xref: /freebsd/contrib/wpa/src/ap/acs.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*
2  * ACS - Automatic Channel Selection module
3  * Copyright (c) 2011, Atheros Communications
4  * Copyright (c) 2013, Qualcomm Atheros, Inc.
5  *
6  * This software may be distributed under the terms of the BSD license.
7  * See README for more details.
8  */
9 
10 #include "utils/includes.h"
11 #include <math.h>
12 
13 #include "utils/common.h"
14 #include "utils/list.h"
15 #include "utils/eloop.h"
16 #include "common/ieee802_11_defs.h"
17 #include "common/hw_features_common.h"
18 #include "common/wpa_ctrl.h"
19 #include "drivers/driver.h"
20 #include "hostapd.h"
21 #include "ap_drv_ops.h"
22 #include "ap_config.h"
23 #include "hw_features.h"
24 #include "acs.h"
25 
26 /*
27  * Automatic Channel Selection
28  * ===========================
29  *
30  * More info at
31  * ------------
32  * http://wireless.kernel.org/en/users/Documentation/acs
33  *
34  * How to use
35  * ----------
36  * - make sure you have CONFIG_ACS=y in hostapd's .config
37  * - use channel=0 or channel=acs to enable ACS
38  *
39  * How does it work
40  * ----------------
41  * 1. passive scans are used to collect survey data
42  *    (it is assumed that scan trigger collection of survey data in driver)
43  * 2. interference factor is calculated for each channel
44  * 3. ideal channel is picked depending on channel width by using adjacent
45  *    channel interference factors
46  *
47  * Known limitations
48  * -----------------
49  * - Current implementation depends heavily on the amount of time willing to
50  *   spend gathering survey data during hostapd startup. Short traffic bursts
51  *   may be missed and a suboptimal channel may be picked.
52  * - Ideal channel may end up overlapping a channel with 40 MHz intolerant BSS
53  *
54  * Todo / Ideas
55  * ------------
56  * - implement other interference computation methods
57  *   - BSS/RSSI based
58  *   - spectral scan based
59  *   (should be possibly to hook this up with current ACS scans)
60  * - add wpa_supplicant support (for P2P)
61  * - collect a histogram of interference over time allowing more educated
62  *   guess about an ideal channel (perhaps CSA could be used to migrate AP to a
63  *   new "better" channel while running)
64  * - include neighboring BSS scan to avoid conflicts with 40 MHz intolerant BSSs
65  *   when choosing the ideal channel
66  *
67  * Survey interference factor implementation details
68  * -------------------------------------------------
69  * Generic interference_factor in struct hostapd_channel_data is used.
70  *
71  * The survey interference factor is defined as the ratio of the
72  * observed busy time over the time we spent on the channel,
73  * this value is then amplified by the observed noise floor on
74  * the channel in comparison to the lowest noise floor observed
75  * on the entire band.
76  *
77  * This corresponds to:
78  * ---
79  * (busy time - tx time) / (active time - tx time) * 2^(chan_nf - band_min_nf)
80  * ---
81  *
82  * The coefficient of 2 reflects the way power in "far-field"
83  * radiation decreases as the square of distance from the antenna [1].
84  * What this does is it decreases the observed busy time ratio if the
85  * noise observed was low but increases it if the noise was high,
86  * proportionally to the way "far field" radiation changes over
87  * distance.
88  *
89  * If channel busy time is not available the fallback is to use channel RX time.
90  *
91  * Since noise floor is in dBm it is necessary to convert it into Watts so that
92  * combined channel interference (e.g., HT40, which uses two channels) can be
93  * calculated easily.
94  * ---
95  * (busy time - tx time) / (active time - tx time) *
96  *    2^(10^(chan_nf/10) - 10^(band_min_nf/10))
97  * ---
98  *
99  * However to account for cases where busy/rx time is 0 (channel load is then
100  * 0%) channel noise floor signal power is combined into the equation so a
101  * channel with lower noise floor is preferred. The equation becomes:
102  * ---
103  * 10^(chan_nf/5) + (busy time - tx time) / (active time - tx time) *
104  *    2^(10^(chan_nf/10) - 10^(band_min_nf/10))
105  * ---
106  *
107  * All this "interference factor" is purely subjective and only time
108  * will tell how usable this is. By using the minimum noise floor we
109  * remove any possible issues due to card calibration. The computation
110  * of the interference factor then is dependent on what the card itself
111  * picks up as the minimum noise, not an actual real possible card
112  * noise value.
113  *
114  * Total interference computation details
115  * --------------------------------------
116  * The above channel interference factor is calculated with no respect to
117  * target operational bandwidth.
118  *
119  * To find an ideal channel the above data is combined by taking into account
120  * the target operational bandwidth and selected band. E.g., on 2.4 GHz channels
121  * overlap with 20 MHz bandwidth, but there is no overlap for 20 MHz bandwidth
122  * on 5 GHz.
123  *
124  * Each valid and possible channel spec (i.e., channel + width) is taken and its
125  * interference factor is computed by summing up interferences of each channel
126  * it overlaps. The one with least total interference is picked up.
127  *
128  * Note: This implies base channel interference factor must be non-negative
129  * allowing easy summing up.
130  *
131  * Example ACS analysis printout
132  * -----------------------------
133  *
134  * ACS: Trying survey-based ACS
135  * ACS: Survey analysis for channel 1 (2412 MHz)
136  * ACS:  1: min_nf=-113 interference_factor=0.0802469 nf=-113 time=162 busy=0 rx=13
137  * ACS:  2: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
138  * ACS:  3: min_nf=-113 interference_factor=0.0679012 nf=-113 time=162 busy=0 rx=11
139  * ACS:  4: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
140  * ACS:  5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
141  * ACS:  * interference factor average: 0.0557166
142  * ACS: Survey analysis for channel 2 (2417 MHz)
143  * ACS:  1: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
144  * ACS:  2: min_nf=-113 interference_factor=0.0246914 nf=-113 time=162 busy=0 rx=4
145  * ACS:  3: min_nf=-113 interference_factor=0.037037 nf=-113 time=162 busy=0 rx=6
146  * ACS:  4: min_nf=-113 interference_factor=0.149068 nf=-113 time=161 busy=0 rx=24
147  * ACS:  5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
148  * ACS:  * interference factor average: 0.050832
149  * ACS: Survey analysis for channel 3 (2422 MHz)
150  * ACS:  1: min_nf=-113 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
151  * ACS:  2: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
152  * ACS:  3: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
153  * ACS:  4: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
154  * ACS:  5: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
155  * ACS:  * interference factor average: 0.0148838
156  * ACS: Survey analysis for channel 4 (2427 MHz)
157  * ACS:  1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
158  * ACS:  2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
159  * ACS:  3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
160  * ACS:  4: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
161  * ACS:  5: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
162  * ACS:  * interference factor average: 0.0160801
163  * ACS: Survey analysis for channel 5 (2432 MHz)
164  * ACS:  1: min_nf=-114 interference_factor=0.409938 nf=-113 time=161 busy=0 rx=66
165  * ACS:  2: min_nf=-114 interference_factor=0.0432099 nf=-113 time=162 busy=0 rx=7
166  * ACS:  3: min_nf=-114 interference_factor=0.0124224 nf=-113 time=161 busy=0 rx=2
167  * ACS:  4: min_nf=-114 interference_factor=0.677019 nf=-113 time=161 busy=0 rx=109
168  * ACS:  5: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
169  * ACS:  * interference factor average: 0.232244
170  * ACS: Survey analysis for channel 6 (2437 MHz)
171  * ACS:  1: min_nf=-113 interference_factor=0.552795 nf=-113 time=161 busy=0 rx=89
172  * ACS:  2: min_nf=-113 interference_factor=0.0807453 nf=-112 time=161 busy=0 rx=13
173  * ACS:  3: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
174  * ACS:  4: min_nf=-113 interference_factor=0.434783 nf=-112 time=161 busy=0 rx=70
175  * ACS:  5: min_nf=-113 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
176  * ACS:  * interference factor average: 0.232298
177  * ACS: Survey analysis for channel 7 (2442 MHz)
178  * ACS:  1: min_nf=-113 interference_factor=0.440994 nf=-112 time=161 busy=0 rx=71
179  * ACS:  2: min_nf=-113 interference_factor=0.385093 nf=-113 time=161 busy=0 rx=62
180  * ACS:  3: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
181  * ACS:  4: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
182  * ACS:  5: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
183  * ACS:  * interference factor average: 0.195031
184  * ACS: Survey analysis for channel 8 (2447 MHz)
185  * ACS:  1: min_nf=-114 interference_factor=0.0496894 nf=-112 time=161 busy=0 rx=8
186  * ACS:  2: min_nf=-114 interference_factor=0.0496894 nf=-114 time=161 busy=0 rx=8
187  * ACS:  3: min_nf=-114 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
188  * ACS:  4: min_nf=-114 interference_factor=0.12963 nf=-113 time=162 busy=0 rx=21
189  * ACS:  5: min_nf=-114 interference_factor=0.166667 nf=-114 time=162 busy=0 rx=27
190  * ACS:  * interference factor average: 0.0865885
191  * ACS: Survey analysis for channel 9 (2452 MHz)
192  * ACS:  1: min_nf=-114 interference_factor=0.0124224 nf=-114 time=161 busy=0 rx=2
193  * ACS:  2: min_nf=-114 interference_factor=0.0310559 nf=-114 time=161 busy=0 rx=5
194  * ACS:  3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
195  * ACS:  4: min_nf=-114 interference_factor=0.00617284 nf=-114 time=162 busy=0 rx=1
196  * ACS:  5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
197  * ACS:  * interference factor average: 0.00993022
198  * ACS: Survey analysis for channel 10 (2457 MHz)
199  * ACS:  1: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
200  * ACS:  2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
201  * ACS:  3: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
202  * ACS:  4: min_nf=-114 interference_factor=0.0493827 nf=-114 time=162 busy=0 rx=8
203  * ACS:  5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
204  * ACS:  * interference factor average: 0.0136033
205  * ACS: Survey analysis for channel 11 (2462 MHz)
206  * ACS:  1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
207  * ACS:  2: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
208  * ACS:  3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
209  * ACS:  4: min_nf=-114 interference_factor=0.0432099 nf=-114 time=162 busy=0 rx=7
210  * ACS:  5: min_nf=-114 interference_factor=0.0925926 nf=-114 time=162 busy=0 rx=15
211  * ACS:  * interference factor average: 0.0271605
212  * ACS: Survey analysis for channel 12 (2467 MHz)
213  * ACS:  1: min_nf=-114 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
214  * ACS:  2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
215  * ACS:  3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
216  * ACS:  4: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
217  * ACS:  5: min_nf=-114 interference_factor=0.00617284 nf=-113 time=162 busy=0 rx=1
218  * ACS:  * interference factor average: 0.0148992
219  * ACS: Survey analysis for channel 13 (2472 MHz)
220  * ACS:  1: min_nf=-114 interference_factor=0.0745342 nf=-114 time=161 busy=0 rx=12
221  * ACS:  2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
222  * ACS:  3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
223  * ACS:  4: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
224  * ACS:  5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
225  * ACS:  * interference factor average: 0.0260179
226  * ACS: Survey analysis for selected bandwidth 20MHz
227  * ACS:  * channel 1: total interference = 0.121432
228  * ACS:  * channel 2: total interference = 0.137512
229  * ACS:  * channel 3: total interference = 0.369757
230  * ACS:  * channel 4: total interference = 0.546338
231  * ACS:  * channel 5: total interference = 0.690538
232  * ACS:  * channel 6: total interference = 0.762242
233  * ACS:  * channel 7: total interference = 0.756092
234  * ACS:  * channel 8: total interference = 0.537451
235  * ACS:  * channel 9: total interference = 0.332313
236  * ACS:  * channel 10: total interference = 0.152182
237  * ACS:  * channel 11: total interference = 0.0916111
238  * ACS:  * channel 12: total interference = 0.0816809
239  * ACS:  * channel 13: total interference = 0.0680776
240  * ACS: Ideal channel is 13 (2472 MHz) with total interference factor of 0.0680776
241  *
242  * [1] http://en.wikipedia.org/wiki/Near_and_far_field
243  */
244 
245 enum bw_type {
246 	ACS_BW40,
247 	ACS_BW80,
248 	ACS_BW160,
249 	ACS_BW320_1,
250 	ACS_BW320_2,
251 };
252 
253 struct bw_item {
254 	int first;
255 	int last;
256 	int center_chan;
257 };
258 
259 static const struct bw_item bw_40[] = {
260 	{ 5180, 5200, 38 }, { 5220, 5240, 46 }, { 5260, 5280, 54 },
261 	{ 5300, 5320, 62 }, { 5500, 5520, 102 }, { 5540, 5560, 110 },
262 	{ 5580, 5600, 118 }, { 5620, 5640, 126 }, { 5660, 5680, 134 },
263 	{ 5700, 5720, 142 }, { 5745, 5765, 151 }, { 5785, 5805, 159 },
264 	{ 5825, 5845, 167 }, { 5865, 5885, 175 },
265 	{ 5955, 5975, 3 }, { 5995, 6015, 11 }, { 6035, 6055, 19 },
266 	{ 6075, 6095, 27 }, { 6115, 6135, 35 }, { 6155, 6175, 43 },
267 	{ 6195, 6215, 51 }, { 6235, 6255, 59 }, { 6275, 6295, 67 },
268 	{ 6315, 6335, 75 }, { 6355, 6375, 83 }, { 6395, 6415, 91 },
269 	{ 6435, 6455, 99 }, { 6475, 6495, 107 }, { 6515, 6535, 115 },
270 	{ 6555, 6575, 123 }, { 6595, 6615, 131 }, { 6635, 6655, 139 },
271 	{ 6675, 6695, 147 }, { 6715, 6735, 155 }, { 6755, 6775, 163 },
272 	{ 6795, 6815, 171 }, { 6835, 6855, 179 }, { 6875, 6895, 187 },
273 	{ 6915, 6935, 195 }, { 6955, 6975, 203 }, { 6995, 7015, 211 },
274 	{ 7035, 7055, 219 }, { 7075, 7095, 227}, { -1, -1, -1 }
275 };
276 static const struct bw_item bw_80[] = {
277 	{ 5180, 5240, 42 }, { 5260, 5320, 58 }, { 5500, 5560, 106 },
278 	{ 5580, 5640, 122 }, { 5660, 5720, 138 }, { 5745, 5805, 155 },
279 	{ 5825, 5885, 171},
280 	{ 5955, 6015, 7 }, { 6035, 6095, 23 }, { 6115, 6175, 39 },
281 	{ 6195, 6255, 55 }, { 6275, 6335, 71 }, { 6355, 6415, 87 },
282 	{ 6435, 6495, 103 }, { 6515, 6575, 119 }, { 6595, 6655, 135 },
283 	{ 6675, 6735, 151 }, { 6755, 6815, 167 }, { 6835, 6895, 183 },
284 	{ 6915, 6975, 199 }, { 6995, 7055, 215 }, { -1, -1, -1 }
285 };
286 static const struct bw_item bw_160[] = {
287 	{ 5180, 5320, 50 }, { 5500, 5640, 114 }, { 5745, 5885, 163 },
288 	{ 5955, 6095, 15 }, { 6115, 6255, 47 }, { 6275, 6415, 79 },
289 	{ 6435, 6575, 111 }, { 6595, 6735, 143 },
290 	{ 6755, 6895, 175 }, { 6915, 7055, 207 }, { -1, -1, -1 }
291 };
292 static const struct bw_item bw_320_1[] = {
293 	{ 5955, 6255, 31 }, { 6275, 6575, 95 }, { 6595, 6895, 159 },
294 	{ -1, -1, -1 }
295 };
296 static const struct bw_item bw_320_2[] = {
297 	{ 6115, 6415, 63 }, { 6435, 6735, 127 }, { 6755, 7055, 191 },
298 	{ -1, -1, -1 }
299 };
300 static const struct bw_item *bw_desc[] = {
301 	[ACS_BW40] = bw_40,
302 	[ACS_BW80] = bw_80,
303 	[ACS_BW160] = bw_160,
304 	[ACS_BW320_1] = bw_320_1,
305 	[ACS_BW320_2] = bw_320_2,
306 };
307 
308 
309 static int acs_request_scan(struct hostapd_iface *iface);
310 static int acs_survey_is_sufficient(struct freq_survey *survey);
311 static void acs_scan_retry(void *eloop_data, void *user_data);
312 
313 
314 static void acs_clean_chan_surveys(struct hostapd_channel_data *chan)
315 {
316 	struct freq_survey *survey, *tmp;
317 
318 	if (dl_list_empty(&chan->survey_list))
319 		return;
320 
321 	dl_list_for_each_safe(survey, tmp, &chan->survey_list,
322 			      struct freq_survey, list) {
323 		dl_list_del(&survey->list);
324 		os_free(survey);
325 	}
326 }
327 
328 
329 static void acs_cleanup_mode(struct hostapd_hw_modes *mode)
330 {
331 	int i;
332 	struct hostapd_channel_data *chan;
333 
334 	for (i = 0; i < mode->num_channels; i++) {
335 		chan = &mode->channels[i];
336 
337 		if (chan->flag & HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED)
338 			acs_clean_chan_surveys(chan);
339 
340 		dl_list_init(&chan->survey_list);
341 		chan->flag |= HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED;
342 		chan->min_nf = 0;
343 		chan->punct_bitmap = 0;
344 	}
345 }
346 
347 
348 void acs_cleanup(struct hostapd_iface *iface)
349 {
350 	int i;
351 
352 	for (i = 0; i < iface->num_hw_features; i++)
353 		acs_cleanup_mode(&iface->hw_features[i]);
354 
355 	iface->chans_surveyed = 0;
356 	iface->acs_num_completed_scans = 0;
357 	iface->acs_num_retries = 0;
358 	eloop_cancel_timeout(acs_scan_retry, iface, NULL);
359 }
360 
361 
362 static void acs_fail(struct hostapd_iface *iface)
363 {
364 	wpa_printf(MSG_ERROR, "ACS: Failed to start");
365 	acs_cleanup(iface);
366 	hostapd_disable_iface(iface);
367 }
368 
369 
370 static long double
371 acs_survey_interference_factor(struct freq_survey *survey, s8 min_nf)
372 {
373 	long double factor, busy, total;
374 
375 	if (survey->filled & SURVEY_HAS_CHAN_TIME_BUSY)
376 		busy = survey->channel_time_busy;
377 	else if (survey->filled & SURVEY_HAS_CHAN_TIME_RX)
378 		busy = survey->channel_time_rx;
379 	else {
380 		wpa_printf(MSG_ERROR, "ACS: Survey data missing");
381 		return 0;
382 	}
383 
384 	total = survey->channel_time;
385 
386 	if (survey->filled & SURVEY_HAS_CHAN_TIME_TX) {
387 		busy -= survey->channel_time_tx;
388 		total -= survey->channel_time_tx;
389 	}
390 
391 	/* TODO: figure out the best multiplier for noise floor base */
392 	factor = pow(10, survey->nf / 5.0L) +
393 		(total ? (busy / total) : 0) *
394 		pow(2, pow(10, (long double) survey->nf / 10.0L) -
395 		    pow(10, (long double) min_nf / 10.0L));
396 
397 	return factor;
398 }
399 
400 
401 static void
402 acs_survey_chan_interference_factor(struct hostapd_iface *iface,
403 				    struct hostapd_channel_data *chan)
404 {
405 	struct freq_survey *survey;
406 	unsigned int i = 0;
407 	long double int_factor = 0;
408 	unsigned count = 0;
409 
410 	if (dl_list_empty(&chan->survey_list) ||
411 	    (chan->flag & HOSTAPD_CHAN_DISABLED))
412 		return;
413 
414 	chan->interference_factor = 0;
415 
416 	dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
417 	{
418 		i++;
419 
420 		if (!acs_survey_is_sufficient(survey)) {
421 			wpa_printf(MSG_DEBUG, "ACS: %d: insufficient data", i);
422 			continue;
423 		}
424 
425 		count++;
426 		int_factor = acs_survey_interference_factor(survey,
427 							    iface->lowest_nf);
428 		chan->interference_factor += int_factor;
429 		wpa_printf(MSG_DEBUG, "ACS: %d: min_nf=%d interference_factor=%Lg nf=%d time=%lu busy=%lu rx=%lu",
430 			   i, chan->min_nf, int_factor,
431 			   survey->nf, (unsigned long) survey->channel_time,
432 			   (unsigned long) survey->channel_time_busy,
433 			   (unsigned long) survey->channel_time_rx);
434 	}
435 
436 	if (count)
437 		chan->interference_factor /= count;
438 }
439 
440 
441 static bool acs_usable_bw_chan(const struct hostapd_channel_data *chan,
442 			       enum bw_type bw)
443 {
444 	unsigned int i = 0;
445 
446 	while (bw_desc[bw][i].first != -1) {
447 		if (chan->freq == bw_desc[bw][i].first)
448 			return true;
449 		i++;
450 	}
451 
452 	return false;
453 }
454 
455 
456 static int acs_get_bw_center_chan(int freq, enum bw_type bw)
457 {
458 	unsigned int i = 0;
459 
460 	while (bw_desc[bw][i].first != -1) {
461 		if (freq >= bw_desc[bw][i].first &&
462 		    freq <= bw_desc[bw][i].last)
463 			return bw_desc[bw][i].center_chan;
464 		i++;
465 	}
466 
467 	return 0;
468 }
469 
470 
471 static int acs_survey_is_sufficient(struct freq_survey *survey)
472 {
473 	if (!(survey->filled & SURVEY_HAS_NF)) {
474 		wpa_printf(MSG_INFO,
475 			   "ACS: Survey for freq %d is missing noise floor",
476 			   survey->freq);
477 		return 0;
478 	}
479 
480 	if (!(survey->filled & SURVEY_HAS_CHAN_TIME)) {
481 		wpa_printf(MSG_INFO,
482 			   "ACS: Survey for freq %d is missing channel time",
483 			   survey->freq);
484 		return 0;
485 	}
486 
487 	if (!(survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) &&
488 	    !(survey->filled & SURVEY_HAS_CHAN_TIME_RX)) {
489 		wpa_printf(MSG_INFO,
490 			   "ACS: Survey for freq %d is missing RX and busy time (at least one is required)",
491 			   survey->freq);
492 		return 0;
493 	}
494 
495 	return 1;
496 }
497 
498 
499 static int acs_survey_list_is_sufficient(struct hostapd_channel_data *chan)
500 {
501 	struct freq_survey *survey;
502 	int ret = -1;
503 
504 	dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
505 	{
506 		if (acs_survey_is_sufficient(survey)) {
507 			ret = 1;
508 			break;
509 		}
510 		ret = 0;
511 	}
512 
513 	if (ret == -1)
514 		ret = 0; /* no survey list entries */
515 
516 	if (!ret) {
517 		wpa_printf(MSG_INFO,
518 			   "ACS: Channel %d has insufficient survey data",
519 			   chan->chan);
520 	}
521 
522 	return ret;
523 }
524 
525 
526 static int acs_surveys_are_sufficient_mode(struct hostapd_hw_modes *mode)
527 {
528 	int i;
529 	struct hostapd_channel_data *chan;
530 
531 	for (i = 0; i < mode->num_channels; i++) {
532 		chan = &mode->channels[i];
533 		if (!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
534 		    acs_survey_list_is_sufficient(chan))
535 			return 1;
536 	}
537 
538 	return 0;
539 }
540 
541 
542 static int acs_surveys_are_sufficient(struct hostapd_iface *iface)
543 {
544 	int i;
545 	struct hostapd_hw_modes *mode;
546 
547 	for (i = 0; i < iface->num_hw_features; i++) {
548 		mode = &iface->hw_features[i];
549 		if (!hostapd_hw_skip_mode(iface, mode) &&
550 		    acs_surveys_are_sufficient_mode(mode))
551 			return 1;
552 	}
553 
554 	return 0;
555 }
556 
557 
558 static int acs_usable_chan(struct hostapd_channel_data *chan)
559 {
560 	return !dl_list_empty(&chan->survey_list) &&
561 		!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
562 		acs_survey_list_is_sufficient(chan);
563 }
564 
565 
566 static int is_in_chanlist(struct hostapd_iface *iface,
567 			  struct hostapd_channel_data *chan)
568 {
569 	if (!iface->conf->acs_ch_list.num)
570 		return 1;
571 
572 	return freq_range_list_includes(&iface->conf->acs_ch_list, chan->chan);
573 }
574 
575 
576 static int is_in_freqlist(struct hostapd_iface *iface,
577 			  struct hostapd_channel_data *chan)
578 {
579 	if (!iface->conf->acs_freq_list.num)
580 		return 1;
581 
582 	return freq_range_list_includes(&iface->conf->acs_freq_list,
583 					chan->freq);
584 }
585 
586 
587 static void acs_survey_mode_interference_factor(
588 	struct hostapd_iface *iface, struct hostapd_hw_modes *mode)
589 {
590 	int i;
591 	struct hostapd_channel_data *chan;
592 
593 	for (i = 0; i < mode->num_channels; i++) {
594 		chan = &mode->channels[i];
595 
596 		if (!acs_usable_chan(chan))
597 			continue;
598 
599 		if ((chan->flag & HOSTAPD_CHAN_RADAR) &&
600 		    iface->conf->acs_exclude_dfs)
601 			continue;
602 
603 		if (!is_in_chanlist(iface, chan))
604 			continue;
605 
606 		if (!is_in_freqlist(iface, chan))
607 			continue;
608 
609 		if (chan->max_tx_power < iface->conf->min_tx_power)
610 			continue;
611 
612 		if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
613 		    iface->conf->country[2] == 0x4f)
614 			continue;
615 
616 		wpa_printf(MSG_DEBUG, "ACS: Survey analysis for channel %d (%d MHz)",
617 			   chan->chan, chan->freq);
618 
619 		acs_survey_chan_interference_factor(iface, chan);
620 
621 		wpa_printf(MSG_DEBUG, "ACS:  * interference factor average: %Lg",
622 			   chan->interference_factor);
623 	}
624 }
625 
626 
627 static void acs_survey_all_chans_interference_factor(
628 	struct hostapd_iface *iface)
629 {
630 	int i;
631 	struct hostapd_hw_modes *mode;
632 
633 	for (i = 0; i < iface->num_hw_features; i++) {
634 		mode = &iface->hw_features[i];
635 		if (!hostapd_hw_skip_mode(iface, mode))
636 			acs_survey_mode_interference_factor(iface, mode);
637 	}
638 }
639 
640 
641 static struct hostapd_channel_data *
642 acs_find_chan_mode(struct hostapd_hw_modes *mode, int freq)
643 {
644 	struct hostapd_channel_data *chan;
645 	int i;
646 
647 	for (i = 0; i < mode->num_channels; i++) {
648 		chan = &mode->channels[i];
649 
650 		if (chan->flag & HOSTAPD_CHAN_DISABLED)
651 			continue;
652 
653 		if (chan->freq == freq)
654 			return chan;
655 	}
656 
657 	return NULL;
658 }
659 
660 
661 static enum hostapd_hw_mode
662 acs_find_mode(struct hostapd_iface *iface, int freq)
663 {
664 	int i;
665 	struct hostapd_hw_modes *mode;
666 	struct hostapd_channel_data *chan;
667 
668 	for (i = 0; i < iface->num_hw_features; i++) {
669 		mode = &iface->hw_features[i];
670 		if (!hostapd_hw_skip_mode(iface, mode)) {
671 			chan = acs_find_chan_mode(mode, freq);
672 			if (chan)
673 				return mode->mode;
674 		}
675 	}
676 
677 	return HOSTAPD_MODE_IEEE80211ANY;
678 }
679 
680 
681 static struct hostapd_channel_data *
682 acs_find_chan(struct hostapd_iface *iface, int freq)
683 {
684 	int i;
685 	struct hostapd_hw_modes *mode;
686 	struct hostapd_channel_data *chan;
687 
688 	for (i = 0; i < iface->num_hw_features; i++) {
689 		mode = &iface->hw_features[i];
690 		if (!hostapd_hw_skip_mode(iface, mode)) {
691 			chan = acs_find_chan_mode(mode, freq);
692 			if (chan)
693 				return chan;
694 		}
695 	}
696 
697 	return NULL;
698 }
699 
700 
701 static int is_24ghz_mode(enum hostapd_hw_mode mode)
702 {
703 	return mode == HOSTAPD_MODE_IEEE80211B ||
704 		mode == HOSTAPD_MODE_IEEE80211G;
705 }
706 
707 
708 static int is_common_24ghz_chan(int chan)
709 {
710 	return chan == 1 || chan == 6 || chan == 11;
711 }
712 
713 
714 #ifndef ACS_ADJ_WEIGHT
715 #define ACS_ADJ_WEIGHT 0.85
716 #endif /* ACS_ADJ_WEIGHT */
717 
718 #ifndef ACS_NEXT_ADJ_WEIGHT
719 #define ACS_NEXT_ADJ_WEIGHT 0.55
720 #endif /* ACS_NEXT_ADJ_WEIGHT */
721 
722 #ifndef ACS_24GHZ_PREFER_1_6_11
723 /*
724  * Select commonly used channels 1, 6, 11 by default even if a neighboring
725  * channel has a smaller interference factor as long as it is not better by more
726  * than this multiplier.
727  */
728 #define ACS_24GHZ_PREFER_1_6_11 0.8
729 #endif /* ACS_24GHZ_PREFER_1_6_11 */
730 
731 
732 #ifdef CONFIG_IEEE80211BE
733 static void acs_update_puncturing_bitmap(struct hostapd_iface *iface,
734 					 struct hostapd_hw_modes *mode, u32 bw,
735 					 int n_chans,
736 					 struct hostapd_channel_data *chan,
737 					 long double factor,
738 					 int index_primary)
739 {
740 	struct hostapd_config *conf = iface->conf;
741 	struct hostapd_channel_data *adj_chan = NULL, *first_chan = chan;
742 	int i;
743 	long double threshold;
744 
745 	/*
746 	 * If threshold is 0 or user configured puncturing pattern is
747 	 * available then don't add additional puncturing.
748 	 */
749 	if (!conf->punct_acs_threshold || conf->punct_bitmap)
750 		return;
751 
752 	if (is_24ghz_mode(mode->mode) || bw < 80)
753 		return;
754 
755 	threshold = factor * conf->punct_acs_threshold / 100;
756 	for (i = 0; i < n_chans; i++) {
757 		int adj_freq;
758 
759 		if (i == index_primary)
760 			continue; /* Cannot puncture primary channel */
761 
762 		if (i > index_primary)
763 			adj_freq = chan->freq + (i - index_primary) * 20;
764 		else
765 			adj_freq = chan->freq - (index_primary - i) * 20;
766 
767 		adj_chan = acs_find_chan(iface, adj_freq);
768 		if (!adj_chan) {
769 			chan->punct_bitmap = 0;
770 			return;
771 		}
772 
773 		if (i == 0)
774 			first_chan = adj_chan;
775 
776 		if (adj_chan->interference_factor > threshold)
777 			chan->punct_bitmap |= BIT(i);
778 	}
779 
780 	if (!is_punct_bitmap_valid(bw, (chan->freq - first_chan->freq) / 20,
781 				   chan->punct_bitmap))
782 		chan->punct_bitmap = 0;
783 }
784 #endif /* CONFIG_IEEE80211BE */
785 
786 
787 static bool
788 acs_usable_bw320_chan(struct hostapd_iface *iface,
789 		      struct hostapd_channel_data *chan, int *bw320_offset)
790 {
791 	const char *bw320_str[] = { "320 MHz", "320 MHz-1", "320 MHz-2" };
792 	int conf_bw320_offset = hostapd_get_bw320_offset(iface->conf);
793 
794 	*bw320_offset = 0;
795 	switch (conf_bw320_offset) {
796 	case 1:
797 		if (acs_usable_bw_chan(chan, ACS_BW320_1))
798 			*bw320_offset = 1;
799 		break;
800 	case 2:
801 		if (acs_usable_bw_chan(chan, ACS_BW320_2))
802 			*bw320_offset = 2;
803 		break;
804 	case 0:
805 	default:
806 		conf_bw320_offset = 0;
807 		if (acs_usable_bw_chan(chan, ACS_BW320_1))
808 			*bw320_offset = 1;
809 		else if (acs_usable_bw_chan(chan, ACS_BW320_2))
810 			*bw320_offset = 2;
811 		break;
812 	}
813 
814 	if (!*bw320_offset)
815 		wpa_printf(MSG_DEBUG,
816 			   "ACS: Channel %d: not allowed as primary channel for %s bandwidth",
817 			   chan->chan, bw320_str[conf_bw320_offset]);
818 
819 	return *bw320_offset != 0;
820 }
821 
822 
823 static void
824 acs_find_ideal_chan_mode(struct hostapd_iface *iface,
825 			 struct hostapd_hw_modes *mode,
826 			 int n_chans, u32 bw,
827 			 struct hostapd_channel_data **rand_chan,
828 			 struct hostapd_channel_data **ideal_chan,
829 			 long double *ideal_factor)
830 {
831 	struct hostapd_channel_data *chan, *adj_chan = NULL, *best;
832 	long double factor;
833 	int i, j;
834 	int bw320_offset = 0, ideal_bw320_offset = 0;
835 	unsigned int k;
836 	int secondary_channel = 1, freq_offset;
837 #ifdef CONFIG_IEEE80211BE
838 	int index_primary = 0;
839 #endif /* CONFIG_IEEE80211BE */
840 
841 	if (is_24ghz_mode(mode->mode))
842 		secondary_channel = iface->conf->secondary_channel;
843 
844 	for (i = 0; i < mode->num_channels; i++) {
845 		double total_weight = 0;
846 		struct acs_bias *bias, tmp_bias;
847 
848 		chan = &mode->channels[i];
849 
850 		/* Since in the current ACS implementation the first channel is
851 		 * always a primary channel, skip channels not available as
852 		 * primary until more sophisticated channel selection is
853 		 * implemented.
854 		 *
855 		 * If this implementation is changed to allow any channel in
856 		 * the bandwidth to be the primary one, the last parameter to
857 		 * acs_update_puncturing_bitmap() should be changed to the index
858 		 * of the primary channel
859 		 */
860 		if (!chan_pri_allowed(chan))
861 			continue;
862 
863 		if ((chan->flag & HOSTAPD_CHAN_RADAR) &&
864 		    iface->conf->acs_exclude_dfs)
865 			continue;
866 
867 		if (!is_in_chanlist(iface, chan))
868 			continue;
869 
870 		if (!is_in_freqlist(iface, chan))
871 			continue;
872 
873 		if (chan->max_tx_power < iface->conf->min_tx_power)
874 			continue;
875 
876 		if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
877 		    iface->conf->country[2] == 0x4f)
878 			continue;
879 
880 		if (!chan_bw_allowed(chan, bw, secondary_channel != -1, 1)) {
881 			wpa_printf(MSG_DEBUG,
882 				   "ACS: Channel %d: BW %u is not supported",
883 				   chan->chan, bw);
884 			continue;
885 		}
886 
887 		/* HT40 on 5 GHz has a limited set of primary channels as per
888 		 * 11n Annex J */
889 		if (mode->mode == HOSTAPD_MODE_IEEE80211A &&
890 		    ((iface->conf->ieee80211n &&
891 		      iface->conf->secondary_channel) ||
892 		     is_6ghz_freq(chan->freq)) &&
893 		    !acs_usable_bw_chan(chan, ACS_BW40)) {
894 			wpa_printf(MSG_DEBUG,
895 				   "ACS: Channel %d: not allowed as primary channel for 40 MHz bandwidth",
896 				   chan->chan);
897 			continue;
898 		}
899 
900 		if (mode->mode == HOSTAPD_MODE_IEEE80211A &&
901 		    (iface->conf->ieee80211ac || iface->conf->ieee80211ax ||
902 		     iface->conf->ieee80211be)) {
903 			if (hostapd_get_oper_chwidth(iface->conf) ==
904 			    CONF_OPER_CHWIDTH_80MHZ &&
905 			    !acs_usable_bw_chan(chan, ACS_BW80)) {
906 				wpa_printf(MSG_DEBUG,
907 					   "ACS: Channel %d: not allowed as primary channel for 80 MHz bandwidth",
908 					   chan->chan);
909 				continue;
910 			}
911 
912 			if (hostapd_get_oper_chwidth(iface->conf) ==
913 			    CONF_OPER_CHWIDTH_160MHZ &&
914 			    !acs_usable_bw_chan(chan, ACS_BW160)) {
915 				wpa_printf(MSG_DEBUG,
916 					   "ACS: Channel %d: not allowed as primary channel for 160 MHz bandwidth",
917 					   chan->chan);
918 				continue;
919 			}
920 		}
921 
922 		if (mode->mode == HOSTAPD_MODE_IEEE80211A &&
923 		    iface->conf->ieee80211be) {
924 			if (hostapd_get_oper_chwidth(iface->conf) ==
925 			    CONF_OPER_CHWIDTH_320MHZ &&
926 			    !acs_usable_bw320_chan(iface, chan, &bw320_offset))
927 				continue;
928 		}
929 
930 		factor = 0;
931 		best = NULL;
932 		if (acs_usable_chan(chan)) {
933 			factor = chan->interference_factor;
934 			total_weight = 1;
935 			best = chan;
936 		}
937 
938 		for (j = 1; j < n_chans; j++) {
939 			adj_chan = acs_find_chan(iface, chan->freq +
940 						 j * secondary_channel * 20);
941 			if (!adj_chan)
942 				break;
943 
944 			if (!chan_bw_allowed(adj_chan, bw, 1, 0)) {
945 				wpa_printf(MSG_DEBUG,
946 					   "ACS: PRI Channel %d: secondary channel %d BW %u is not supported",
947 					   chan->chan, adj_chan->chan, bw);
948 				break;
949 			}
950 
951 			if (!acs_usable_chan(adj_chan))
952 				continue;
953 
954 			factor += adj_chan->interference_factor;
955 			total_weight += 1;
956 
957 			/* find the best channel in this segment */
958 			if (!best || adj_chan->interference_factor <
959 			    best->interference_factor)
960 				best = adj_chan;
961 		}
962 
963 		if (j != n_chans) {
964 			wpa_printf(MSG_DEBUG, "ACS: Channel %d: not enough bandwidth",
965 				   chan->chan);
966 			continue;
967 		}
968 
969 		/* If the AP is in the 5 GHz or 6 GHz band, lets prefer a less
970 		 * crowded primary channel if one was found in the segment */
971 		if (iface->current_mode &&
972 		    iface->current_mode->mode == HOSTAPD_MODE_IEEE80211A &&
973 		    best && chan != best) {
974 			wpa_printf(MSG_DEBUG,
975 				   "ACS: promoting channel %d over %d (less interference %Lg/%Lg)",
976 				   best->chan, chan->chan,
977 				   chan->interference_factor,
978 				   best->interference_factor);
979 #ifdef CONFIG_IEEE80211BE
980 			index_primary = (chan->freq - best->freq) / 20;
981 #endif /* CONFIG_IEEE80211BE */
982 			chan = best;
983 		}
984 
985 		/* 2.4 GHz has overlapping 20 MHz channels. Include adjacent
986 		 * channel interference factor. */
987 		if (is_24ghz_mode(mode->mode)) {
988 			for (j = 0; j < n_chans; j++) {
989 				freq_offset = j * 20 * secondary_channel;
990 				adj_chan = acs_find_chan(iface, chan->freq +
991 							 freq_offset - 5);
992 				if (adj_chan && acs_usable_chan(adj_chan)) {
993 					factor += ACS_ADJ_WEIGHT *
994 						adj_chan->interference_factor;
995 					total_weight += ACS_ADJ_WEIGHT;
996 				}
997 
998 				adj_chan = acs_find_chan(iface, chan->freq +
999 							 freq_offset - 10);
1000 				if (adj_chan && acs_usable_chan(adj_chan)) {
1001 					factor += ACS_NEXT_ADJ_WEIGHT *
1002 						adj_chan->interference_factor;
1003 					total_weight += ACS_NEXT_ADJ_WEIGHT;
1004 				}
1005 
1006 				adj_chan = acs_find_chan(iface, chan->freq +
1007 							 freq_offset + 5);
1008 				if (adj_chan && acs_usable_chan(adj_chan)) {
1009 					factor += ACS_ADJ_WEIGHT *
1010 						adj_chan->interference_factor;
1011 					total_weight += ACS_ADJ_WEIGHT;
1012 				}
1013 
1014 				adj_chan = acs_find_chan(iface, chan->freq +
1015 							 freq_offset + 10);
1016 				if (adj_chan && acs_usable_chan(adj_chan)) {
1017 					factor += ACS_NEXT_ADJ_WEIGHT *
1018 						adj_chan->interference_factor;
1019 					total_weight += ACS_NEXT_ADJ_WEIGHT;
1020 				}
1021 			}
1022 		}
1023 
1024 		if (total_weight == 0)
1025 			continue;
1026 
1027 		factor /= total_weight;
1028 
1029 		bias = NULL;
1030 		if (iface->conf->acs_chan_bias) {
1031 			for (k = 0; k < iface->conf->num_acs_chan_bias; k++) {
1032 				bias = &iface->conf->acs_chan_bias[k];
1033 				if (bias->channel == chan->chan)
1034 					break;
1035 				bias = NULL;
1036 			}
1037 		} else if (is_24ghz_mode(mode->mode) &&
1038 			   is_common_24ghz_chan(chan->chan)) {
1039 			tmp_bias.channel = chan->chan;
1040 			tmp_bias.bias = ACS_24GHZ_PREFER_1_6_11;
1041 			bias = &tmp_bias;
1042 		}
1043 
1044 		if (bias) {
1045 			factor *= bias->bias;
1046 			wpa_printf(MSG_DEBUG,
1047 				   "ACS:  * channel %d: total interference = %Lg (%f bias)",
1048 				   chan->chan, factor, bias->bias);
1049 		} else {
1050 			wpa_printf(MSG_DEBUG,
1051 				   "ACS:  * channel %d: total interference = %Lg",
1052 				   chan->chan, factor);
1053 		}
1054 
1055 		if (acs_usable_chan(chan) &&
1056 		    (!*ideal_chan || factor < *ideal_factor)) {
1057 			/* Reset puncturing bitmap for the previous ideal
1058 			 * channel */
1059 			if (*ideal_chan)
1060 				(*ideal_chan)->punct_bitmap = 0;
1061 
1062 			*ideal_factor = factor;
1063 			*ideal_chan = chan;
1064 			ideal_bw320_offset = bw320_offset;
1065 
1066 #ifdef CONFIG_IEEE80211BE
1067 			if (iface->conf->ieee80211be)
1068 				acs_update_puncturing_bitmap(iface, mode, bw,
1069 							     n_chans, chan,
1070 							     factor,
1071 							     index_primary);
1072 #endif /* CONFIG_IEEE80211BE */
1073 		}
1074 
1075 		/* This channel would at least be usable */
1076 		if (!(*rand_chan)) {
1077 			*rand_chan = chan;
1078 			ideal_bw320_offset = bw320_offset;
1079 		}
1080 	}
1081 
1082 	hostapd_set_and_check_bw320_offset(iface->conf, ideal_bw320_offset);
1083 }
1084 
1085 
1086 /*
1087  * At this point it's assumed chan->interference_factor has been computed.
1088  * This function should be reusable regardless of interference computation
1089  * option (survey, BSS, spectral, ...). chan->interference factor must be
1090  * summable (i.e., must be always greater than zero).
1091  */
1092 static struct hostapd_channel_data *
1093 acs_find_ideal_chan(struct hostapd_iface *iface)
1094 {
1095 	struct hostapd_channel_data *ideal_chan = NULL,
1096 		*rand_chan = NULL;
1097 	long double ideal_factor = 0;
1098 	int i;
1099 	int n_chans = 1;
1100 	u32 bw;
1101 	struct hostapd_hw_modes *mode;
1102 
1103 	if (is_6ghz_op_class(iface->conf->op_class)) {
1104 		bw = op_class_to_bandwidth(iface->conf->op_class);
1105 		n_chans = bw / 20;
1106 		goto bw_selected;
1107 	}
1108 
1109 	if (iface->conf->ieee80211n &&
1110 	    iface->conf->secondary_channel)
1111 		n_chans = 2;
1112 
1113 	if (iface->conf->ieee80211ac || iface->conf->ieee80211ax ||
1114 	    iface->conf->ieee80211be) {
1115 		switch (hostapd_get_oper_chwidth(iface->conf)) {
1116 		case CONF_OPER_CHWIDTH_80MHZ:
1117 			n_chans = 4;
1118 			break;
1119 		case CONF_OPER_CHWIDTH_160MHZ:
1120 			n_chans = 8;
1121 			break;
1122 		case CONF_OPER_CHWIDTH_320MHZ:
1123 			n_chans = 16;
1124 			break;
1125 		default:
1126 			break;
1127 		}
1128 	}
1129 
1130 	bw = num_chan_to_bw(n_chans);
1131 
1132 bw_selected:
1133 	/* TODO: VHT/HE80+80. Update acs_adjust_center_freq() too. */
1134 
1135 	wpa_printf(MSG_DEBUG,
1136 		   "ACS: Survey analysis for selected bandwidth %d MHz", bw);
1137 
1138 	for (i = 0; i < iface->num_hw_features; i++) {
1139 		mode = &iface->hw_features[i];
1140 		if (!hostapd_hw_skip_mode(iface, mode))
1141 			acs_find_ideal_chan_mode(iface, mode, n_chans, bw,
1142 						 &rand_chan, &ideal_chan,
1143 						 &ideal_factor);
1144 	}
1145 
1146 	if (ideal_chan) {
1147 		wpa_printf(MSG_DEBUG, "ACS: Ideal channel is %d (%d MHz) with total interference factor of %Lg",
1148 			   ideal_chan->chan, ideal_chan->freq, ideal_factor);
1149 
1150 #ifdef CONFIG_IEEE80211BE
1151 		if (iface->conf->punct_acs_threshold)
1152 			wpa_printf(MSG_DEBUG, "ACS: RU puncturing bitmap 0x%x",
1153 				   ideal_chan->punct_bitmap);
1154 #endif /* CONFIG_IEEE80211BE */
1155 
1156 		return ideal_chan;
1157 	}
1158 
1159 	return rand_chan;
1160 }
1161 
1162 
1163 static void acs_adjust_secondary(struct hostapd_iface *iface)
1164 {
1165 	unsigned int i;
1166 
1167 	/* When working with bandwidth over 20 MHz on the 5 GHz or 6 GHz band,
1168 	 * ACS can return a secondary channel which is not the first channel of
1169 	 * the segment and we need to adjust. */
1170 	if (!iface->conf->secondary_channel ||
1171 	    acs_find_mode(iface, iface->freq) != HOSTAPD_MODE_IEEE80211A)
1172 		return;
1173 
1174 	wpa_printf(MSG_DEBUG,
1175 		   "ACS: Adjusting HT/VHT/HE/EHT secondary frequency");
1176 
1177 	for (i = 0; bw_desc[ACS_BW40][i].first != -1; i++) {
1178 		if (iface->freq == bw_desc[ACS_BW40][i].first)
1179 			iface->conf->secondary_channel = 1;
1180 		else if (iface->freq == bw_desc[ACS_BW40][i].last)
1181 			iface->conf->secondary_channel = -1;
1182 	}
1183 }
1184 
1185 
1186 static void acs_adjust_center_freq(struct hostapd_iface *iface)
1187 {
1188 	int center;
1189 
1190 	wpa_printf(MSG_DEBUG, "ACS: Adjusting center frequency");
1191 
1192 	switch (hostapd_get_oper_chwidth(iface->conf)) {
1193 	case CONF_OPER_CHWIDTH_USE_HT:
1194 		if (iface->conf->secondary_channel &&
1195 		    iface->freq >= 2400 && iface->freq < 2500)
1196 			center = iface->conf->channel +
1197 				2 * iface->conf->secondary_channel;
1198 		else if (iface->conf->secondary_channel)
1199 			center = acs_get_bw_center_chan(iface->freq, ACS_BW40);
1200 		else
1201 			center = iface->conf->channel;
1202 		break;
1203 	case CONF_OPER_CHWIDTH_80MHZ:
1204 		center = acs_get_bw_center_chan(iface->freq, ACS_BW80);
1205 		break;
1206 	case CONF_OPER_CHWIDTH_160MHZ:
1207 		center = acs_get_bw_center_chan(iface->freq, ACS_BW160);
1208 		break;
1209 	case CONF_OPER_CHWIDTH_320MHZ:
1210 		switch (hostapd_get_bw320_offset(iface->conf)) {
1211 		case 1:
1212 			center = acs_get_bw_center_chan(iface->freq,
1213 							ACS_BW320_1);
1214 			break;
1215 		case 2:
1216 			center = acs_get_bw_center_chan(iface->freq,
1217 							ACS_BW320_2);
1218 			break;
1219 		default:
1220 			wpa_printf(MSG_INFO,
1221 				   "ACS: BW320 offset is not selected");
1222 			return;
1223 		}
1224 
1225 		break;
1226 	default:
1227 		/* TODO: How can this be calculated? Adjust
1228 		 * acs_find_ideal_chan() */
1229 		wpa_printf(MSG_INFO,
1230 			   "ACS: Only VHT20/40/80/160/320 is supported now");
1231 		return;
1232 	}
1233 
1234 	hostapd_set_oper_centr_freq_seg0_idx(iface->conf, center);
1235 }
1236 
1237 
1238 static int acs_study_survey_based(struct hostapd_iface *iface)
1239 {
1240 	wpa_printf(MSG_DEBUG, "ACS: Trying survey-based ACS");
1241 
1242 	if (!iface->chans_surveyed) {
1243 		wpa_printf(MSG_ERROR, "ACS: Unable to collect survey data");
1244 		return -1;
1245 	}
1246 
1247 	if (!acs_surveys_are_sufficient(iface)) {
1248 		wpa_printf(MSG_ERROR, "ACS: Surveys have insufficient data");
1249 		return -1;
1250 	}
1251 
1252 	acs_survey_all_chans_interference_factor(iface);
1253 	return 0;
1254 }
1255 
1256 
1257 static int acs_study_options(struct hostapd_iface *iface)
1258 {
1259 	if (acs_study_survey_based(iface) == 0)
1260 		return 0;
1261 
1262 	/* TODO: If no surveys are available/sufficient this is a good
1263 	 * place to fallback to BSS-based ACS */
1264 
1265 	return -1;
1266 }
1267 
1268 
1269 static void acs_study(struct hostapd_iface *iface)
1270 {
1271 	struct hostapd_channel_data *ideal_chan;
1272 	int err;
1273 
1274 	err = acs_study_options(iface);
1275 	if (err < 0) {
1276 		wpa_printf(MSG_ERROR, "ACS: All study options have failed");
1277 		goto fail;
1278 	}
1279 
1280 	ideal_chan = acs_find_ideal_chan(iface);
1281 	if (!ideal_chan) {
1282 		wpa_printf(MSG_ERROR, "ACS: Failed to compute ideal channel");
1283 		err = -1;
1284 		goto fail;
1285 	}
1286 
1287 	iface->conf->channel = ideal_chan->chan;
1288 	iface->freq = ideal_chan->freq;
1289 #ifdef CONFIG_IEEE80211BE
1290 	iface->conf->punct_bitmap = ideal_chan->punct_bitmap;
1291 #endif /* CONFIG_IEEE80211BE */
1292 
1293 	if (iface->conf->ieee80211ac || iface->conf->ieee80211ax ||
1294 	    iface->conf->ieee80211be) {
1295 		acs_adjust_secondary(iface);
1296 		acs_adjust_center_freq(iface);
1297 	}
1298 
1299 	err = hostapd_select_hw_mode(iface);
1300 	if (err) {
1301 		wpa_printf(MSG_ERROR,
1302 			   "ACS: Could not (err: %d) select hw_mode for freq=%d channel=%d",
1303 			err, iface->freq, iface->conf->channel);
1304 		err = -1;
1305 		goto fail;
1306 	}
1307 
1308 	err = 0;
1309 fail:
1310 	/*
1311 	 * hostapd_setup_interface_complete() will return -1 on failure,
1312 	 * 0 on success and 0 is HOSTAPD_CHAN_VALID :)
1313 	 */
1314 	if (hostapd_acs_completed(iface, err) == HOSTAPD_CHAN_VALID) {
1315 		acs_cleanup(iface);
1316 		return;
1317 	}
1318 
1319 	/* This can possibly happen if channel parameters (secondary
1320 	 * channel, center frequencies) are misconfigured */
1321 	wpa_printf(MSG_ERROR, "ACS: Possibly channel configuration is invalid, please report this along with your config file.");
1322 	acs_fail(iface);
1323 }
1324 
1325 
1326 static void acs_scan_complete(struct hostapd_iface *iface)
1327 {
1328 	int err;
1329 
1330 	iface->scan_cb = NULL;
1331 	iface->acs_num_retries = 0;
1332 
1333 	wpa_printf(MSG_DEBUG, "ACS: Using survey based algorithm (acs_num_scans=%d)",
1334 		   iface->conf->acs_num_scans);
1335 
1336 	err = hostapd_drv_get_survey(iface->bss[0], 0);
1337 	if (err) {
1338 		wpa_printf(MSG_ERROR, "ACS: Failed to get survey data");
1339 		goto fail;
1340 	}
1341 
1342 	if (++iface->acs_num_completed_scans < iface->conf->acs_num_scans) {
1343 		err = acs_request_scan(iface);
1344 		if (err && err != -EBUSY) {
1345 			wpa_printf(MSG_ERROR, "ACS: Failed to request scan");
1346 			goto fail;
1347 		}
1348 
1349 		return;
1350 	}
1351 
1352 	acs_study(iface);
1353 	return;
1354 fail:
1355 	hostapd_acs_completed(iface, 1);
1356 	acs_fail(iface);
1357 }
1358 
1359 
1360 static int * acs_request_scan_add_freqs(struct hostapd_iface *iface,
1361 					struct hostapd_hw_modes *mode,
1362 					int *freq)
1363 {
1364 	struct hostapd_channel_data *chan;
1365 	int i;
1366 
1367 	for (i = 0; i < mode->num_channels; i++) {
1368 		chan = &mode->channels[i];
1369 		if ((chan->flag & HOSTAPD_CHAN_DISABLED) ||
1370 		    ((chan->flag & HOSTAPD_CHAN_RADAR) &&
1371 		     iface->conf->acs_exclude_dfs))
1372 			continue;
1373 
1374 		if (!is_in_chanlist(iface, chan))
1375 			continue;
1376 
1377 		if (!is_in_freqlist(iface, chan))
1378 			continue;
1379 
1380 		if (chan->max_tx_power < iface->conf->min_tx_power)
1381 			continue;
1382 
1383 		if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
1384 		    iface->conf->country[2] == 0x4f)
1385 			continue;
1386 
1387 		*freq++ = chan->freq;
1388 	}
1389 
1390 	return freq;
1391 }
1392 
1393 
1394 static int acs_request_scan(struct hostapd_iface *iface)
1395 {
1396 	struct wpa_driver_scan_params params;
1397 	int i, *freq, ret;
1398 	int num_channels;
1399 	struct hostapd_hw_modes *mode;
1400 
1401 	os_memset(&params, 0, sizeof(params));
1402 
1403 	num_channels = 0;
1404 	for (i = 0; i < iface->num_hw_features; i++) {
1405 		mode = &iface->hw_features[i];
1406 		if (!hostapd_hw_skip_mode(iface, mode))
1407 			num_channels += mode->num_channels;
1408 	}
1409 
1410 	params.freqs = os_calloc(num_channels + 1, sizeof(params.freqs[0]));
1411 	if (params.freqs == NULL)
1412 		return -1;
1413 
1414 	freq = params.freqs;
1415 
1416 	for (i = 0; i < iface->num_hw_features; i++) {
1417 		mode = &iface->hw_features[i];
1418 		if (!hostapd_hw_skip_mode(iface, mode))
1419 			freq = acs_request_scan_add_freqs(iface, mode, freq);
1420 	}
1421 
1422 	*freq = 0;
1423 
1424 	if (params.freqs == freq) {
1425 		wpa_printf(MSG_ERROR, "ACS: No available channels found");
1426 		os_free(params.freqs);
1427 		return -1;
1428 	}
1429 
1430 	if (!iface->acs_num_retries)
1431 		wpa_printf(MSG_DEBUG, "ACS: Scanning %d / %d",
1432 			   iface->acs_num_completed_scans + 1,
1433 			   iface->conf->acs_num_scans);
1434 	else
1435 		wpa_printf(MSG_DEBUG,
1436 			   "ACS: Re-try scanning attempt %d (%d / %d)",
1437 			   iface->acs_num_retries,
1438 			   iface->acs_num_completed_scans + 1,
1439 			   iface->conf->acs_num_scans);
1440 
1441 	ret = hostapd_driver_scan(iface->bss[0], &params);
1442 	os_free(params.freqs);
1443 
1444 	if (ret == -EBUSY) {
1445 		iface->acs_num_retries++;
1446 		if (iface->acs_num_retries >= ACS_SCAN_RETRY_MAX_COUNT) {
1447 			wpa_printf(MSG_ERROR,
1448 				   "ACS: Failed to request initial scan (all re-attempts failed)");
1449 			acs_fail(iface);
1450 			return -1;
1451 		}
1452 
1453 		wpa_printf(MSG_INFO,
1454 			   "Failed to request acs scan ret=%d (%s) - try to scan after %d seconds",
1455 			   ret, strerror(-ret), ACS_SCAN_RETRY_INTERVAL);
1456 		eloop_cancel_timeout(acs_scan_retry, iface, NULL);
1457 		eloop_register_timeout(ACS_SCAN_RETRY_INTERVAL, 0,
1458 				       acs_scan_retry, iface, NULL);
1459 		return 0;
1460 	}
1461 
1462 	if (ret < 0) {
1463 		wpa_printf(MSG_ERROR, "ACS: Failed to request initial scan");
1464 		acs_cleanup(iface);
1465 		return -1;
1466 	}
1467 
1468 	iface->scan_cb = acs_scan_complete;
1469 
1470 	return 0;
1471 }
1472 
1473 
1474 static void acs_scan_retry(void *eloop_data, void *user_data)
1475 {
1476 	struct hostapd_iface *iface = eloop_data;
1477 
1478 	if (acs_request_scan(iface)) {
1479 		wpa_printf(MSG_ERROR,
1480 			   "ACS: Failed to request re-try of initial scan");
1481 		acs_fail(iface);
1482 	}
1483 }
1484 
1485 
1486 enum hostapd_chan_status acs_init(struct hostapd_iface *iface)
1487 {
1488 	int err;
1489 
1490 	wpa_printf(MSG_INFO, "ACS: Automatic channel selection started, this may take a bit");
1491 
1492 	if (iface->drv_flags & WPA_DRIVER_FLAGS_ACS_OFFLOAD) {
1493 		wpa_printf(MSG_INFO, "ACS: Offloading to driver");
1494 
1495 		err = hostapd_drv_do_acs(iface->bss[0]);
1496 		if (err) {
1497 			if (err == 1)
1498 				return HOSTAPD_CHAN_INVALID_NO_IR;
1499 			return HOSTAPD_CHAN_INVALID;
1500 		}
1501 
1502 		return HOSTAPD_CHAN_ACS;
1503 	}
1504 
1505 	if (!iface->current_mode &&
1506 	    iface->conf->hw_mode != HOSTAPD_MODE_IEEE80211ANY)
1507 		return HOSTAPD_CHAN_INVALID;
1508 
1509 	acs_cleanup(iface);
1510 
1511 	if (acs_request_scan(iface) < 0)
1512 		return HOSTAPD_CHAN_INVALID;
1513 
1514 	hostapd_set_state(iface, HAPD_IFACE_ACS);
1515 	wpa_msg(iface->bss[0]->msg_ctx, MSG_INFO, ACS_EVENT_STARTED);
1516 
1517 	return HOSTAPD_CHAN_ACS;
1518 }
1519