xref: /freebsd/contrib/wpa/src/common/dragonfly.c (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 /*
2  * Shared Dragonfly functionality
3  * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4  * Copyright (c) 2019, The Linux Foundation
5  *
6  * This software may be distributed under the terms of the BSD license.
7  * See README for more details.
8  */
9 
10 #include "utils/includes.h"
11 
12 #include "utils/common.h"
13 #include "utils/const_time.h"
14 #include "crypto/crypto.h"
15 #include "dragonfly.h"
16 
17 
18 int dragonfly_suitable_group(int group, int ecc_only)
19 {
20 	/* Enforce REVmd rules on which SAE groups are suitable for production
21 	 * purposes: FFC groups whose prime is >= 3072 bits and ECC groups
22 	 * defined over a prime field whose prime is >= 256 bits. Furthermore,
23 	 * ECC groups defined over a characteristic 2 finite field and ECC
24 	 * groups with a co-factor greater than 1 are not suitable. Disable
25 	 * groups that use Brainpool curves as well for now since they leak more
26 	 * timing information due to the prime not being close to a power of
27 	 * two. */
28 	return group == 19 || group == 20 || group == 21 ||
29 		(!ecc_only &&
30 		 (group == 15 || group == 16 || group == 17 || group == 18));
31 }
32 
33 
34 unsigned int dragonfly_min_pwe_loop_iter(int group)
35 {
36 	if (group == 22 || group == 23 || group == 24) {
37 		/* FFC groups for which pwd-value is likely to be >= p
38 		 * frequently */
39 		return 40;
40 	}
41 
42 	if (group == 1 || group == 2 || group == 5 || group == 14 ||
43 	    group == 15 || group == 16 || group == 17 || group == 18) {
44 		/* FFC groups that have prime that is close to a power of two */
45 		return 1;
46 	}
47 
48 	/* Default to 40 (this covers most ECC groups) */
49 	return 40;
50 }
51 
52 
53 int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
54 				struct crypto_bignum **qr,
55 				struct crypto_bignum **qnr)
56 {
57 	*qr = *qnr = NULL;
58 
59 	while (!(*qr) || !(*qnr)) {
60 		struct crypto_bignum *tmp;
61 		int res;
62 
63 		tmp = crypto_bignum_init();
64 		if (!tmp || crypto_bignum_rand(tmp, prime) < 0) {
65 			crypto_bignum_deinit(tmp, 0);
66 			break;
67 		}
68 
69 		res = crypto_bignum_legendre(tmp, prime);
70 		if (res == 1 && !(*qr)) {
71 			*qr = tmp;
72 		} else if (res == -1 && !(*qnr)) {
73 			*qnr = tmp;
74 		} else {
75 			crypto_bignum_deinit(tmp, 0);
76 			if (res == -2)
77 				break;
78 		}
79 	}
80 
81 	if (*qr && *qnr)
82 		return 0;
83 	crypto_bignum_deinit(*qr, 0);
84 	crypto_bignum_deinit(*qnr, 0);
85 	*qr = *qnr = NULL;
86 	return -1;
87 }
88 
89 
90 static struct crypto_bignum *
91 dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
92 {
93 	struct crypto_bignum *tmp, *pm1, *one;
94 
95 	tmp = crypto_bignum_init();
96 	pm1 = crypto_bignum_init();
97 	one = crypto_bignum_init_set((const u8 *) "\x01", 1);
98 	if (!tmp || !pm1 || !one ||
99 	    crypto_bignum_sub(prime, one, pm1) < 0 ||
100 	    crypto_bignum_rand(tmp, pm1) < 0 ||
101 	    crypto_bignum_add(tmp, one, tmp) < 0) {
102 		crypto_bignum_deinit(tmp, 0);
103 		tmp = NULL;
104 	}
105 
106 	crypto_bignum_deinit(pm1, 0);
107 	crypto_bignum_deinit(one, 0);
108 	return tmp;
109 }
110 
111 
112 int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
113 					 const u8 *qr, const u8 *qnr,
114 					 const struct crypto_bignum *val)
115 {
116 	struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
117 	int check, res = -1;
118 	u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
119 	const struct crypto_bignum *prime;
120 	size_t prime_len;
121 	unsigned int mask;
122 
123 	prime = crypto_ec_get_prime(ec);
124 	prime_len = crypto_ec_prime_len(ec);
125 
126 	/*
127 	 * Use a blinding technique to mask val while determining whether it is
128 	 * a quadratic residue modulo p to avoid leaking timing information
129 	 * while determining the Legendre symbol.
130 	 *
131 	 * v = val
132 	 * r = a random number between 1 and p-1, inclusive
133 	 * num = (v * r * r) modulo p
134 	 */
135 	r = dragonfly_get_rand_1_to_p_1(prime);
136 	if (!r)
137 		return -1;
138 
139 	num = crypto_bignum_init();
140 	if (!num ||
141 	    crypto_bignum_mulmod(val, r, prime, num) < 0 ||
142 	    crypto_bignum_mulmod(num, r, prime, num) < 0)
143 		goto fail;
144 
145 	/*
146 	 * Need to minimize differences in handling different cases, so try to
147 	 * avoid branches and timing differences.
148 	 *
149 	 * If r is odd:
150 	 * num = (num * qr) module p
151 	 * LGR(num, p) = 1 ==> quadratic residue
152 	 * else:
153 	 * num = (num * qnr) module p
154 	 * LGR(num, p) = -1 ==> quadratic residue
155 	 *
156 	 * mask is set to !odd(r)
157 	 */
158 	mask = const_time_is_zero(crypto_bignum_is_odd(r));
159 	const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
160 	qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
161 	if (!qr_or_qnr ||
162 	    crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
163 		goto fail;
164 	/* branchless version of check = odd(r) ? 1 : -1, */
165 	check = const_time_select_int(mask, -1, 1);
166 
167 	/* Determine the Legendre symbol on the masked value */
168 	res = crypto_bignum_legendre(num, prime);
169 	if (res == -2) {
170 		res = -1;
171 		goto fail;
172 	}
173 	/* branchless version of res = res == check
174 	 * (res is -1, 0, or 1; check is -1 or 1) */
175 	mask = const_time_eq(res, check);
176 	res = const_time_select_int(mask, 1, 0);
177 fail:
178 	crypto_bignum_deinit(num, 1);
179 	crypto_bignum_deinit(r, 1);
180 	crypto_bignum_deinit(qr_or_qnr, 1);
181 	return res;
182 }
183 
184 
185 static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val,
186 				       const struct crypto_bignum *order)
187 {
188 	return crypto_bignum_rand(val, order) == 0 &&
189 		!crypto_bignum_is_zero(val) &&
190 		!crypto_bignum_is_one(val);
191 }
192 
193 
194 int dragonfly_generate_scalar(const struct crypto_bignum *order,
195 			      struct crypto_bignum *_rand,
196 			      struct crypto_bignum *_mask,
197 			      struct crypto_bignum *scalar)
198 {
199 	int count;
200 
201 	/* Select two random values rand,mask such that 1 < rand,mask < r and
202 	 * rand + mask mod r > 1. */
203 	for (count = 0; count < 100; count++) {
204 		if (dragonfly_get_rand_2_to_r_1(_rand, order) &&
205 		    dragonfly_get_rand_2_to_r_1(_mask, order) &&
206 		    crypto_bignum_add(_rand, _mask, scalar) == 0 &&
207 		    crypto_bignum_mod(scalar, order, scalar) == 0 &&
208 		    !crypto_bignum_is_zero(scalar) &&
209 		    !crypto_bignum_is_one(scalar))
210 			return 0;
211 	}
212 
213 	/* This should not be reachable in practice if the random number
214 	 * generation is working. */
215 	wpa_printf(MSG_INFO,
216 		   "dragonfly: Unable to get randomness for own scalar");
217 	return -1;
218 }
219 
220 
221 /* res = sqrt(val) */
222 int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val,
223 		   struct crypto_bignum *res)
224 {
225 	const struct crypto_bignum *prime;
226 	struct crypto_bignum *tmp, *one;
227 	int ret = 0;
228 	u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
229 	size_t prime_len;
230 
231 	/* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */
232 
233 	prime = crypto_ec_get_prime(ec);
234 	prime_len = crypto_ec_prime_len(ec);
235 	tmp = crypto_bignum_init();
236 	one = crypto_bignum_init_uint(1);
237 
238 	if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin),
239 				 prime_len) < 0 ||
240 	    (prime_bin[prime_len - 1] & 0x03) != 3 ||
241 	    !tmp || !one ||
242 	    /* tmp = (p+1)/4 */
243 	    crypto_bignum_add(prime, one, tmp) < 0 ||
244 	    crypto_bignum_rshift(tmp, 2, tmp) < 0 ||
245 	    /* res = sqrt(val) */
246 	    crypto_bignum_exptmod(val, tmp, prime, res) < 0)
247 		ret = -1;
248 
249 	crypto_bignum_deinit(tmp, 0);
250 	crypto_bignum_deinit(one, 0);
251 	return ret;
252 }
253