length of base integer in bytes 449 * @power: Power integer (big endian byte array) 450 * @power_len: Length of power integer in bytes 451 * @modulus: Modulus integer (big endian byte array) 452 * @modulus_len: Length of modulus integer in bytes 453 * @result: Buffer for the result 454 * @result_len: Result length (max buffer size on input, real len on output) 455 * Returns: 0 on success, -1 on failure 456 * 457 * This function calculates result = base ^ power mod modulus. modules_len is 458 * used as the maximum size of modulus buffer. It is set to the used size on 459 * success. 460 * 461 * This function is only used with internal TLSv1 implementation 462 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 463 * to implement this. 464 */ 465 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 466 const u8 *power, size_t power_len, 467 const u8 *modulus, size_t modulus_len, 468 u8 *result, size_t *result_len); 469 470 /** 471 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 472 * @key: RC4 key 473 * @keylen: RC4 key length 474 * @skip: number of bytes to skip from the beginning of the RC4 stream 475 * @data: data to be XOR'ed with RC4 stream 476 * @data_len: buf length 477 * Returns: 0 on success, -1 on failure 478 * 479 * Generate RC4 pseudo random stream for the given key, skip beginning of the 480 * stream, and XOR the end result with the data buffer to perform RC4 481 * encryption/decryption. 482 */ 483 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 484 u8 *data, size_t data_len); 485 486 /** 487 * crypto_get_random - Generate cryptographically strong pseudy-random bytes 488 * @buf: Buffer for data 489 * @len: Number of bytes to generate 490 * Returns: 0 on success, -1 on failure 491 * 492 * If the PRNG does not have enough entropy to ensure unpredictable byte 493 * sequence, this functions must return -1. 494 */ 495 int crypto_get_random(void *buf, size_t len); 496 497 498 /** 499 * struct crypto_bignum - bignum 500 * 501 * Internal data structure for bignum implementation. The contents is specific 502 * to the used crypto library. 503 */ 504 struct crypto_bignum; 505 506 /** 507 * crypto_bignum_init - Allocate memory for bignum 508 * Returns: Pointer to allocated bignum or %NULL on failure 509 */ 510 struct crypto_bignum * crypto_bignum_init(void); 511 512 /** 513 * crypto_bignum_init_set - Allocate memory for bignum and set the value 514 * @buf: Buffer with unsigned binary value 515 * @len: Length of buf in octets 516 * Returns: Pointer to allocated bignum or %NULL on failure 517 */ 518 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 519 520 /** 521 * crypto_bignum_deinit - Free bignum 522 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 523 * @clear: Whether to clear the value from memory 524 */ 525 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 526 527 /** 528 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 529 * @a: Bignum 530 * @buf: Buffer for the binary number 531 * @len: Length of @buf in octets 532 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 533 * Returns: Number of octets written on success, -1 on failure 534 */ 535 int crypto_bignum_to_bin(const struct crypto_bignum *a, 536 u8 *buf, size_t buflen, size_t padlen); 537 538 /** 539 * crypto_bignum_rand - Create a random number in range of modulus 540 * @r: Bignum; set to a random value 541 * @m: Bignum; modulus 542 * Returns: 0 on success, -1 on failure 543 */ 544 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m); 545 546 /** 547 * crypto_bignum_add - c = a + b 548 * @a: Bignum 549 * @b: Bignum 550 * @c: Bignum; used to store the result of a + b 551 * Returns: 0 on success, -1 on failure 552 */ 553 int crypto_bignum_add(const struct crypto_bignum *a, 554 const struct crypto_bignum *b, 555 struct crypto_bignum *c); 556 557 /** 558 * crypto_bignum_mod - c = a % b 559 * @a: Bignum 560 * @b: Bignum 561 * @c: Bignum; used to store the result of a % b 562 * Returns: 0 on success, -1 on failure 563 */ 564 int crypto_bignum_mod(const struct crypto_bignum *a, 565 const struct crypto_bignum *b, 566 struct crypto_bignum *c); 567 568 /** 569 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 570 * @a: Bignum; base 571 * @b: Bignum; exponent 572 * @c: Bignum; modulus 573 * @d: Bignum; used to store the result of a^b (mod c) 574 * Returns: 0 on success, -1 on failure 575 */ 576 int crypto_bignum_exptmod(const struct crypto_bignum *a, 577 const struct crypto_bignum *b, 578 const struct crypto_bignum *c, 579 struct crypto_bignum *d); 580 581 /** 582 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 583 * @a: Bignum 584 * @b: Bignum 585 * @c: Bignum; used to store the result 586 * Returns: 0 on success, -1 on failure 587 */ 588 int crypto_bignum_inverse(const struct crypto_bignum *a, 589 const struct crypto_bignum *b, 590 struct crypto_bignum *c); 591 592 /** 593 * crypto_bignum_sub - c = a - b 594 * @a: Bignum 595 * @b: Bignum 596 * @c: Bignum; used to store the result of a - b 597 * Returns: 0 on success, -1 on failure 598 */ 599 int crypto_bignum_sub(const struct crypto_bignum *a, 600 const struct crypto_bignum *b, 601 struct crypto_bignum *c); 602 603 /** 604 * crypto_bignum_div - c = a / b 605 * @a: Bignum 606 * @b: Bignum 607 * @c: Bignum; used to store the result of a / b 608 * Returns: 0 on success, -1 on failure 609 */ 610 int crypto_bignum_div(const struct crypto_bignum *a, 611 const struct crypto_bignum *b, 612 struct crypto_bignum *c); 613 614 /** 615 * crypto_bignum_mulmod - d = a * b (mod c) 616 * @a: Bignum 617 * @b: Bignum 618 * @c: Bignum 619 * @d: Bignum; used to store the result of (a * b) % c 620 * Returns: 0 on success, -1 on failure 621 */ 622 int crypto_bignum_mulmod(const struct crypto_bignum *a, 623 const struct crypto_bignum *b, 624 const struct crypto_bignum *c, 625 struct crypto_bignum *d); 626 627 /** 628 * crypto_bignum_rshift - r = a >> n 629 * @a: Bignum 630 * @n: Number of bits 631 * @r: Bignum; used to store the result of a >> n 632 * Returns: 0 on success, -1 on failure 633 */ 634 int crypto_bignum_rshift(const struct crypto_bignum *a, int n, 635 struct crypto_bignum *r); 636 637 /** 638 * crypto_bignum_cmp - Compare two bignums 639 * @a: Bignum 640 * @b: Bignum 641 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 642 */ 643 int crypto_bignum_cmp(const struct crypto_bignum *a, 644 const struct crypto_bignum *b); 645 646 /** 647 * crypto_bignum_bits - Get size of a bignum in bits 648 * @a: Bignum 649 * Returns: Number of bits in the bignum 650 */ 651 int crypto_bignum_bits(const struct crypto_bignum *a); 652 653 /** 654 * crypto_bignum_is_zero - Is the given bignum zero 655 * @a: Bignum 656 * Returns: 1 if @a is zero or 0 if not 657 */ 658 int crypto_bignum_is_zero(const struct crypto_bignum *a); 659 660 /** 661 * crypto_bignum_is_one - Is the given bignum one 662 * @a: Bignum 663 * Returns: 1 if @a is one or 0 if not 664 */ 665 int crypto_bignum_is_one(const struct crypto_bignum *a); 666 667 /** 668 * crypto_bignum_is_odd - Is the given bignum odd 669 * @a: Bignum 670 * Returns: 1 if @a is odd or 0 if not 671 */ 672 int crypto_bignum_is_odd(const struct crypto_bignum *a); 673 674 /** 675 * crypto_bignum_legendre - Compute the Legendre symbol (a/p) 676 * @a: Bignum 677 * @p: Bignum 678 * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure 679 */ 680 int crypto_bignum_legendre(const struct crypto_bignum *a, 681 const struct crypto_bignum *p); 682 683 /** 684 * struct crypto_ec - Elliptic curve context 685 * 686 * Internal data structure for EC implementation. The contents is specific 687 * to the used crypto library. 688 */ 689 struct crypto_ec; 690 691 /** 692 * crypto_ec_init - Initialize elliptic curve context 693 * @group: Identifying number for the ECC group (IANA "Group Description" 694 * attribute registrty for RFC 2409) 695 * Returns: Pointer to EC context or %NULL on failure 696 */ 697 struct crypto_ec * crypto_ec_init(int group); 698 699 /** 700 * crypto_ec_deinit - Deinitialize elliptic curve context 701 * @e: EC context from crypto_ec_init() 702 */ 703 void crypto_ec_deinit(struct crypto_ec *e); 704 705 /** 706 * crypto_ec_cofactor - Set the cofactor into the big number 707 * @e: EC context from crypto_ec_init() 708 * @cofactor: Cofactor of curve. 709 * Returns: 0 on success, -1 on failure 710 */ 711 int crypto_ec_cofactor(struct crypto_ec *e, struct crypto_bignum *cofactor); 712 713 /** 714 * crypto_ec_prime_len - Get length of the prime in octets 715 * @e: EC context from crypto_ec_init() 716 * Returns: Length of the prime defining the group 717 */ 718 size_t crypto_ec_prime_len(struct crypto_ec *e); 719 720 /** 721 * crypto_ec_prime_len_bits - Get length of the prime in bits 722 * @e: EC context from crypto_ec_init() 723 * Returns: Length of the prime defining the group in bits 724 */ 725 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 726 727 /** 728 * crypto_ec_order_len - Get length of the order in octets 729 * @e: EC context from crypto_ec_init() 730 * Returns: Length of the order defining the group 731 */ 732 size_t crypto_ec_order_len(struct crypto_ec *e); 733 734 /** 735 * crypto_ec_get_prime - Get prime defining an EC group 736 * @e: EC context from crypto_ec_init() 737 * Returns: Prime (bignum) defining the group 738 */ 739 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 740 741 /** 742 * crypto_ec_get_order - Get order of an EC group 743 * @e: EC context from crypto_ec_init() 744 * Returns: Order (bignum) of the group 745 */ 746 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 747 748 /** 749 * struct crypto_ec_point - Elliptic curve point 750 * 751 * Internal data structure for EC implementation to represent a point. The 752 * contents is specific to the used crypto library. 753 */ 754 struct crypto_ec_point; 755 756 /** 757 * crypto_ec_point_init - Initialize data for an EC point 758 * @e: EC context from crypto_ec_init() 759 * Returns: Pointer to EC point data or %NULL on failure 760 */ 761 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 762 763 /** 764 * crypto_ec_point_deinit - Deinitialize EC point data 765 * @p: EC point data from crypto_ec_point_init() 766 * @clear: Whether to clear the EC point value from memory 767 */ 768 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 769 770 /** 771 * crypto_ec_point_x - Copies the x-ordinate point into big number 772 * @e: EC context from crypto_ec_init() 773 * @p: EC point data 774 * @x: Big number to set to the copy of x-ordinate 775 * Returns: 0 on success, -1 on failure 776 */ 777 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p, 778 struct crypto_bignum *x); 779 780 /** 781 * crypto_ec_point_to_bin - Write EC point value as binary data 782 * @e: EC context from crypto_ec_init() 783 * @p: EC point data from crypto_ec_point_init() 784 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 785 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 786 * Returns: 0 on success, -1 on failure 787 * 788 * This function can be used to write an EC point as binary data in a format 789 * that has the x and y coordinates in big endian byte order fields padded to 790 * the length of the prime defining the group. 791 */ 792 int crypto_ec_point_to_bin(struct crypto_ec *e, 793 const struct crypto_ec_point *point, u8 *x, u8 *y); 794 795 /** 796 * crypto_ec_point_from_bin - Create EC point from binary data 797 * @e: EC context from crypto_ec_init() 798 * @val: Binary data to read the EC point from 799 * Returns: Pointer to EC point data or %NULL on failure 800 * 801 * This function readers x and y coordinates of the EC point from the provided 802 * buffer assuming the values are in big endian byte order with fields padded to 803 * the length of the prime defining the group. 804 */ 805 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 806 const u8 *val); 807 808 /** 809 * crypto_ec_point_add - c = a + b 810 * @e: EC context from crypto_ec_init() 811 * @a: Bignum 812 * @b: Bignum 813 * @c: Bignum; used to store the result of a + b 814 * Returns: 0 on success, -1 on failure 815 */ 816 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 817 const struct crypto_ec_point *b, 818 struct crypto_ec_point *c); 819 820 /** 821 * crypto_ec_point_mul - res = b * p 822 * @e: EC context from crypto_ec_init() 823 * @p: EC point 824 * @b: Bignum 825 * @res: EC point; used to store the result of b * p 826 * Returns: 0 on success, -1 on failure 827 */ 828 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 829 const struct crypto_bignum *b, 830 struct crypto_ec_point *res); 831 832 /** 833 * crypto_ec_point_invert - Compute inverse of an EC point 834 * @e: EC context from crypto_ec_init() 835 * @p: EC point to invert (and result of the operation) 836 * Returns: 0 on success, -1 on failure 837 */ 838 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 839 840 /** 841 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 842 * @e: EC context from crypto_ec_init() 843 * @p: EC point to use for the returning the result 844 * @x: x coordinate 845 * @y_bit: y-bit (0 or 1) for selecting the y value to use 846 * Returns: 0 on success, -1 on failure 847 */ 848 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 849 struct crypto_ec_point *p, 850 const struct crypto_bignum *x, int y_bit); 851 852 /** 853 * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b 854 * @e: EC context from crypto_ec_init() 855 * @x: x coordinate 856 * Returns: y^2 on success, %NULL failure 857 */ 858 struct crypto_bignum * 859 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 860 const struct crypto_bignum *x); 861 862 /** 863 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 864 * @e: EC context from crypto_ec_init() 865 * @p: EC point 866 * Returns: 1 if the specified EC point is the neutral element of the group or 867 * 0 if not 868 */ 869 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 870 const struct crypto_ec_point *p); 871 872 /** 873 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 874 * @e: EC context from crypto_ec_init() 875 * @p: EC point 876 * Returns: 1 if the specified EC point is on the curve or 0 if not 877 */ 878 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 879 const struct crypto_ec_point *p); 880 881 /** 882 * crypto_ec_point_cmp - Compare two EC points 883 * @e: EC context from crypto_ec_init() 884 * @a: EC point 885 * @b: EC point 886 * Returns: 0 on equal, non-zero otherwise 887 */ 888 int crypto_ec_point_cmp(const struct crypto_ec *e, 889 const struct crypto_ec_point *a, 890 const struct crypto_ec_point *b); 891 892 struct crypto_ecdh; 893 894 struct crypto_ecdh * crypto_ecdh_init(int group); 895 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y); 896 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, 897 const u8 *key, size_t len); 898 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh); 899 900 #endif /* CRYPTO_H */ 901