xref: /freebsd/contrib/wpa/src/common/dragonfly.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*
2  * Shared Dragonfly functionality
3  * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4  * Copyright (c) 2019, The Linux Foundation
5  *
6  * This software may be distributed under the terms of the BSD license.
7  * See README for more details.
8  */
9 
10 #include "utils/includes.h"
11 
12 #include "utils/common.h"
13 #include "utils/const_time.h"
14 #include "crypto/crypto.h"
15 #include "dragonfly.h"
16 
17 
18 int dragonfly_suitable_group(int group, int ecc_only)
19 {
20 	/* Enforce REVmd rules on which SAE groups are suitable for production
21 	 * purposes: FFC groups whose prime is >= 3072 bits and ECC groups
22 	 * defined over a prime field whose prime is >= 256 bits. Furthermore,
23 	 * ECC groups defined over a characteristic 2 finite field and ECC
24 	 * groups with a co-factor greater than 1 are not suitable. Disable
25 	 * groups that use Brainpool curves as well for now since they leak more
26 	 * timing information due to the prime not being close to a power of
27 	 * two. */
28 	return group == 19 || group == 20 || group == 21 ||
29 		(!ecc_only &&
30 		 (group == 15 || group == 16 || group == 17 || group == 18));
31 }
32 
33 
34 unsigned int dragonfly_min_pwe_loop_iter(int group)
35 {
36 	if (group == 22 || group == 23 || group == 24) {
37 		/* FFC groups for which pwd-value is likely to be >= p
38 		 * frequently */
39 		return 40;
40 	}
41 
42 	if (group == 1 || group == 2 || group == 5 || group == 14 ||
43 	    group == 15 || group == 16 || group == 17 || group == 18) {
44 		/* FFC groups that have prime that is close to a power of two */
45 		return 1;
46 	}
47 
48 	/* Default to 40 (this covers most ECC groups) */
49 	return 40;
50 }
51 
52 
53 int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
54 				struct crypto_bignum **qr,
55 				struct crypto_bignum **qnr)
56 {
57 	*qr = *qnr = NULL;
58 
59 	while (!(*qr) || !(*qnr)) {
60 		struct crypto_bignum *tmp;
61 		int res;
62 
63 		tmp = crypto_bignum_init();
64 		if (!tmp || crypto_bignum_rand(tmp, prime) < 0) {
65 			crypto_bignum_deinit(tmp, 0);
66 			break;
67 		}
68 
69 		res = crypto_bignum_legendre(tmp, prime);
70 		if (res == 1 && !(*qr))
71 			*qr = tmp;
72 		else if (res == -1 && !(*qnr))
73 			*qnr = tmp;
74 		else
75 			crypto_bignum_deinit(tmp, 0);
76 	}
77 
78 	if (*qr && *qnr)
79 		return 0;
80 	crypto_bignum_deinit(*qr, 0);
81 	crypto_bignum_deinit(*qnr, 0);
82 	*qr = *qnr = NULL;
83 	return -1;
84 }
85 
86 
87 static struct crypto_bignum *
88 dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
89 {
90 	struct crypto_bignum *tmp, *pm1, *one;
91 
92 	tmp = crypto_bignum_init();
93 	pm1 = crypto_bignum_init();
94 	one = crypto_bignum_init_set((const u8 *) "\x01", 1);
95 	if (!tmp || !pm1 || !one ||
96 	    crypto_bignum_sub(prime, one, pm1) < 0 ||
97 	    crypto_bignum_rand(tmp, pm1) < 0 ||
98 	    crypto_bignum_add(tmp, one, tmp) < 0) {
99 		crypto_bignum_deinit(tmp, 0);
100 		tmp = NULL;
101 	}
102 
103 	crypto_bignum_deinit(pm1, 0);
104 	crypto_bignum_deinit(one, 0);
105 	return tmp;
106 }
107 
108 
109 int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
110 					 const u8 *qr, const u8 *qnr,
111 					 const struct crypto_bignum *val)
112 {
113 	struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
114 	int check, res = -1;
115 	u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
116 	const struct crypto_bignum *prime;
117 	size_t prime_len;
118 	unsigned int mask;
119 
120 	prime = crypto_ec_get_prime(ec);
121 	prime_len = crypto_ec_prime_len(ec);
122 
123 	/*
124 	 * Use a blinding technique to mask val while determining whether it is
125 	 * a quadratic residue modulo p to avoid leaking timing information
126 	 * while determining the Legendre symbol.
127 	 *
128 	 * v = val
129 	 * r = a random number between 1 and p-1, inclusive
130 	 * num = (v * r * r) modulo p
131 	 */
132 	r = dragonfly_get_rand_1_to_p_1(prime);
133 	if (!r)
134 		return -1;
135 
136 	num = crypto_bignum_init();
137 	if (!num ||
138 	    crypto_bignum_mulmod(val, r, prime, num) < 0 ||
139 	    crypto_bignum_mulmod(num, r, prime, num) < 0)
140 		goto fail;
141 
142 	/*
143 	 * Need to minimize differences in handling different cases, so try to
144 	 * avoid branches and timing differences.
145 	 *
146 	 * If r is odd:
147 	 * num = (num * qr) module p
148 	 * LGR(num, p) = 1 ==> quadratic residue
149 	 * else:
150 	 * num = (num * qnr) module p
151 	 * LGR(num, p) = -1 ==> quadratic residue
152 	 *
153 	 * mask is set to !odd(r)
154 	 */
155 	mask = const_time_is_zero(crypto_bignum_is_odd(r));
156 	const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
157 	qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
158 	if (!qr_or_qnr ||
159 	    crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
160 		goto fail;
161 	/* branchless version of check = odd(r) ? 1 : -1, */
162 	check = const_time_select_int(mask, -1, 1);
163 
164 	/* Determine the Legendre symbol on the masked value */
165 	res = crypto_bignum_legendre(num, prime);
166 	if (res == -2) {
167 		res = -1;
168 		goto fail;
169 	}
170 	/* branchless version of res = res == check
171 	 * (res is -1, 0, or 1; check is -1 or 1) */
172 	mask = const_time_eq(res, check);
173 	res = const_time_select_int(mask, 1, 0);
174 fail:
175 	crypto_bignum_deinit(num, 1);
176 	crypto_bignum_deinit(r, 1);
177 	crypto_bignum_deinit(qr_or_qnr, 1);
178 	return res;
179 }
180 
181 
182 static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val,
183 				       const struct crypto_bignum *order)
184 {
185 	return crypto_bignum_rand(val, order) == 0 &&
186 		!crypto_bignum_is_zero(val) &&
187 		!crypto_bignum_is_one(val);
188 }
189 
190 
191 int dragonfly_generate_scalar(const struct crypto_bignum *order,
192 			      struct crypto_bignum *_rand,
193 			      struct crypto_bignum *_mask,
194 			      struct crypto_bignum *scalar)
195 {
196 	int count;
197 
198 	/* Select two random values rand,mask such that 1 < rand,mask < r and
199 	 * rand + mask mod r > 1. */
200 	for (count = 0; count < 100; count++) {
201 		if (dragonfly_get_rand_2_to_r_1(_rand, order) &&
202 		    dragonfly_get_rand_2_to_r_1(_mask, order) &&
203 		    crypto_bignum_add(_rand, _mask, scalar) == 0 &&
204 		    crypto_bignum_mod(scalar, order, scalar) == 0 &&
205 		    !crypto_bignum_is_zero(scalar) &&
206 		    !crypto_bignum_is_one(scalar))
207 			return 0;
208 	}
209 
210 	/* This should not be reachable in practice if the random number
211 	 * generation is working. */
212 	wpa_printf(MSG_INFO,
213 		   "dragonfly: Unable to get randomness for own scalar");
214 	return -1;
215 }
216 
217 
218 /* res = sqrt(val) */
219 int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val,
220 		   struct crypto_bignum *res)
221 {
222 	const struct crypto_bignum *prime;
223 	struct crypto_bignum *tmp, *one;
224 	int ret = 0;
225 	u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
226 	size_t prime_len;
227 
228 	/* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */
229 
230 	prime = crypto_ec_get_prime(ec);
231 	prime_len = crypto_ec_prime_len(ec);
232 	tmp = crypto_bignum_init();
233 	one = crypto_bignum_init_uint(1);
234 
235 	if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin),
236 				 prime_len) < 0 ||
237 	    (prime_bin[prime_len - 1] & 0x03) != 3 ||
238 	    !tmp || !one ||
239 	    /* tmp = (p+1)/4 */
240 	    crypto_bignum_add(prime, one, tmp) < 0 ||
241 	    crypto_bignum_rshift(tmp, 2, tmp) < 0 ||
242 	    /* res = sqrt(val) */
243 	    crypto_bignum_exptmod(val, tmp, prime, res) < 0)
244 		ret = -1;
245 
246 	crypto_bignum_deinit(tmp, 0);
247 	crypto_bignum_deinit(one, 0);
248 	return ret;
249 }
250