xref: /freebsd/contrib/wpa/src/crypto/crypto.h (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 /*
2  * Wrapper functions for crypto libraries
3  * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file defines the cryptographic functions that need to be implemented
9  * for wpa_supplicant and hostapd. When TLS is not used, internal
10  * implementation of MD5, SHA1, and AES is used and no external libraries are
11  * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12  * crypto library used by the TLS implementation is expected to be used for
13  * non-TLS needs, too, in order to save space by not implementing these
14  * functions twice.
15  *
16  * Wrapper code for using each crypto library is in its own file (crypto*.c)
17  * and one of these files is build and linked in to provide the functions
18  * defined here.
19  */
20 
21 #ifndef CRYPTO_H
22 #define CRYPTO_H
23 
24 /**
25  * md4_vector - MD4 hash for data vector
26  * @num_elem: Number of elements in the data vector
27  * @addr: Pointers to the data areas
28  * @len: Lengths of the data blocks
29  * @mac: Buffer for the hash
30  * Returns: 0 on success, -1 on failure
31  */
32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33 
34 /**
35  * md5_vector - MD5 hash for data vector
36  * @num_elem: Number of elements in the data vector
37  * @addr: Pointers to the data areas
38  * @len: Lengths of the data blocks
39  * @mac: Buffer for the hash
40  * Returns: 0 on success, -1 on failure
41  */
42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43 
44 
45 /**
46  * sha1_vector - SHA-1 hash for data vector
47  * @num_elem: Number of elements in the data vector
48  * @addr: Pointers to the data areas
49  * @len: Lengths of the data blocks
50  * @mac: Buffer for the hash
51  * Returns: 0 on success, -1 on failure
52  */
53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54 		u8 *mac);
55 
56 /**
57  * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58  * @seed: Seed/key for the PRF
59  * @seed_len: Seed length in bytes
60  * @x: Buffer for PRF output
61  * @xlen: Output length in bytes
62  * Returns: 0 on success, -1 on failure
63  *
64  * This function implements random number generation specified in NIST FIPS
65  * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66  * SHA-1, but has different message padding.
67  */
68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69 			       size_t xlen);
70 
71 /**
72  * sha256_vector - SHA256 hash for data vector
73  * @num_elem: Number of elements in the data vector
74  * @addr: Pointers to the data areas
75  * @len: Lengths of the data blocks
76  * @mac: Buffer for the hash
77  * Returns: 0 on success, -1 on failure
78  */
79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80 		  u8 *mac);
81 
82 /**
83  * sha384_vector - SHA384 hash for data vector
84  * @num_elem: Number of elements in the data vector
85  * @addr: Pointers to the data areas
86  * @len: Lengths of the data blocks
87  * @mac: Buffer for the hash
88  * Returns: 0 on success, -1 on failure
89  */
90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
91 		  u8 *mac);
92 
93 /**
94  * sha512_vector - SHA512 hash for data vector
95  * @num_elem: Number of elements in the data vector
96  * @addr: Pointers to the data areas
97  * @len: Lengths of the data blocks
98  * @mac: Buffer for the hash
99  * Returns: 0 on success, -1 on failure
100  */
101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
102 		  u8 *mac);
103 
104 /**
105  * des_encrypt - Encrypt one block with DES
106  * @clear: 8 octets (in)
107  * @key: 7 octets (in) (no parity bits included)
108  * @cypher: 8 octets (out)
109  * Returns: 0 on success, -1 on failure
110  */
111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
112 
113 /**
114  * aes_encrypt_init - Initialize AES for encryption
115  * @key: Encryption key
116  * @len: Key length in bytes (usually 16, i.e., 128 bits)
117  * Returns: Pointer to context data or %NULL on failure
118  */
119 void * aes_encrypt_init(const u8 *key, size_t len);
120 
121 /**
122  * aes_encrypt - Encrypt one AES block
123  * @ctx: Context pointer from aes_encrypt_init()
124  * @plain: Plaintext data to be encrypted (16 bytes)
125  * @crypt: Buffer for the encrypted data (16 bytes)
126  * Returns: 0 on success, -1 on failure
127  */
128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
129 
130 /**
131  * aes_encrypt_deinit - Deinitialize AES encryption
132  * @ctx: Context pointer from aes_encrypt_init()
133  */
134 void aes_encrypt_deinit(void *ctx);
135 
136 /**
137  * aes_decrypt_init - Initialize AES for decryption
138  * @key: Decryption key
139  * @len: Key length in bytes (usually 16, i.e., 128 bits)
140  * Returns: Pointer to context data or %NULL on failure
141  */
142 void * aes_decrypt_init(const u8 *key, size_t len);
143 
144 /**
145  * aes_decrypt - Decrypt one AES block
146  * @ctx: Context pointer from aes_encrypt_init()
147  * @crypt: Encrypted data (16 bytes)
148  * @plain: Buffer for the decrypted data (16 bytes)
149  * Returns: 0 on success, -1 on failure
150  */
151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
152 
153 /**
154  * aes_decrypt_deinit - Deinitialize AES decryption
155  * @ctx: Context pointer from aes_encrypt_init()
156  */
157 void aes_decrypt_deinit(void *ctx);
158 
159 
160 enum crypto_hash_alg {
161 	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
162 	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
163 	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
164 	CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
165 };
166 
167 struct crypto_hash;
168 
169 /**
170  * crypto_hash_init - Initialize hash/HMAC function
171  * @alg: Hash algorithm
172  * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
173  * @key_len: Length of the key in bytes
174  * Returns: Pointer to hash context to use with other hash functions or %NULL
175  * on failure
176  *
177  * This function is only used with internal TLSv1 implementation
178  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
179  * to implement this.
180  */
181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
182 				      size_t key_len);
183 
184 /**
185  * crypto_hash_update - Add data to hash calculation
186  * @ctx: Context pointer from crypto_hash_init()
187  * @data: Data buffer to add
188  * @len: Length of the buffer
189  *
190  * This function is only used with internal TLSv1 implementation
191  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
192  * to implement this.
193  */
194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
195 
196 /**
197  * crypto_hash_finish - Complete hash calculation
198  * @ctx: Context pointer from crypto_hash_init()
199  * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
200  * context
201  * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
202  * hash context; on return, this is set to the actual length of the hash value
203  * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
204  * or -2 on other failures (including failed crypto_hash_update() operations)
205  *
206  * This function calculates the hash value and frees the context buffer that
207  * was used for hash calculation.
208  *
209  * This function is only used with internal TLSv1 implementation
210  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
211  * to implement this.
212  */
213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
214 
215 
216 enum crypto_cipher_alg {
217 	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
218 	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
219 };
220 
221 struct crypto_cipher;
222 
223 /**
224  * crypto_cipher_init - Initialize block/stream cipher function
225  * @alg: Cipher algorithm
226  * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
227  * @key: Cipher key
228  * @key_len: Length of key in bytes
229  * Returns: Pointer to cipher context to use with other cipher functions or
230  * %NULL on failure
231  *
232  * This function is only used with internal TLSv1 implementation
233  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
234  * to implement this.
235  */
236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
237 					  const u8 *iv, const u8 *key,
238 					  size_t key_len);
239 
240 /**
241  * crypto_cipher_encrypt - Cipher encrypt
242  * @ctx: Context pointer from crypto_cipher_init()
243  * @plain: Plaintext to cipher
244  * @crypt: Resulting ciphertext
245  * @len: Length of the plaintext
246  * Returns: 0 on success, -1 on failure
247  *
248  * This function is only used with internal TLSv1 implementation
249  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250  * to implement this.
251  */
252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
253 				       const u8 *plain, u8 *crypt, size_t len);
254 
255 /**
256  * crypto_cipher_decrypt - Cipher decrypt
257  * @ctx: Context pointer from crypto_cipher_init()
258  * @crypt: Ciphertext to decrypt
259  * @plain: Resulting plaintext
260  * @len: Length of the cipher text
261  * Returns: 0 on success, -1 on failure
262  *
263  * This function is only used with internal TLSv1 implementation
264  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
265  * to implement this.
266  */
267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
268 				       const u8 *crypt, u8 *plain, size_t len);
269 
270 /**
271  * crypto_cipher_decrypt - Free cipher context
272  * @ctx: Context pointer from crypto_cipher_init()
273  *
274  * This function is only used with internal TLSv1 implementation
275  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
276  * to implement this.
277  */
278 void crypto_cipher_deinit(struct crypto_cipher *ctx);
279 
280 
281 struct crypto_public_key;
282 struct crypto_private_key;
283 
284 /**
285  * crypto_public_key_import - Import an RSA public key
286  * @key: Key buffer (DER encoded RSA public key)
287  * @len: Key buffer length in bytes
288  * Returns: Pointer to the public key or %NULL on failure
289  *
290  * This function can just return %NULL if the crypto library supports X.509
291  * parsing. In that case, crypto_public_key_from_cert() is used to import the
292  * public key from a certificate.
293  *
294  * This function is only used with internal TLSv1 implementation
295  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
296  * to implement this.
297  */
298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
299 
300 struct crypto_public_key *
301 crypto_public_key_import_parts(const u8 *n, size_t n_len,
302 			       const u8 *e, size_t e_len);
303 
304 /**
305  * crypto_private_key_import - Import an RSA private key
306  * @key: Key buffer (DER encoded RSA private key)
307  * @len: Key buffer length in bytes
308  * @passwd: Key encryption password or %NULL if key is not encrypted
309  * Returns: Pointer to the private key or %NULL on failure
310  *
311  * This function is only used with internal TLSv1 implementation
312  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
313  * to implement this.
314  */
315 struct crypto_private_key * crypto_private_key_import(const u8 *key,
316 						      size_t len,
317 						      const char *passwd);
318 
319 /**
320  * crypto_public_key_from_cert - Import an RSA public key from a certificate
321  * @buf: DER encoded X.509 certificate
322  * @len: Certificate buffer length in bytes
323  * Returns: Pointer to public key or %NULL on failure
324  *
325  * This function can just return %NULL if the crypto library does not support
326  * X.509 parsing. In that case, internal code will be used to parse the
327  * certificate and public key is imported using crypto_public_key_import().
328  *
329  * This function is only used with internal TLSv1 implementation
330  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
331  * to implement this.
332  */
333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
334 						       size_t len);
335 
336 /**
337  * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
338  * @key: Public key
339  * @in: Plaintext buffer
340  * @inlen: Length of plaintext buffer in bytes
341  * @out: Output buffer for encrypted data
342  * @outlen: Length of output buffer in bytes; set to used length on success
343  * Returns: 0 on success, -1 on failure
344  *
345  * This function is only used with internal TLSv1 implementation
346  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
347  * to implement this.
348  */
349 int __must_check crypto_public_key_encrypt_pkcs1_v15(
350 	struct crypto_public_key *key, const u8 *in, size_t inlen,
351 	u8 *out, size_t *outlen);
352 
353 /**
354  * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
355  * @key: Private key
356  * @in: Encrypted buffer
357  * @inlen: Length of encrypted buffer in bytes
358  * @out: Output buffer for encrypted data
359  * @outlen: Length of output buffer in bytes; set to used length on success
360  * Returns: 0 on success, -1 on failure
361  *
362  * This function is only used with internal TLSv1 implementation
363  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
364  * to implement this.
365  */
366 int __must_check crypto_private_key_decrypt_pkcs1_v15(
367 	struct crypto_private_key *key, const u8 *in, size_t inlen,
368 	u8 *out, size_t *outlen);
369 
370 /**
371  * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
372  * @key: Private key from crypto_private_key_import()
373  * @in: Plaintext buffer
374  * @inlen: Length of plaintext buffer in bytes
375  * @out: Output buffer for encrypted (signed) data
376  * @outlen: Length of output buffer in bytes; set to used length on success
377  * Returns: 0 on success, -1 on failure
378  *
379  * This function is only used with internal TLSv1 implementation
380  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
381  * to implement this.
382  */
383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
384 					       const u8 *in, size_t inlen,
385 					       u8 *out, size_t *outlen);
386 
387 /**
388  * crypto_public_key_free - Free public key
389  * @key: Public key
390  *
391  * This function is only used with internal TLSv1 implementation
392  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
393  * to implement this.
394  */
395 void crypto_public_key_free(struct crypto_public_key *key);
396 
397 /**
398  * crypto_private_key_free - Free private key
399  * @key: Private key from crypto_private_key_import()
400  *
401  * This function is only used with internal TLSv1 implementation
402  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
403  * to implement this.
404  */
405 void crypto_private_key_free(struct crypto_private_key *key);
406 
407 /**
408  * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
409  * @key: Public key
410  * @crypt: Encrypted signature data (using the private key)
411  * @crypt_len: Encrypted signature data length
412  * @plain: Buffer for plaintext (at least crypt_len bytes)
413  * @plain_len: Plaintext length (max buffer size on input, real len on output);
414  * Returns: 0 on success, -1 on failure
415  */
416 int __must_check crypto_public_key_decrypt_pkcs1(
417 	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
418 	u8 *plain, size_t *plain_len);
419 
420 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
421 		   u8 *pubkey);
422 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
423 			    const u8 *order, size_t order_len,
424 			    const u8 *privkey, size_t privkey_len,
425 			    const u8 *pubkey, size_t pubkey_len,
426 			    u8 *secret, size_t *len);
427 
428 /**
429  * crypto_global_init - Initialize crypto wrapper
430  *
431  * This function is only used with internal TLSv1 implementation
432  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
433  * to implement this.
434  */
435 int __must_check crypto_global_init(void);
436 
437 /**
438  * crypto_global_deinit - Deinitialize crypto wrapper
439  *
440  * This function is only used with internal TLSv1 implementation
441  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
442  * to implement this.
443  */
444 void crypto_global_deinit(void);
445 
446 /**
447  * crypto_mod_exp - Modular exponentiation of large integers
448  * @base: Base integer (big endian byte array)
449  * @base_len: Length of base integer in bytes
450  * @power: Power integer (big endian byte array)
451  * @power_len: Length of power integer in bytes
452  * @modulus: Modulus integer (big endian byte array)
453  * @modulus_len: Length of modulus integer in bytes
454  * @result: Buffer for the result
455  * @result_len: Result length (max buffer size on input, real len on output)
456  * Returns: 0 on success, -1 on failure
457  *
458  * This function calculates result = base ^ power mod modulus. modules_len is
459  * used as the maximum size of modulus buffer. It is set to the used size on
460  * success.
461  *
462  * This function is only used with internal TLSv1 implementation
463  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
464  * to implement this.
465  */
466 int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
467 				const u8 *power, size_t power_len,
468 				const u8 *modulus, size_t modulus_len,
469 				u8 *result, size_t *result_len);
470 
471 /**
472  * rc4_skip - XOR RC4 stream to given data with skip-stream-start
473  * @key: RC4 key
474  * @keylen: RC4 key length
475  * @skip: number of bytes to skip from the beginning of the RC4 stream
476  * @data: data to be XOR'ed with RC4 stream
477  * @data_len: buf length
478  * Returns: 0 on success, -1 on failure
479  *
480  * Generate RC4 pseudo random stream for the given key, skip beginning of the
481  * stream, and XOR the end result with the data buffer to perform RC4
482  * encryption/decryption.
483  */
484 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
485 	     u8 *data, size_t data_len);
486 
487 /**
488  * crypto_get_random - Generate cryptographically strong pseudo-random bytes
489  * @buf: Buffer for data
490  * @len: Number of bytes to generate
491  * Returns: 0 on success, -1 on failure
492  *
493  * If the PRNG does not have enough entropy to ensure unpredictable byte
494  * sequence, this functions must return -1.
495  */
496 int crypto_get_random(void *buf, size_t len);
497 
498 /**
499  * crypto_pkcs7_get_certificates - Extract X.509 certificates from PKCS#7 data
500  * @pkcs7: DER encoded PKCS#7 data
501  * Returns: Buffer of the extracted PEM X.509 certificates or %NULL on failure
502  */
503 struct wpabuf * crypto_pkcs7_get_certificates(const struct wpabuf *pkcs7);
504 
505 
506 /**
507  * struct crypto_bignum - bignum
508  *
509  * Internal data structure for bignum implementation. The contents is specific
510  * to the used crypto library.
511  */
512 struct crypto_bignum;
513 
514 /**
515  * crypto_bignum_init - Allocate memory for bignum
516  * Returns: Pointer to allocated bignum or %NULL on failure
517  */
518 struct crypto_bignum * crypto_bignum_init(void);
519 
520 /**
521  * crypto_bignum_init_set - Allocate memory for bignum and set the value
522  * @buf: Buffer with unsigned binary value
523  * @len: Length of buf in octets
524  * Returns: Pointer to allocated bignum or %NULL on failure
525  */
526 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
527 
528 /**
529  * crypto_bignum_init_set - Allocate memory for bignum and set the value (uint)
530  * @val: Value to set
531  * Returns: Pointer to allocated bignum or %NULL on failure
532  */
533 struct crypto_bignum * crypto_bignum_init_uint(unsigned int val);
534 
535 /**
536  * crypto_bignum_deinit - Free bignum
537  * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
538  * @clear: Whether to clear the value from memory
539  */
540 void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
541 
542 /**
543  * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
544  * @a: Bignum
545  * @buf: Buffer for the binary number
546  * @len: Length of @buf in octets
547  * @padlen: Length in octets to pad the result to or 0 to indicate no padding
548  * Returns: Number of octets written on success, -1 on failure
549  */
550 int crypto_bignum_to_bin(const struct crypto_bignum *a,
551 			 u8 *buf, size_t buflen, size_t padlen);
552 
553 /**
554  * crypto_bignum_rand - Create a random number in range of modulus
555  * @r: Bignum; set to a random value
556  * @m: Bignum; modulus
557  * Returns: 0 on success, -1 on failure
558  */
559 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
560 
561 /**
562  * crypto_bignum_add - c = a + b
563  * @a: Bignum
564  * @b: Bignum
565  * @c: Bignum; used to store the result of a + b
566  * Returns: 0 on success, -1 on failure
567  */
568 int crypto_bignum_add(const struct crypto_bignum *a,
569 		      const struct crypto_bignum *b,
570 		      struct crypto_bignum *c);
571 
572 /**
573  * crypto_bignum_mod - c = a % b
574  * @a: Bignum
575  * @b: Bignum
576  * @c: Bignum; used to store the result of a % b
577  * Returns: 0 on success, -1 on failure
578  */
579 int crypto_bignum_mod(const struct crypto_bignum *a,
580 		      const struct crypto_bignum *b,
581 		      struct crypto_bignum *c);
582 
583 /**
584  * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
585  * @a: Bignum; base
586  * @b: Bignum; exponent
587  * @c: Bignum; modulus
588  * @d: Bignum; used to store the result of a^b (mod c)
589  * Returns: 0 on success, -1 on failure
590  */
591 int crypto_bignum_exptmod(const struct crypto_bignum *a,
592 			  const struct crypto_bignum *b,
593 			  const struct crypto_bignum *c,
594 			  struct crypto_bignum *d);
595 
596 /**
597  * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
598  * @a: Bignum
599  * @b: Bignum
600  * @c: Bignum; used to store the result
601  * Returns: 0 on success, -1 on failure
602  */
603 int crypto_bignum_inverse(const struct crypto_bignum *a,
604 			  const struct crypto_bignum *b,
605 			  struct crypto_bignum *c);
606 
607 /**
608  * crypto_bignum_sub - c = a - b
609  * @a: Bignum
610  * @b: Bignum
611  * @c: Bignum; used to store the result of a - b
612  * Returns: 0 on success, -1 on failure
613  */
614 int crypto_bignum_sub(const struct crypto_bignum *a,
615 		      const struct crypto_bignum *b,
616 		      struct crypto_bignum *c);
617 
618 /**
619  * crypto_bignum_div - c = a / b
620  * @a: Bignum
621  * @b: Bignum
622  * @c: Bignum; used to store the result of a / b
623  * Returns: 0 on success, -1 on failure
624  */
625 int crypto_bignum_div(const struct crypto_bignum *a,
626 		      const struct crypto_bignum *b,
627 		      struct crypto_bignum *c);
628 
629 /**
630  * crypto_bignum_addmod - d = a + b (mod c)
631  * @a: Bignum
632  * @b: Bignum
633  * @c: Bignum
634  * @d: Bignum; used to store the result of (a + b) % c
635  * Returns: 0 on success, -1 on failure
636  */
637 int crypto_bignum_addmod(const struct crypto_bignum *a,
638 			 const struct crypto_bignum *b,
639 			 const struct crypto_bignum *c,
640 			 struct crypto_bignum *d);
641 
642 /**
643  * crypto_bignum_mulmod - d = a * b (mod c)
644  * @a: Bignum
645  * @b: Bignum
646  * @c: Bignum
647  * @d: Bignum; used to store the result of (a * b) % c
648  * Returns: 0 on success, -1 on failure
649  */
650 int crypto_bignum_mulmod(const struct crypto_bignum *a,
651 			 const struct crypto_bignum *b,
652 			 const struct crypto_bignum *c,
653 			 struct crypto_bignum *d);
654 
655 /**
656  * crypto_bignum_sqrmod - c = a^2 (mod b)
657  * @a: Bignum
658  * @b: Bignum
659  * @c: Bignum; used to store the result of a^2 % b
660  * Returns: 0 on success, -1 on failure
661  */
662 int crypto_bignum_sqrmod(const struct crypto_bignum *a,
663 			 const struct crypto_bignum *b,
664 			 struct crypto_bignum *c);
665 
666 /**
667  * crypto_bignum_rshift - r = a >> n
668  * @a: Bignum
669  * @n: Number of bits
670  * @r: Bignum; used to store the result of a >> n
671  * Returns: 0 on success, -1 on failure
672  */
673 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
674 			 struct crypto_bignum *r);
675 
676 /**
677  * crypto_bignum_cmp - Compare two bignums
678  * @a: Bignum
679  * @b: Bignum
680  * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
681  */
682 int crypto_bignum_cmp(const struct crypto_bignum *a,
683 		      const struct crypto_bignum *b);
684 
685 /**
686  * crypto_bignum_is_zero - Is the given bignum zero
687  * @a: Bignum
688  * Returns: 1 if @a is zero or 0 if not
689  */
690 int crypto_bignum_is_zero(const struct crypto_bignum *a);
691 
692 /**
693  * crypto_bignum_is_one - Is the given bignum one
694  * @a: Bignum
695  * Returns: 1 if @a is one or 0 if not
696  */
697 int crypto_bignum_is_one(const struct crypto_bignum *a);
698 
699 /**
700  * crypto_bignum_is_odd - Is the given bignum odd
701  * @a: Bignum
702  * Returns: 1 if @a is odd or 0 if not
703  */
704 int crypto_bignum_is_odd(const struct crypto_bignum *a);
705 
706 /**
707  * crypto_bignum_legendre - Compute the Legendre symbol (a/p)
708  * @a: Bignum
709  * @p: Bignum
710  * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
711  */
712 int crypto_bignum_legendre(const struct crypto_bignum *a,
713 			   const struct crypto_bignum *p);
714 
715 /**
716  * struct crypto_ec - Elliptic curve context
717  *
718  * Internal data structure for EC implementation. The contents is specific
719  * to the used crypto library.
720  */
721 struct crypto_ec;
722 
723 /**
724  * struct crypto_ec_point - Elliptic curve point
725  *
726  * Internal data structure for EC implementation to represent a point. The
727  * contents is specific to the used crypto library.
728  */
729 struct crypto_ec_point;
730 
731 /**
732  * crypto_ec_init - Initialize elliptic curve context
733  * @group: Identifying number for the ECC group (IANA "Group Description"
734  *	attribute registrty for RFC 2409)
735  * Returns: Pointer to EC context or %NULL on failure
736  */
737 struct crypto_ec * crypto_ec_init(int group);
738 
739 /**
740  * crypto_ec_deinit - Deinitialize elliptic curve context
741  * @e: EC context from crypto_ec_init()
742  */
743 void crypto_ec_deinit(struct crypto_ec *e);
744 
745 /**
746  * crypto_ec_prime_len - Get length of the prime in octets
747  * @e: EC context from crypto_ec_init()
748  * Returns: Length of the prime defining the group
749  */
750 size_t crypto_ec_prime_len(struct crypto_ec *e);
751 
752 /**
753  * crypto_ec_prime_len_bits - Get length of the prime in bits
754  * @e: EC context from crypto_ec_init()
755  * Returns: Length of the prime defining the group in bits
756  */
757 size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
758 
759 /**
760  * crypto_ec_order_len - Get length of the order in octets
761  * @e: EC context from crypto_ec_init()
762  * Returns: Length of the order defining the group
763  */
764 size_t crypto_ec_order_len(struct crypto_ec *e);
765 
766 /**
767  * crypto_ec_get_prime - Get prime defining an EC group
768  * @e: EC context from crypto_ec_init()
769  * Returns: Prime (bignum) defining the group
770  */
771 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
772 
773 /**
774  * crypto_ec_get_order - Get order of an EC group
775  * @e: EC context from crypto_ec_init()
776  * Returns: Order (bignum) of the group
777  */
778 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
779 
780 /**
781  * crypto_ec_get_a - Get 'a' coefficient of an EC group's curve
782  * @e: EC context from crypto_ec_init()
783  * Returns: 'a' coefficient (bignum) of the group
784  */
785 const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e);
786 
787 /**
788  * crypto_ec_get_b - Get 'b' coeffiecient of an EC group's curve
789  * @e: EC context from crypto_ec_init()
790  * Returns: 'b' coefficient (bignum) of the group
791  */
792 const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e);
793 
794 /**
795  * crypto_ec_get_generator - Get generator point of the EC group's curve
796  * @e: EC context from crypto_ec_init()
797  * Returns: Pointer to generator point
798  */
799 const struct crypto_ec_point * crypto_ec_get_generator(struct crypto_ec *e);
800 
801 /**
802  * crypto_ec_point_init - Initialize data for an EC point
803  * @e: EC context from crypto_ec_init()
804  * Returns: Pointer to EC point data or %NULL on failure
805  */
806 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
807 
808 /**
809  * crypto_ec_point_deinit - Deinitialize EC point data
810  * @p: EC point data from crypto_ec_point_init()
811  * @clear: Whether to clear the EC point value from memory
812  */
813 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
814 
815 /**
816  * crypto_ec_point_x - Copies the x-ordinate point into big number
817  * @e: EC context from crypto_ec_init()
818  * @p: EC point data
819  * @x: Big number to set to the copy of x-ordinate
820  * Returns: 0 on success, -1 on failure
821  */
822 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
823 		      struct crypto_bignum *x);
824 
825 /**
826  * crypto_ec_point_to_bin - Write EC point value as binary data
827  * @e: EC context from crypto_ec_init()
828  * @p: EC point data from crypto_ec_point_init()
829  * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
830  * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
831  * Returns: 0 on success, -1 on failure
832  *
833  * This function can be used to write an EC point as binary data in a format
834  * that has the x and y coordinates in big endian byte order fields padded to
835  * the length of the prime defining the group.
836  */
837 int crypto_ec_point_to_bin(struct crypto_ec *e,
838 			   const struct crypto_ec_point *point, u8 *x, u8 *y);
839 
840 /**
841  * crypto_ec_point_from_bin - Create EC point from binary data
842  * @e: EC context from crypto_ec_init()
843  * @val: Binary data to read the EC point from
844  * Returns: Pointer to EC point data or %NULL on failure
845  *
846  * This function readers x and y coordinates of the EC point from the provided
847  * buffer assuming the values are in big endian byte order with fields padded to
848  * the length of the prime defining the group.
849  */
850 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
851 						  const u8 *val);
852 
853 /**
854  * crypto_ec_point_add - c = a + b
855  * @e: EC context from crypto_ec_init()
856  * @a: Bignum
857  * @b: Bignum
858  * @c: Bignum; used to store the result of a + b
859  * Returns: 0 on success, -1 on failure
860  */
861 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
862 			const struct crypto_ec_point *b,
863 			struct crypto_ec_point *c);
864 
865 /**
866  * crypto_ec_point_mul - res = b * p
867  * @e: EC context from crypto_ec_init()
868  * @p: EC point
869  * @b: Bignum
870  * @res: EC point; used to store the result of b * p
871  * Returns: 0 on success, -1 on failure
872  */
873 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
874 			const struct crypto_bignum *b,
875 			struct crypto_ec_point *res);
876 
877 /**
878  * crypto_ec_point_invert - Compute inverse of an EC point
879  * @e: EC context from crypto_ec_init()
880  * @p: EC point to invert (and result of the operation)
881  * Returns: 0 on success, -1 on failure
882  */
883 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
884 
885 /**
886  * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
887  * @e: EC context from crypto_ec_init()
888  * @p: EC point to use for the returning the result
889  * @x: x coordinate
890  * @y_bit: y-bit (0 or 1) for selecting the y value to use
891  * Returns: 0 on success, -1 on failure
892  */
893 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
894 				  struct crypto_ec_point *p,
895 				  const struct crypto_bignum *x, int y_bit);
896 
897 /**
898  * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
899  * @e: EC context from crypto_ec_init()
900  * @x: x coordinate
901  * Returns: y^2 on success, %NULL failure
902  */
903 struct crypto_bignum *
904 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
905 			      const struct crypto_bignum *x);
906 
907 /**
908  * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
909  * @e: EC context from crypto_ec_init()
910  * @p: EC point
911  * Returns: 1 if the specified EC point is the neutral element of the group or
912  *	0 if not
913  */
914 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
915 				   const struct crypto_ec_point *p);
916 
917 /**
918  * crypto_ec_point_is_on_curve - Check whether EC point is on curve
919  * @e: EC context from crypto_ec_init()
920  * @p: EC point
921  * Returns: 1 if the specified EC point is on the curve or 0 if not
922  */
923 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
924 				const struct crypto_ec_point *p);
925 
926 /**
927  * crypto_ec_point_cmp - Compare two EC points
928  * @e: EC context from crypto_ec_init()
929  * @a: EC point
930  * @b: EC point
931  * Returns: 0 on equal, non-zero otherwise
932  */
933 int crypto_ec_point_cmp(const struct crypto_ec *e,
934 			const struct crypto_ec_point *a,
935 			const struct crypto_ec_point *b);
936 
937 /**
938  * crypto_ec_point_debug_print - Dump EC point to debug log
939  * @e: EC context from crypto_ec_init()
940  * @p: EC point
941  * @title: Name of the EC point in the trace
942  */
943 void crypto_ec_point_debug_print(const struct crypto_ec *e,
944 				 const struct crypto_ec_point *p,
945 				 const char *title);
946 
947 /**
948  * struct crypto_ec_key - Elliptic curve key pair
949  *
950  * Internal data structure for EC key pair. The contents is specific to the used
951  * crypto library.
952  */
953 struct crypto_ec_key;
954 
955 /**
956  * struct crypto_ecdh - Elliptic Curve Diffie–Hellman context
957  *
958  * Internal data structure for ECDH. The contents is specific to the used
959  * crypto library.
960  */
961 struct crypto_ecdh;
962 
963 /**
964  * crypto_ecdh_init - Initialize elliptic curve Diffie–Hellman context
965  * @group: Identifying number for the ECC group (IANA "Group Description"
966  *	attribute registry for RFC 2409)
967  * This function generates an ephemeral key pair.
968  * Returns: Pointer to ECDH context or %NULL on failure
969  */
970 struct crypto_ecdh * crypto_ecdh_init(int group);
971 
972 /**
973  * crypto_ecdh_init2 - Initialize elliptic curve Diffie–Hellman context with a
974  * given EC key
975  * @group: Identifying number for the ECC group (IANA "Group Description"
976  *	attribute registry for RFC 2409)
977  * @own_key: Our own EC Key
978  * Returns: Pointer to ECDH context or %NULL on failure
979  */
980 struct crypto_ecdh * crypto_ecdh_init2(int group,
981 				       struct crypto_ec_key *own_key);
982 
983 /**
984  * crypto_ecdh_get_pubkey - Retrieve public key from ECDH context
985  * @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
986  * @inc_y: Whether public key should include y coordinate (explicit form)
987  * or not (compressed form)
988  * Returns: Binary data f the public key or %NULL on failure
989  */
990 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
991 
992 /**
993  * crypto_ecdh_set_peerkey - Compute ECDH secret
994  * @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
995  * @inc_y: Whether peer's public key includes y coordinate (explicit form)
996  * or not (compressed form)
997  * @key: Binary data of the peer's public key
998  * @len: Length of the @key buffer
999  * Returns: Binary data with the EDCH secret or %NULL on failure
1000  */
1001 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1002 					const u8 *key, size_t len);
1003 
1004 /**
1005  * crypto_ecdh_deinit - Free ECDH context
1006  * @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
1007  */
1008 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
1009 
1010 /**
1011  * crypto_ecdh_prime_len - Get length of the prime in octets
1012  * @e: ECDH context from crypto_ecdh_init()
1013  * Returns: Length of the prime defining the group
1014  */
1015 size_t crypto_ecdh_prime_len(struct crypto_ecdh *ecdh);
1016 
1017 /**
1018  * crypto_ec_key_parse_priv - Initialize EC key pair from ECPrivateKey ASN.1
1019  * @der: DER encoding of ASN.1 ECPrivateKey
1020  * @der_len: Length of @der buffer
1021  * Returns: EC key or %NULL on failure
1022  */
1023 struct crypto_ec_key * crypto_ec_key_parse_priv(const u8 *der, size_t der_len);
1024 
1025 /**
1026  * crypto_ec_key_parse_pub - Initialize EC key pair from SubjectPublicKeyInfo ASN.1
1027  * @der: DER encoding of ASN.1 SubjectPublicKeyInfo
1028  * @der_len: Length of @der buffer
1029  * Returns: EC key or %NULL on failure
1030  */
1031 struct crypto_ec_key * crypto_ec_key_parse_pub(const u8 *der, size_t der_len);
1032 
1033 /**
1034  * crypto_ec_key_set_pub - Initialize an EC public key from EC point coordinates
1035  * @group: Identifying number for the ECC group
1036  * @x: X coordinate of the public key
1037  * @y: Y coordinate of the public key
1038  * @len: Length of @x and @y buffer
1039  * Returns: EC key or %NULL on failure
1040  *
1041  * This function initialize an EC key from public key coordinates, in big endian
1042  * byte order padded to the length of the prime defining the group.
1043  */
1044 struct crypto_ec_key * crypto_ec_key_set_pub(int group, const u8 *x,
1045 					     const u8 *y, size_t len);
1046 
1047 /**
1048  * crypto_ec_key_set_pub_point - Initialize an EC public key from EC point
1049  * @e: EC context from crypto_ec_init()
1050  * @pub: Public key point
1051  * Returns: EC key or %NULL on failure
1052  */
1053 struct crypto_ec_key *
1054 crypto_ec_key_set_pub_point(struct crypto_ec *e,
1055 			    const struct crypto_ec_point *pub);
1056 
1057 /**
1058  * crypto_ec_key_gen - Generate EC key pair
1059  * @group: Identifying number for the ECC group
1060  * Returns: EC key or %NULL on failure
1061  */
1062 struct crypto_ec_key * crypto_ec_key_gen(int group);
1063 
1064 /**
1065  * crypto_ec_key_deinit - Free EC key
1066  * @key: EC key from crypto_ec_key_parse_pub/priv() or crypto_ec_key_gen()
1067  */
1068 void crypto_ec_key_deinit(struct crypto_ec_key *key);
1069 
1070 /**
1071  * crypto_ec_key_get_subject_public_key - Get SubjectPublicKeyInfo ASN.1 for an EC key
1072  * @key: EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
1073  * Returns: Buffer with DER encoding of ASN.1 SubjectPublicKeyInfo or %NULL on failure
1074  */
1075 struct wpabuf * crypto_ec_key_get_subject_public_key(struct crypto_ec_key *key);
1076 
1077 /**
1078  * crypto_ec_key_get_ecprivate_key - Get ECPrivateKey ASN.1 for a EC key
1079  * @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
1080  * @include_pub: Whether to include public key in the ASN.1 sequence
1081  * Returns: Buffer with DER encoding of ASN.1 ECPrivateKey or %NULL on failure
1082  */
1083 struct wpabuf * crypto_ec_key_get_ecprivate_key(struct crypto_ec_key *key,
1084 						bool include_pub);
1085 
1086 /**
1087  * crypto_ec_key_get_pubkey_point - Get public key point coordinates
1088  * @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
1089  * @prefix: Whether output buffer should include the octet to indicate
1090  * coordinate form (as defined for SubjectPublicKeyInfo)
1091  * Returns: Buffer with coordinates of public key in uncompressed form or %NULL
1092  * on failure
1093  */
1094 struct wpabuf * crypto_ec_key_get_pubkey_point(struct crypto_ec_key *key,
1095 					       int prefix);
1096 
1097 /**
1098  * crypto_ec_key_get_public_key - Get EC public key as an EC point
1099  * @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
1100  * Returns: Public key as an EC point or %NULL on failure
1101  */
1102 const struct crypto_ec_point *
1103 crypto_ec_key_get_public_key(struct crypto_ec_key *key);
1104 
1105 /**
1106  * crypto_ec_key_get_private_key - Get EC private key as a bignum
1107  * @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
1108  * Returns: Private key as a bignum or %NULL on failure
1109  */
1110 const struct crypto_bignum *
1111 crypto_ec_key_get_private_key(struct crypto_ec_key *key);
1112 
1113 /**
1114  * crypto_ec_key_sign - Sign a buffer with an EC key
1115  * @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
1116  * @data: Data to sign
1117  * @len: Length of @data buffer
1118  * Returns: Buffer with DER encoding of ASN.1 Ecdsa-Sig-Value or %NULL on failure
1119  */
1120 struct wpabuf * crypto_ec_key_sign(struct crypto_ec_key *key, const u8 *data,
1121 				   size_t len);
1122 
1123 /**
1124  * crypto_ec_key_sign_r_s - Sign a buffer with an EC key
1125  * @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
1126  * @data: Data to sign
1127  * @len: Length of @data buffer
1128  * Returns: Buffer with the concatenated r and s values. Each value is in big
1129  * endian byte order padded to the length of the prime defining the group of
1130  * the key.
1131  */
1132 struct wpabuf * crypto_ec_key_sign_r_s(struct crypto_ec_key *key,
1133 				       const u8 *data, size_t len);
1134 
1135 /**
1136  * crypto_ec_key_verify_signature - Verify ECDSA signature
1137  * @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_gen()
1138  * @data: Data to be signed
1139  * @len: Length of @data buffer
1140  * @sig: DER encoding of ASN.1 Ecdsa-Sig-Value
1141  * @sig_len: Length of @sig buffer
1142  * Returns: 1 if signature is valid, 0 if signature is invalid and -1 on failure
1143  */
1144 int crypto_ec_key_verify_signature(struct crypto_ec_key *key, const u8 *data,
1145 				   size_t len, const u8 *sig, size_t sig_len);
1146 
1147 /**
1148  * crypto_ec_key_verify_signature_r_s - Verify signature
1149  * @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_gen()
1150  * @data: Data to signed
1151  * @len: Length of @data buffer
1152  * @r: Binary data, in big endian byte order, of the 'r' field of the ECDSA
1153  * signature.
1154  * @s: Binary data, in big endian byte order, of the 's' field of the ECDSA
1155  * signature.
1156  * @r_len: Length of @r buffer
1157  * @s_len: Length of @s buffer
1158  * Returns: 1 if signature is valid, 0 if signature is invalid, or -1 on failure
1159  */
1160 int crypto_ec_key_verify_signature_r_s(struct crypto_ec_key *key,
1161 				       const u8 *data, size_t len,
1162 				       const u8 *r, size_t r_len,
1163 				       const u8 *s, size_t s_len);
1164 
1165 /**
1166  * crypto_ec_key_group - Get IANA group identifier for an EC key
1167  * @key: EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
1168  * Returns: IANA group identifier and -1 on failure
1169  */
1170 int crypto_ec_key_group(struct crypto_ec_key *key);
1171 
1172 /**
1173  * crypto_ec_key_cmp - Compare two EC public keys
1174  * @key1: Key 1
1175  * @key2: Key 2
1176  * Returns: 0 if public keys are identical, -1 otherwise
1177  */
1178 int crypto_ec_key_cmp(struct crypto_ec_key *key1, struct crypto_ec_key *key2);
1179 
1180 /**
1181  * crypto_ec_key_debug_print - Dump EC key to debug log
1182  * @key:  EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
1183  * @title: Name of the EC point in the trace
1184  */
1185 void crypto_ec_key_debug_print(const struct crypto_ec_key *key,
1186 			       const char *title);
1187 
1188 /**
1189  * struct crypto_csr - Certification Signing Request
1190  *
1191  * Internal data structure for CSR. The contents is specific to the used
1192  * crypto library.
1193  * For now it is assumed that only an EC public key can be used
1194  */
1195 struct crypto_csr;
1196 
1197 /**
1198  * enum crypto_csr_name - CSR name type
1199  */
1200 enum crypto_csr_name {
1201 	CSR_NAME_CN,
1202 	CSR_NAME_SN,
1203 	CSR_NAME_C,
1204 	CSR_NAME_O,
1205 	CSR_NAME_OU,
1206 };
1207 
1208 /**
1209  * enum crypto_csr_attr - CSR attribute
1210  */
1211 enum crypto_csr_attr {
1212 	CSR_ATTR_CHALLENGE_PASSWORD,
1213 };
1214 
1215 /**
1216  * crypto_csr_init - Initialize empty CSR
1217  * Returns: Pointer to CSR data or %NULL on failure
1218  */
1219 struct crypto_csr * crypto_csr_init(void);
1220 
1221 /**
1222  * crypto_csr_verify - Initialize CSR from CertificationRequest
1223  * @req: DER encoding of ASN.1 CertificationRequest
1224  *
1225  * Returns: Pointer to CSR data or %NULL on failure or if signature is invalid
1226  */
1227 struct crypto_csr * crypto_csr_verify(const struct wpabuf *req);
1228 
1229 /**
1230  * crypto_csr_deinit - Free CSR structure
1231  * @csr: CSR structure from @crypto_csr_init() or crypto_csr_verify()
1232  */
1233 void crypto_csr_deinit(struct crypto_csr *csr);
1234 
1235 /**
1236  * crypto_csr_set_ec_public_key - Set public key in CSR
1237  * @csr: CSR structure from @crypto_csr_init()
1238  * @key: EC public key to set as public key in the CSR
1239  * Returns: 0 on success, -1 on failure
1240  */
1241 int crypto_csr_set_ec_public_key(struct crypto_csr *csr,
1242 				 struct crypto_ec_key *key);
1243 
1244 /**
1245  * crypto_csr_set_name - Set name entry in CSR SubjectName
1246  * @csr: CSR structure from @crypto_csr_init()
1247  * @type: Name type  to add into the CSR SubjectName
1248  * @name: UTF-8 string to write in the CSR SubjectName
1249  * Returns: 0 on success, -1 on failure
1250  */
1251 int crypto_csr_set_name(struct crypto_csr *csr, enum crypto_csr_name type,
1252 			const char *name);
1253 
1254 /**
1255  * crypto_csr_set_attribute - Set attribute in CSR
1256  * @csr: CSR structure from @crypto_csr_init()
1257  * @attr: Attribute identifier
1258  * @attr_type: ASN.1 type of @value buffer
1259  * @value: Attribute value
1260  * @len: length of @value buffer
1261  * Returns: 0 on success, -1 on failure
1262  */
1263 int crypto_csr_set_attribute(struct crypto_csr *csr, enum crypto_csr_attr attr,
1264 			     int attr_type, const u8 *value, size_t len);
1265 
1266 /**
1267  * crypto_csr_get_attribute - Get attribute from CSR
1268  * @csr: CSR structure from @crypto_csr_verify()
1269  * @attr: Updated with atribute identifier
1270  * @len: Updated with length of returned buffer
1271  * @type: ASN.1 type of the attribute buffer
1272  * Returns: Type, length, and pointer on attribute value or %NULL on failure
1273  */
1274 const u8 * crypto_csr_get_attribute(struct crypto_csr *csr,
1275 				    enum crypto_csr_attr attr,
1276 				    size_t *len, int *type);
1277 
1278 /**
1279  * crypto_csr_sign - Sign CSR and return ASN.1 CertificationRequest
1280  * @csr: CSR structure from @crypto_csr_init()
1281  * @key: Private key to sign the CSR (for now ony EC key are supported)
1282  * @algo: Hash algorithm to use for the signature
1283  * Returns: DER encoding of ASN.1 CertificationRequest for the CSR or %NULL on
1284  * failure
1285  */
1286 struct wpabuf * crypto_csr_sign(struct crypto_csr *csr,
1287 				struct crypto_ec_key *key,
1288 				enum crypto_hash_alg algo);
1289 
1290 #endif /* CRYPTO_H */
1291