xref: /freebsd/contrib/wpa/hostapd/hostapd.conf (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1##### hostapd configuration file ##############################################
2# Empty lines and lines starting with # are ignored
3
4# AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
5# management frames with the Host AP driver); wlan0 with many nl80211 drivers
6interface=wlan0
7
8# In case of atheros and nl80211 driver interfaces, an additional
9# configuration parameter, bridge, may be used to notify hostapd if the
10# interface is included in a bridge. This parameter is not used with Host AP
11# driver. If the bridge parameter is not set, the drivers will automatically
12# figure out the bridge interface (assuming sysfs is enabled and mounted to
13# /sys) and this parameter may not be needed.
14#
15# For nl80211, this parameter can be used to request the AP interface to be
16# added to the bridge automatically (brctl may refuse to do this before hostapd
17# has been started to change the interface mode). If needed, the bridge
18# interface is also created.
19#bridge=br0
20
21# Driver interface type (hostap/wired/none/nl80211/bsd);
22# default: hostap). nl80211 is used with all Linux mac80211 drivers.
23# Use driver=none if building hostapd as a standalone RADIUS server that does
24# not control any wireless/wired driver.
25# driver=hostap
26
27# Driver interface parameters (mainly for development testing use)
28# driver_params=<params>
29
30# hostapd event logger configuration
31#
32# Two output method: syslog and stdout (only usable if not forking to
33# background).
34#
35# Module bitfield (ORed bitfield of modules that will be logged; -1 = all
36# modules):
37# bit 0 (1) = IEEE 802.11
38# bit 1 (2) = IEEE 802.1X
39# bit 2 (4) = RADIUS
40# bit 3 (8) = WPA
41# bit 4 (16) = driver interface
42# bit 5 (32) = IAPP
43# bit 6 (64) = MLME
44#
45# Levels (minimum value for logged events):
46#  0 = verbose debugging
47#  1 = debugging
48#  2 = informational messages
49#  3 = notification
50#  4 = warning
51#
52logger_syslog=-1
53logger_syslog_level=2
54logger_stdout=-1
55logger_stdout_level=2
56
57# Interface for separate control program. If this is specified, hostapd
58# will create this directory and a UNIX domain socket for listening to requests
59# from external programs (CLI/GUI, etc.) for status information and
60# configuration. The socket file will be named based on the interface name, so
61# multiple hostapd processes/interfaces can be run at the same time if more
62# than one interface is used.
63# /var/run/hostapd is the recommended directory for sockets and by default,
64# hostapd_cli will use it when trying to connect with hostapd.
65ctrl_interface=/var/run/hostapd
66
67# Access control for the control interface can be configured by setting the
68# directory to allow only members of a group to use sockets. This way, it is
69# possible to run hostapd as root (since it needs to change network
70# configuration and open raw sockets) and still allow GUI/CLI components to be
71# run as non-root users. However, since the control interface can be used to
72# change the network configuration, this access needs to be protected in many
73# cases. By default, hostapd is configured to use gid 0 (root). If you
74# want to allow non-root users to use the contron interface, add a new group
75# and change this value to match with that group. Add users that should have
76# control interface access to this group.
77#
78# This variable can be a group name or gid.
79#ctrl_interface_group=wheel
80ctrl_interface_group=0
81
82
83##### IEEE 802.11 related configuration #######################################
84
85# SSID to be used in IEEE 802.11 management frames
86ssid=test
87# Alternative formats for configuring SSID
88# (double quoted string, hexdump, printf-escaped string)
89#ssid2="test"
90#ssid2=74657374
91#ssid2=P"hello\nthere"
92
93# UTF-8 SSID: Whether the SSID is to be interpreted using UTF-8 encoding
94#utf8_ssid=1
95
96# Country code (ISO/IEC 3166-1). Used to set regulatory domain.
97# Set as needed to indicate country in which device is operating.
98# This can limit available channels and transmit power.
99#country_code=US
100
101# Enable IEEE 802.11d. This advertises the country_code and the set of allowed
102# channels and transmit power levels based on the regulatory limits. The
103# country_code setting must be configured with the correct country for
104# IEEE 802.11d functions.
105# (default: 0 = disabled)
106#ieee80211d=1
107
108# Enable IEEE 802.11h. This enables radar detection and DFS support if
109# available. DFS support is required on outdoor 5 GHz channels in most countries
110# of the world. This can be used only with ieee80211d=1.
111# (default: 0 = disabled)
112#ieee80211h=1
113
114# Add Power Constraint element to Beacon and Probe Response frames
115# This config option adds Power Constraint element when applicable and Country
116# element is added. Power Constraint element is required by Transmit Power
117# Control. This can be used only with ieee80211d=1.
118# Valid values are 0..255.
119#local_pwr_constraint=3
120
121# Set Spectrum Management subfield in the Capability Information field.
122# This config option forces the Spectrum Management bit to be set. When this
123# option is not set, the value of the Spectrum Management bit depends on whether
124# DFS or TPC is required by regulatory authorities. This can be used only with
125# ieee80211d=1 and local_pwr_constraint configured.
126#spectrum_mgmt_required=1
127
128# Operation mode (a = IEEE 802.11a, b = IEEE 802.11b, g = IEEE 802.11g,
129# ad = IEEE 802.11ad (60 GHz); a/g options are used with IEEE 802.11n, too, to
130# specify band). When using ACS (see channel parameter), a special value "any"
131# can be used to indicate that any support band can be used. This special case
132# is currently supported only with drivers with which offloaded ACS is used.
133# Default: IEEE 802.11b
134hw_mode=g
135
136# Channel number (IEEE 802.11)
137# (default: 0, i.e., not set)
138# Please note that some drivers do not use this value from hostapd and the
139# channel will need to be configured separately with iwconfig.
140#
141# If CONFIG_ACS build option is enabled, the channel can be selected
142# automatically at run time by setting channel=acs_survey or channel=0, both of
143# which will enable the ACS survey based algorithm.
144channel=1
145
146# ACS tuning - Automatic Channel Selection
147# See: http://wireless.kernel.org/en/users/Documentation/acs
148#
149# You can customize the ACS survey algorithm with following variables:
150#
151# acs_num_scans requirement is 1..100 - number of scans to be performed that
152# are used to trigger survey data gathering of an underlying device driver.
153# Scans are passive and typically take a little over 100ms (depending on the
154# driver) on each available channel for given hw_mode. Increasing this value
155# means sacrificing startup time and gathering more data wrt channel
156# interference that may help choosing a better channel. This can also help fine
157# tune the ACS scan time in case a driver has different scan dwell times.
158#
159# acs_chan_bias is a space-separated list of <channel>:<bias> pairs. It can be
160# used to increase (or decrease) the likelihood of a specific channel to be
161# selected by the ACS algorithm. The total interference factor for each channel
162# gets multiplied by the specified bias value before finding the channel with
163# the lowest value. In other words, values between 0.0 and 1.0 can be used to
164# make a channel more likely to be picked while values larger than 1.0 make the
165# specified channel less likely to be picked. This can be used, e.g., to prefer
166# the commonly used 2.4 GHz band channels 1, 6, and 11 (which is the default
167# behavior on 2.4 GHz band if no acs_chan_bias parameter is specified).
168#
169# Defaults:
170#acs_num_scans=5
171#acs_chan_bias=1:0.8 6:0.8 11:0.8
172
173# Channel list restriction. This option allows hostapd to select one of the
174# provided channels when a channel should be automatically selected.
175# Channel list can be provided as range using hyphen ('-') or individual
176# channels can be specified by space (' ') seperated values
177# Default: all channels allowed in selected hw_mode
178#chanlist=100 104 108 112 116
179#chanlist=1 6 11-13
180
181# Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
182beacon_int=100
183
184# DTIM (delivery traffic information message) period (range 1..255):
185# number of beacons between DTIMs (1 = every beacon includes DTIM element)
186# (default: 2)
187dtim_period=2
188
189# Maximum number of stations allowed in station table. New stations will be
190# rejected after the station table is full. IEEE 802.11 has a limit of 2007
191# different association IDs, so this number should not be larger than that.
192# (default: 2007)
193max_num_sta=255
194
195# RTS/CTS threshold; 2347 = disabled (default); range 0..2347
196# If this field is not included in hostapd.conf, hostapd will not control
197# RTS threshold and 'iwconfig wlan# rts <val>' can be used to set it.
198rts_threshold=2347
199
200# Fragmentation threshold; 2346 = disabled (default); range 256..2346
201# If this field is not included in hostapd.conf, hostapd will not control
202# fragmentation threshold and 'iwconfig wlan# frag <val>' can be used to set
203# it.
204fragm_threshold=2346
205
206# Rate configuration
207# Default is to enable all rates supported by the hardware. This configuration
208# item allows this list be filtered so that only the listed rates will be left
209# in the list. If the list is empty, all rates are used. This list can have
210# entries that are not in the list of rates the hardware supports (such entries
211# are ignored). The entries in this list are in 100 kbps, i.e., 11 Mbps = 110.
212# If this item is present, at least one rate have to be matching with the rates
213# hardware supports.
214# default: use the most common supported rate setting for the selected
215# hw_mode (i.e., this line can be removed from configuration file in most
216# cases)
217#supported_rates=10 20 55 110 60 90 120 180 240 360 480 540
218
219# Basic rate set configuration
220# List of rates (in 100 kbps) that are included in the basic rate set.
221# If this item is not included, usually reasonable default set is used.
222#basic_rates=10 20
223#basic_rates=10 20 55 110
224#basic_rates=60 120 240
225
226# Short Preamble
227# This parameter can be used to enable optional use of short preamble for
228# frames sent at 2 Mbps, 5.5 Mbps, and 11 Mbps to improve network performance.
229# This applies only to IEEE 802.11b-compatible networks and this should only be
230# enabled if the local hardware supports use of short preamble. If any of the
231# associated STAs do not support short preamble, use of short preamble will be
232# disabled (and enabled when such STAs disassociate) dynamically.
233# 0 = do not allow use of short preamble (default)
234# 1 = allow use of short preamble
235#preamble=1
236
237# Station MAC address -based authentication
238# Please note that this kind of access control requires a driver that uses
239# hostapd to take care of management frame processing and as such, this can be
240# used with driver=hostap or driver=nl80211, but not with driver=atheros.
241# 0 = accept unless in deny list
242# 1 = deny unless in accept list
243# 2 = use external RADIUS server (accept/deny lists are searched first)
244macaddr_acl=0
245
246# Accept/deny lists are read from separate files (containing list of
247# MAC addresses, one per line). Use absolute path name to make sure that the
248# files can be read on SIGHUP configuration reloads.
249#accept_mac_file=/etc/hostapd.accept
250#deny_mac_file=/etc/hostapd.deny
251
252# IEEE 802.11 specifies two authentication algorithms. hostapd can be
253# configured to allow both of these or only one. Open system authentication
254# should be used with IEEE 802.1X.
255# Bit fields of allowed authentication algorithms:
256# bit 0 = Open System Authentication
257# bit 1 = Shared Key Authentication (requires WEP)
258auth_algs=3
259
260# Send empty SSID in beacons and ignore probe request frames that do not
261# specify full SSID, i.e., require stations to know SSID.
262# default: disabled (0)
263# 1 = send empty (length=0) SSID in beacon and ignore probe request for
264#     broadcast SSID
265# 2 = clear SSID (ASCII 0), but keep the original length (this may be required
266#     with some clients that do not support empty SSID) and ignore probe
267#     requests for broadcast SSID
268ignore_broadcast_ssid=0
269
270# Additional vendor specfic elements for Beacon and Probe Response frames
271# This parameter can be used to add additional vendor specific element(s) into
272# the end of the Beacon and Probe Response frames. The format for these
273# element(s) is a hexdump of the raw information elements (id+len+payload for
274# one or more elements)
275#vendor_elements=dd0411223301
276
277# TX queue parameters (EDCF / bursting)
278# tx_queue_<queue name>_<param>
279# queues: data0, data1, data2, data3, after_beacon, beacon
280#		(data0 is the highest priority queue)
281# parameters:
282#   aifs: AIFS (default 2)
283#   cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191,
284#	   16383, 32767)
285#   cwmax: cwMax (same values as cwMin, cwMax >= cwMin)
286#   burst: maximum length (in milliseconds with precision of up to 0.1 ms) for
287#          bursting
288#
289# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
290# These parameters are used by the access point when transmitting frames
291# to the clients.
292#
293# Low priority / AC_BK = background
294#tx_queue_data3_aifs=7
295#tx_queue_data3_cwmin=15
296#tx_queue_data3_cwmax=1023
297#tx_queue_data3_burst=0
298# Note: for IEEE 802.11b mode: cWmin=31 cWmax=1023 burst=0
299#
300# Normal priority / AC_BE = best effort
301#tx_queue_data2_aifs=3
302#tx_queue_data2_cwmin=15
303#tx_queue_data2_cwmax=63
304#tx_queue_data2_burst=0
305# Note: for IEEE 802.11b mode: cWmin=31 cWmax=127 burst=0
306#
307# High priority / AC_VI = video
308#tx_queue_data1_aifs=1
309#tx_queue_data1_cwmin=7
310#tx_queue_data1_cwmax=15
311#tx_queue_data1_burst=3.0
312# Note: for IEEE 802.11b mode: cWmin=15 cWmax=31 burst=6.0
313#
314# Highest priority / AC_VO = voice
315#tx_queue_data0_aifs=1
316#tx_queue_data0_cwmin=3
317#tx_queue_data0_cwmax=7
318#tx_queue_data0_burst=1.5
319# Note: for IEEE 802.11b mode: cWmin=7 cWmax=15 burst=3.3
320
321# 802.1D Tag (= UP) to AC mappings
322# WMM specifies following mapping of data frames to different ACs. This mapping
323# can be configured using Linux QoS/tc and sch_pktpri.o module.
324# 802.1D Tag	802.1D Designation	Access Category	WMM Designation
325# 1		BK			AC_BK		Background
326# 2		-			AC_BK		Background
327# 0		BE			AC_BE		Best Effort
328# 3		EE			AC_BE		Best Effort
329# 4		CL			AC_VI		Video
330# 5		VI			AC_VI		Video
331# 6		VO			AC_VO		Voice
332# 7		NC			AC_VO		Voice
333# Data frames with no priority information: AC_BE
334# Management frames: AC_VO
335# PS-Poll frames: AC_BE
336
337# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
338# for 802.11a or 802.11g networks
339# These parameters are sent to WMM clients when they associate.
340# The parameters will be used by WMM clients for frames transmitted to the
341# access point.
342#
343# note - txop_limit is in units of 32microseconds
344# note - acm is admission control mandatory flag. 0 = admission control not
345# required, 1 = mandatory
346# note - Here cwMin and cmMax are in exponent form. The actual cw value used
347# will be (2^n)-1 where n is the value given here. The allowed range for these
348# wmm_ac_??_{cwmin,cwmax} is 0..15 with cwmax >= cwmin.
349#
350wmm_enabled=1
351#
352# WMM-PS Unscheduled Automatic Power Save Delivery [U-APSD]
353# Enable this flag if U-APSD supported outside hostapd (eg., Firmware/driver)
354#uapsd_advertisement_enabled=1
355#
356# Low priority / AC_BK = background
357wmm_ac_bk_cwmin=4
358wmm_ac_bk_cwmax=10
359wmm_ac_bk_aifs=7
360wmm_ac_bk_txop_limit=0
361wmm_ac_bk_acm=0
362# Note: for IEEE 802.11b mode: cWmin=5 cWmax=10
363#
364# Normal priority / AC_BE = best effort
365wmm_ac_be_aifs=3
366wmm_ac_be_cwmin=4
367wmm_ac_be_cwmax=10
368wmm_ac_be_txop_limit=0
369wmm_ac_be_acm=0
370# Note: for IEEE 802.11b mode: cWmin=5 cWmax=7
371#
372# High priority / AC_VI = video
373wmm_ac_vi_aifs=2
374wmm_ac_vi_cwmin=3
375wmm_ac_vi_cwmax=4
376wmm_ac_vi_txop_limit=94
377wmm_ac_vi_acm=0
378# Note: for IEEE 802.11b mode: cWmin=4 cWmax=5 txop_limit=188
379#
380# Highest priority / AC_VO = voice
381wmm_ac_vo_aifs=2
382wmm_ac_vo_cwmin=2
383wmm_ac_vo_cwmax=3
384wmm_ac_vo_txop_limit=47
385wmm_ac_vo_acm=0
386# Note: for IEEE 802.11b mode: cWmin=3 cWmax=4 burst=102
387
388# Static WEP key configuration
389#
390# The key number to use when transmitting.
391# It must be between 0 and 3, and the corresponding key must be set.
392# default: not set
393#wep_default_key=0
394# The WEP keys to use.
395# A key may be a quoted string or unquoted hexadecimal digits.
396# The key length should be 5, 13, or 16 characters, or 10, 26, or 32
397# digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
398# 128-bit (152-bit) WEP is used.
399# Only the default key must be supplied; the others are optional.
400# default: not set
401#wep_key0=123456789a
402#wep_key1="vwxyz"
403#wep_key2=0102030405060708090a0b0c0d
404#wep_key3=".2.4.6.8.0.23"
405
406# Station inactivity limit
407#
408# If a station does not send anything in ap_max_inactivity seconds, an
409# empty data frame is sent to it in order to verify whether it is
410# still in range. If this frame is not ACKed, the station will be
411# disassociated and then deauthenticated. This feature is used to
412# clear station table of old entries when the STAs move out of the
413# range.
414#
415# The station can associate again with the AP if it is still in range;
416# this inactivity poll is just used as a nicer way of verifying
417# inactivity; i.e., client will not report broken connection because
418# disassociation frame is not sent immediately without first polling
419# the STA with a data frame.
420# default: 300 (i.e., 5 minutes)
421#ap_max_inactivity=300
422#
423# The inactivity polling can be disabled to disconnect stations based on
424# inactivity timeout so that idle stations are more likely to be disconnected
425# even if they are still in range of the AP. This can be done by setting
426# skip_inactivity_poll to 1 (default 0).
427#skip_inactivity_poll=0
428
429# Disassociate stations based on excessive transmission failures or other
430# indications of connection loss. This depends on the driver capabilities and
431# may not be available with all drivers.
432#disassoc_low_ack=1
433
434# Maximum allowed Listen Interval (how many Beacon periods STAs are allowed to
435# remain asleep). Default: 65535 (no limit apart from field size)
436#max_listen_interval=100
437
438# WDS (4-address frame) mode with per-station virtual interfaces
439# (only supported with driver=nl80211)
440# This mode allows associated stations to use 4-address frames to allow layer 2
441# bridging to be used.
442#wds_sta=1
443
444# If bridge parameter is set, the WDS STA interface will be added to the same
445# bridge by default. This can be overridden with the wds_bridge parameter to
446# use a separate bridge.
447#wds_bridge=wds-br0
448
449# Start the AP with beaconing disabled by default.
450#start_disabled=0
451
452# Client isolation can be used to prevent low-level bridging of frames between
453# associated stations in the BSS. By default, this bridging is allowed.
454#ap_isolate=1
455
456# BSS Load update period (in BUs)
457# This field is used to enable and configure adding a BSS Load element into
458# Beacon and Probe Response frames.
459#bss_load_update_period=50
460
461# Fixed BSS Load value for testing purposes
462# This field can be used to configure hostapd to add a fixed BSS Load element
463# into Beacon and Probe Response frames for testing purposes. The format is
464# <station count>:<channel utilization>:<available admission capacity>
465#bss_load_test=12:80:20000
466
467##### IEEE 802.11n related configuration ######################################
468
469# ieee80211n: Whether IEEE 802.11n (HT) is enabled
470# 0 = disabled (default)
471# 1 = enabled
472# Note: You will also need to enable WMM for full HT functionality.
473#ieee80211n=1
474
475# ht_capab: HT capabilities (list of flags)
476# LDPC coding capability: [LDPC] = supported
477# Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary
478#	channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz
479#	with secondary channel above the primary channel
480#	(20 MHz only if neither is set)
481#	Note: There are limits on which channels can be used with HT40- and
482#	HT40+. Following table shows the channels that may be available for
483#	HT40- and HT40+ use per IEEE 802.11n Annex J:
484#	freq		HT40-		HT40+
485#	2.4 GHz		5-13		1-7 (1-9 in Europe/Japan)
486#	5 GHz		40,48,56,64	36,44,52,60
487#	(depending on the location, not all of these channels may be available
488#	for use)
489#	Please note that 40 MHz channels may switch their primary and secondary
490#	channels if needed or creation of 40 MHz channel maybe rejected based
491#	on overlapping BSSes. These changes are done automatically when hostapd
492#	is setting up the 40 MHz channel.
493# Spatial Multiplexing (SM) Power Save: [SMPS-STATIC] or [SMPS-DYNAMIC]
494#	(SMPS disabled if neither is set)
495# HT-greenfield: [GF] (disabled if not set)
496# Short GI for 20 MHz: [SHORT-GI-20] (disabled if not set)
497# Short GI for 40 MHz: [SHORT-GI-40] (disabled if not set)
498# Tx STBC: [TX-STBC] (disabled if not set)
499# Rx STBC: [RX-STBC1] (one spatial stream), [RX-STBC12] (one or two spatial
500#	streams), or [RX-STBC123] (one, two, or three spatial streams); Rx STBC
501#	disabled if none of these set
502# HT-delayed Block Ack: [DELAYED-BA] (disabled if not set)
503# Maximum A-MSDU length: [MAX-AMSDU-7935] for 7935 octets (3839 octets if not
504#	set)
505# DSSS/CCK Mode in 40 MHz: [DSSS_CCK-40] = allowed (not allowed if not set)
506# 40 MHz intolerant [40-INTOLERANT] (not advertised if not set)
507# L-SIG TXOP protection support: [LSIG-TXOP-PROT] (disabled if not set)
508#ht_capab=[HT40-][SHORT-GI-20][SHORT-GI-40]
509
510# Require stations to support HT PHY (reject association if they do not)
511#require_ht=1
512
513# If set non-zero, require stations to perform scans of overlapping
514# channels to test for stations which would be affected by 40 MHz traffic.
515# This parameter sets the interval in seconds between these scans. Setting this
516# to non-zero allows 2.4 GHz band AP to move dynamically to a 40 MHz channel if
517# no co-existence issues with neighboring devices are found.
518#obss_interval=0
519
520##### IEEE 802.11ac related configuration #####################################
521
522# ieee80211ac: Whether IEEE 802.11ac (VHT) is enabled
523# 0 = disabled (default)
524# 1 = enabled
525# Note: You will also need to enable WMM for full VHT functionality.
526#ieee80211ac=1
527
528# vht_capab: VHT capabilities (list of flags)
529#
530# vht_max_mpdu_len: [MAX-MPDU-7991] [MAX-MPDU-11454]
531# Indicates maximum MPDU length
532# 0 = 3895 octets (default)
533# 1 = 7991 octets
534# 2 = 11454 octets
535# 3 = reserved
536#
537# supported_chan_width: [VHT160] [VHT160-80PLUS80]
538# Indicates supported Channel widths
539# 0 = 160 MHz & 80+80 channel widths are not supported (default)
540# 1 = 160 MHz channel width is supported
541# 2 = 160 MHz & 80+80 channel widths are supported
542# 3 = reserved
543#
544# Rx LDPC coding capability: [RXLDPC]
545# Indicates support for receiving LDPC coded pkts
546# 0 = Not supported (default)
547# 1 = Supported
548#
549# Short GI for 80 MHz: [SHORT-GI-80]
550# Indicates short GI support for reception of packets transmitted with TXVECTOR
551# params format equal to VHT and CBW = 80Mhz
552# 0 = Not supported (default)
553# 1 = Supported
554#
555# Short GI for 160 MHz: [SHORT-GI-160]
556# Indicates short GI support for reception of packets transmitted with TXVECTOR
557# params format equal to VHT and CBW = 160Mhz
558# 0 = Not supported (default)
559# 1 = Supported
560#
561# Tx STBC: [TX-STBC-2BY1]
562# Indicates support for the transmission of at least 2x1 STBC
563# 0 = Not supported (default)
564# 1 = Supported
565#
566# Rx STBC: [RX-STBC-1] [RX-STBC-12] [RX-STBC-123] [RX-STBC-1234]
567# Indicates support for the reception of PPDUs using STBC
568# 0 = Not supported (default)
569# 1 = support of one spatial stream
570# 2 = support of one and two spatial streams
571# 3 = support of one, two and three spatial streams
572# 4 = support of one, two, three and four spatial streams
573# 5,6,7 = reserved
574#
575# SU Beamformer Capable: [SU-BEAMFORMER]
576# Indicates support for operation as a single user beamformer
577# 0 = Not supported (default)
578# 1 = Supported
579#
580# SU Beamformee Capable: [SU-BEAMFORMEE]
581# Indicates support for operation as a single user beamformee
582# 0 = Not supported (default)
583# 1 = Supported
584#
585# Compressed Steering Number of Beamformer Antennas Supported:
586# [BF-ANTENNA-2] [BF-ANTENNA-3] [BF-ANTENNA-4]
587#   Beamformee's capability indicating the maximum number of beamformer
588#   antennas the beamformee can support when sending compressed beamforming
589#   feedback
590# If SU beamformer capable, set to maximum value minus 1
591# else reserved (default)
592#
593# Number of Sounding Dimensions:
594# [SOUNDING-DIMENSION-2] [SOUNDING-DIMENSION-3] [SOUNDING-DIMENSION-4]
595# Beamformer's capability indicating the maximum value of the NUM_STS parameter
596# in the TXVECTOR of a VHT NDP
597# If SU beamformer capable, set to maximum value minus 1
598# else reserved (default)
599#
600# MU Beamformer Capable: [MU-BEAMFORMER]
601# Indicates support for operation as an MU beamformer
602# 0 = Not supported or sent by Non-AP STA (default)
603# 1 = Supported
604#
605# VHT TXOP PS: [VHT-TXOP-PS]
606# Indicates whether or not the AP supports VHT TXOP Power Save Mode
607#  or whether or not the STA is in VHT TXOP Power Save mode
608# 0 = VHT AP doesnt support VHT TXOP PS mode (OR) VHT Sta not in VHT TXOP PS
609#  mode
610# 1 = VHT AP supports VHT TXOP PS mode (OR) VHT Sta is in VHT TXOP power save
611#  mode
612#
613# +HTC-VHT Capable: [HTC-VHT]
614# Indicates whether or not the STA supports receiving a VHT variant HT Control
615# field.
616# 0 = Not supported (default)
617# 1 = supported
618#
619# Maximum A-MPDU Length Exponent: [MAX-A-MPDU-LEN-EXP0]..[MAX-A-MPDU-LEN-EXP7]
620# Indicates the maximum length of A-MPDU pre-EOF padding that the STA can recv
621# This field is an integer in the range of 0 to 7.
622# The length defined by this field is equal to
623# 2 pow(13 + Maximum A-MPDU Length Exponent) -1 octets
624#
625# VHT Link Adaptation Capable: [VHT-LINK-ADAPT2] [VHT-LINK-ADAPT3]
626# Indicates whether or not the STA supports link adaptation using VHT variant
627# HT Control field
628# If +HTC-VHTcapable is 1
629#  0 = (no feedback) if the STA does not provide VHT MFB (default)
630#  1 = reserved
631#  2 = (Unsolicited) if the STA provides only unsolicited VHT MFB
632#  3 = (Both) if the STA can provide VHT MFB in response to VHT MRQ and if the
633#      STA provides unsolicited VHT MFB
634# Reserved if +HTC-VHTcapable is 0
635#
636# Rx Antenna Pattern Consistency: [RX-ANTENNA-PATTERN]
637# Indicates the possibility of Rx antenna pattern change
638# 0 = Rx antenna pattern might change during the lifetime of an association
639# 1 = Rx antenna pattern does not change during the lifetime of an association
640#
641# Tx Antenna Pattern Consistency: [TX-ANTENNA-PATTERN]
642# Indicates the possibility of Tx antenna pattern change
643# 0 = Tx antenna pattern might change during the lifetime of an association
644# 1 = Tx antenna pattern does not change during the lifetime of an association
645#vht_capab=[SHORT-GI-80][HTC-VHT]
646#
647# Require stations to support VHT PHY (reject association if they do not)
648#require_vht=1
649
650# 0 = 20 or 40 MHz operating Channel width
651# 1 = 80 MHz channel width
652# 2 = 160 MHz channel width
653# 3 = 80+80 MHz channel width
654#vht_oper_chwidth=1
655#
656# center freq = 5 GHz + (5 * index)
657# So index 42 gives center freq 5.210 GHz
658# which is channel 42 in 5G band
659#
660#vht_oper_centr_freq_seg0_idx=42
661#
662# center freq = 5 GHz + (5 * index)
663# So index 159 gives center freq 5.795 GHz
664# which is channel 159 in 5G band
665#
666#vht_oper_centr_freq_seg1_idx=159
667
668##### IEEE 802.1X-2004 related configuration ##################################
669
670# Require IEEE 802.1X authorization
671#ieee8021x=1
672
673# IEEE 802.1X/EAPOL version
674# hostapd is implemented based on IEEE Std 802.1X-2004 which defines EAPOL
675# version 2. However, there are many client implementations that do not handle
676# the new version number correctly (they seem to drop the frames completely).
677# In order to make hostapd interoperate with these clients, the version number
678# can be set to the older version (1) with this configuration value.
679#eapol_version=2
680
681# Optional displayable message sent with EAP Request-Identity. The first \0
682# in this string will be converted to ASCII-0 (nul). This can be used to
683# separate network info (comma separated list of attribute=value pairs); see,
684# e.g., RFC 4284.
685#eap_message=hello
686#eap_message=hello\0networkid=netw,nasid=foo,portid=0,NAIRealms=example.com
687
688# WEP rekeying (disabled if key lengths are not set or are set to 0)
689# Key lengths for default/broadcast and individual/unicast keys:
690# 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
691# 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
692#wep_key_len_broadcast=5
693#wep_key_len_unicast=5
694# Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
695#wep_rekey_period=300
696
697# EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
698# only broadcast keys are used)
699eapol_key_index_workaround=0
700
701# EAP reauthentication period in seconds (default: 3600 seconds; 0 = disable
702# reauthentication).
703#eap_reauth_period=3600
704
705# Use PAE group address (01:80:c2:00:00:03) instead of individual target
706# address when sending EAPOL frames with driver=wired. This is the most common
707# mechanism used in wired authentication, but it also requires that the port
708# is only used by one station.
709#use_pae_group_addr=1
710
711# EAP Re-authentication Protocol (ERP) authenticator (RFC 6696)
712#
713# Whether to initiate EAP authentication with EAP-Initiate/Re-auth-Start before
714# EAP-Identity/Request
715#erp_send_reauth_start=1
716#
717# Domain name for EAP-Initiate/Re-auth-Start. Omitted from the message if not
718# set (no local ER server). This is also used by the integrated EAP server if
719# ERP is enabled (eap_server_erp=1).
720#erp_domain=example.com
721
722##### Integrated EAP server ###################################################
723
724# Optionally, hostapd can be configured to use an integrated EAP server
725# to process EAP authentication locally without need for an external RADIUS
726# server. This functionality can be used both as a local authentication server
727# for IEEE 802.1X/EAPOL and as a RADIUS server for other devices.
728
729# Use integrated EAP server instead of external RADIUS authentication
730# server. This is also needed if hostapd is configured to act as a RADIUS
731# authentication server.
732eap_server=0
733
734# Path for EAP server user database
735# If SQLite support is included, this can be set to "sqlite:/path/to/sqlite.db"
736# to use SQLite database instead of a text file.
737#eap_user_file=/etc/hostapd.eap_user
738
739# CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
740#ca_cert=/etc/hostapd.ca.pem
741
742# Server certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
743#server_cert=/etc/hostapd.server.pem
744
745# Private key matching with the server certificate for EAP-TLS/PEAP/TTLS
746# This may point to the same file as server_cert if both certificate and key
747# are included in a single file. PKCS#12 (PFX) file (.p12/.pfx) can also be
748# used by commenting out server_cert and specifying the PFX file as the
749# private_key.
750#private_key=/etc/hostapd.server.prv
751
752# Passphrase for private key
753#private_key_passwd=secret passphrase
754
755# Server identity
756# EAP methods that provide mechanism for authenticated server identity delivery
757# use this value. If not set, "hostapd" is used as a default.
758#server_id=server.example.com
759
760# Enable CRL verification.
761# Note: hostapd does not yet support CRL downloading based on CDP. Thus, a
762# valid CRL signed by the CA is required to be included in the ca_cert file.
763# This can be done by using PEM format for CA certificate and CRL and
764# concatenating these into one file. Whenever CRL changes, hostapd needs to be
765# restarted to take the new CRL into use.
766# 0 = do not verify CRLs (default)
767# 1 = check the CRL of the user certificate
768# 2 = check all CRLs in the certificate path
769#check_crl=1
770
771# TLS Session Lifetime in seconds
772# This can be used to allow TLS sessions to be cached and resumed with an
773# abbreviated handshake when using EAP-TLS/TTLS/PEAP.
774# (default: 0 = session caching and resumption disabled)
775#tls_session_lifetime=3600
776
777# Cached OCSP stapling response (DER encoded)
778# If set, this file is sent as a certificate status response by the EAP server
779# if the EAP peer requests certificate status in the ClientHello message.
780# This cache file can be updated, e.g., by running following command
781# periodically to get an update from the OCSP responder:
782# openssl ocsp \
783#	-no_nonce \
784#	-CAfile /etc/hostapd.ca.pem \
785#	-issuer /etc/hostapd.ca.pem \
786#	-cert /etc/hostapd.server.pem \
787#	-url http://ocsp.example.com:8888/ \
788#	-respout /tmp/ocsp-cache.der
789#ocsp_stapling_response=/tmp/ocsp-cache.der
790
791# dh_file: File path to DH/DSA parameters file (in PEM format)
792# This is an optional configuration file for setting parameters for an
793# ephemeral DH key exchange. In most cases, the default RSA authentication does
794# not use this configuration. However, it is possible setup RSA to use
795# ephemeral DH key exchange. In addition, ciphers with DSA keys always use
796# ephemeral DH keys. This can be used to achieve forward secrecy. If the file
797# is in DSA parameters format, it will be automatically converted into DH
798# params. This parameter is required if anonymous EAP-FAST is used.
799# You can generate DH parameters file with OpenSSL, e.g.,
800# "openssl dhparam -out /etc/hostapd.dh.pem 2048"
801#dh_file=/etc/hostapd.dh.pem
802
803# OpenSSL cipher string
804#
805# This is an OpenSSL specific configuration option for configuring the default
806# ciphers. If not set, "DEFAULT:!EXP:!LOW" is used as the default.
807# See https://www.openssl.org/docs/apps/ciphers.html for OpenSSL documentation
808# on cipher suite configuration. This is applicable only if hostapd is built to
809# use OpenSSL.
810#openssl_ciphers=DEFAULT:!EXP:!LOW
811
812# Fragment size for EAP methods
813#fragment_size=1400
814
815# Finite cyclic group for EAP-pwd. Number maps to group of domain parameters
816# using the IANA repository for IKE (RFC 2409).
817#pwd_group=19
818
819# Configuration data for EAP-SIM database/authentication gateway interface.
820# This is a text string in implementation specific format. The example
821# implementation in eap_sim_db.c uses this as the UNIX domain socket name for
822# the HLR/AuC gateway (e.g., hlr_auc_gw). In this case, the path uses "unix:"
823# prefix. If hostapd is built with SQLite support (CONFIG_SQLITE=y in .config),
824# database file can be described with an optional db=<path> parameter.
825#eap_sim_db=unix:/tmp/hlr_auc_gw.sock
826#eap_sim_db=unix:/tmp/hlr_auc_gw.sock db=/tmp/hostapd.db
827
828# Encryption key for EAP-FAST PAC-Opaque values. This key must be a secret,
829# random value. It is configured as a 16-octet value in hex format. It can be
830# generated, e.g., with the following command:
831# od -tx1 -v -N16 /dev/random | colrm 1 8 | tr -d ' '
832#pac_opaque_encr_key=000102030405060708090a0b0c0d0e0f
833
834# EAP-FAST authority identity (A-ID)
835# A-ID indicates the identity of the authority that issues PACs. The A-ID
836# should be unique across all issuing servers. In theory, this is a variable
837# length field, but due to some existing implementations requiring A-ID to be
838# 16 octets in length, it is strongly recommended to use that length for the
839# field to provid interoperability with deployed peer implementations. This
840# field is configured in hex format.
841#eap_fast_a_id=101112131415161718191a1b1c1d1e1f
842
843# EAP-FAST authority identifier information (A-ID-Info)
844# This is a user-friendly name for the A-ID. For example, the enterprise name
845# and server name in a human-readable format. This field is encoded as UTF-8.
846#eap_fast_a_id_info=test server
847
848# Enable/disable different EAP-FAST provisioning modes:
849#0 = provisioning disabled
850#1 = only anonymous provisioning allowed
851#2 = only authenticated provisioning allowed
852#3 = both provisioning modes allowed (default)
853#eap_fast_prov=3
854
855# EAP-FAST PAC-Key lifetime in seconds (hard limit)
856#pac_key_lifetime=604800
857
858# EAP-FAST PAC-Key refresh time in seconds (soft limit on remaining hard
859# limit). The server will generate a new PAC-Key when this number of seconds
860# (or fewer) of the lifetime remains.
861#pac_key_refresh_time=86400
862
863# EAP-SIM and EAP-AKA protected success/failure indication using AT_RESULT_IND
864# (default: 0 = disabled).
865#eap_sim_aka_result_ind=1
866
867# Trusted Network Connect (TNC)
868# If enabled, TNC validation will be required before the peer is allowed to
869# connect. Note: This is only used with EAP-TTLS and EAP-FAST. If any other
870# EAP method is enabled, the peer will be allowed to connect without TNC.
871#tnc=1
872
873# EAP Re-authentication Protocol (ERP) - RFC 6696
874#
875# Whether to enable ERP on the EAP server.
876#eap_server_erp=1
877
878##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) #######################
879
880# Interface to be used for IAPP broadcast packets
881#iapp_interface=eth0
882
883
884##### RADIUS client configuration #############################################
885# for IEEE 802.1X with external Authentication Server, IEEE 802.11
886# authentication with external ACL for MAC addresses, and accounting
887
888# The own IP address of the access point (used as NAS-IP-Address)
889own_ip_addr=127.0.0.1
890
891# Optional NAS-Identifier string for RADIUS messages. When used, this should be
892# a unique to the NAS within the scope of the RADIUS server. For example, a
893# fully qualified domain name can be used here.
894# When using IEEE 802.11r, nas_identifier must be set and must be between 1 and
895# 48 octets long.
896#nas_identifier=ap.example.com
897
898# RADIUS client forced local IP address for the access point
899# Normally the local IP address is determined automatically based on configured
900# IP addresses, but this field can be used to force a specific address to be
901# used, e.g., when the device has multiple IP addresses.
902#radius_client_addr=127.0.0.1
903
904# RADIUS authentication server
905#auth_server_addr=127.0.0.1
906#auth_server_port=1812
907#auth_server_shared_secret=secret
908
909# RADIUS accounting server
910#acct_server_addr=127.0.0.1
911#acct_server_port=1813
912#acct_server_shared_secret=secret
913
914# Secondary RADIUS servers; to be used if primary one does not reply to
915# RADIUS packets. These are optional and there can be more than one secondary
916# server listed.
917#auth_server_addr=127.0.0.2
918#auth_server_port=1812
919#auth_server_shared_secret=secret2
920#
921#acct_server_addr=127.0.0.2
922#acct_server_port=1813
923#acct_server_shared_secret=secret2
924
925# Retry interval for trying to return to the primary RADIUS server (in
926# seconds). RADIUS client code will automatically try to use the next server
927# when the current server is not replying to requests. If this interval is set,
928# primary server will be retried after configured amount of time even if the
929# currently used secondary server is still working.
930#radius_retry_primary_interval=600
931
932
933# Interim accounting update interval
934# If this is set (larger than 0) and acct_server is configured, hostapd will
935# send interim accounting updates every N seconds. Note: if set, this overrides
936# possible Acct-Interim-Interval attribute in Access-Accept message. Thus, this
937# value should not be configured in hostapd.conf, if RADIUS server is used to
938# control the interim interval.
939# This value should not be less 600 (10 minutes) and must not be less than
940# 60 (1 minute).
941#radius_acct_interim_interval=600
942
943# Request Chargeable-User-Identity (RFC 4372)
944# This parameter can be used to configure hostapd to request CUI from the
945# RADIUS server by including Chargeable-User-Identity attribute into
946# Access-Request packets.
947#radius_request_cui=1
948
949# Dynamic VLAN mode; allow RADIUS authentication server to decide which VLAN
950# is used for the stations. This information is parsed from following RADIUS
951# attributes based on RFC 3580 and RFC 2868: Tunnel-Type (value 13 = VLAN),
952# Tunnel-Medium-Type (value 6 = IEEE 802), Tunnel-Private-Group-ID (value
953# VLANID as a string). Optionally, the local MAC ACL list (accept_mac_file) can
954# be used to set static client MAC address to VLAN ID mapping.
955# 0 = disabled (default)
956# 1 = option; use default interface if RADIUS server does not include VLAN ID
957# 2 = required; reject authentication if RADIUS server does not include VLAN ID
958#dynamic_vlan=0
959
960# VLAN interface list for dynamic VLAN mode is read from a separate text file.
961# This list is used to map VLAN ID from the RADIUS server to a network
962# interface. Each station is bound to one interface in the same way as with
963# multiple BSSIDs or SSIDs. Each line in this text file is defining a new
964# interface and the line must include VLAN ID and interface name separated by
965# white space (space or tab).
966# If no entries are provided by this file, the station is statically mapped
967# to <bss-iface>.<vlan-id> interfaces.
968#vlan_file=/etc/hostapd.vlan
969
970# Interface where 802.1q tagged packets should appear when a RADIUS server is
971# used to determine which VLAN a station is on.  hostapd creates a bridge for
972# each VLAN.  Then hostapd adds a VLAN interface (associated with the interface
973# indicated by 'vlan_tagged_interface') and the appropriate wireless interface
974# to the bridge.
975#vlan_tagged_interface=eth0
976
977# Bridge (prefix) to add the wifi and the tagged interface to. This gets the
978# VLAN ID appended. It defaults to brvlan%d if no tagged interface is given
979# and br%s.%d if a tagged interface is given, provided %s = tagged interface
980# and %d = VLAN ID.
981#vlan_bridge=brvlan
982
983# When hostapd creates a VLAN interface on vlan_tagged_interfaces, it needs
984# to know how to name it.
985# 0 = vlan<XXX>, e.g., vlan1
986# 1 = <vlan_tagged_interface>.<XXX>, e.g. eth0.1
987#vlan_naming=0
988
989# Arbitrary RADIUS attributes can be added into Access-Request and
990# Accounting-Request packets by specifying the contents of the attributes with
991# the following configuration parameters. There can be multiple of these to
992# add multiple attributes. These parameters can also be used to override some
993# of the attributes added automatically by hostapd.
994# Format: <attr_id>[:<syntax:value>]
995# attr_id: RADIUS attribute type (e.g., 26 = Vendor-Specific)
996# syntax: s = string (UTF-8), d = integer, x = octet string
997# value: attribute value in format indicated by the syntax
998# If syntax and value parts are omitted, a null value (single 0x00 octet) is
999# used.
1000#
1001# Additional Access-Request attributes
1002# radius_auth_req_attr=<attr_id>[:<syntax:value>]
1003# Examples:
1004# Operator-Name = "Operator"
1005#radius_auth_req_attr=126:s:Operator
1006# Service-Type = Framed (2)
1007#radius_auth_req_attr=6:d:2
1008# Connect-Info = "testing" (this overrides the automatically generated value)
1009#radius_auth_req_attr=77:s:testing
1010# Same Connect-Info value set as a hexdump
1011#radius_auth_req_attr=77:x:74657374696e67
1012
1013#
1014# Additional Accounting-Request attributes
1015# radius_acct_req_attr=<attr_id>[:<syntax:value>]
1016# Examples:
1017# Operator-Name = "Operator"
1018#radius_acct_req_attr=126:s:Operator
1019
1020# Dynamic Authorization Extensions (RFC 5176)
1021# This mechanism can be used to allow dynamic changes to user session based on
1022# commands from a RADIUS server (or some other disconnect client that has the
1023# needed session information). For example, Disconnect message can be used to
1024# request an associated station to be disconnected.
1025#
1026# This is disabled by default. Set radius_das_port to non-zero UDP port
1027# number to enable.
1028#radius_das_port=3799
1029#
1030# DAS client (the host that can send Disconnect/CoA requests) and shared secret
1031#radius_das_client=192.168.1.123 shared secret here
1032#
1033# DAS Event-Timestamp time window in seconds
1034#radius_das_time_window=300
1035#
1036# DAS require Event-Timestamp
1037#radius_das_require_event_timestamp=1
1038
1039##### RADIUS authentication server configuration ##############################
1040
1041# hostapd can be used as a RADIUS authentication server for other hosts. This
1042# requires that the integrated EAP server is also enabled and both
1043# authentication services are sharing the same configuration.
1044
1045# File name of the RADIUS clients configuration for the RADIUS server. If this
1046# commented out, RADIUS server is disabled.
1047#radius_server_clients=/etc/hostapd.radius_clients
1048
1049# The UDP port number for the RADIUS authentication server
1050#radius_server_auth_port=1812
1051
1052# The UDP port number for the RADIUS accounting server
1053# Commenting this out or setting this to 0 can be used to disable RADIUS
1054# accounting while still enabling RADIUS authentication.
1055#radius_server_acct_port=1813
1056
1057# Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API)
1058#radius_server_ipv6=1
1059
1060
1061##### WPA/IEEE 802.11i configuration ##########################################
1062
1063# Enable WPA. Setting this variable configures the AP to require WPA (either
1064# WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
1065# wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
1066# Instead of wpa_psk / wpa_passphrase, wpa_psk_radius might suffice.
1067# For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
1068# RADIUS authentication server must be configured, and WPA-EAP must be included
1069# in wpa_key_mgmt.
1070# This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
1071# and/or WPA2 (full IEEE 802.11i/RSN):
1072# bit0 = WPA
1073# bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
1074#wpa=1
1075
1076# WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
1077# secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
1078# (8..63 characters) that will be converted to PSK. This conversion uses SSID
1079# so the PSK changes when ASCII passphrase is used and the SSID is changed.
1080# wpa_psk (dot11RSNAConfigPSKValue)
1081# wpa_passphrase (dot11RSNAConfigPSKPassPhrase)
1082#wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
1083#wpa_passphrase=secret passphrase
1084
1085# Optionally, WPA PSKs can be read from a separate text file (containing list
1086# of (PSK,MAC address) pairs. This allows more than one PSK to be configured.
1087# Use absolute path name to make sure that the files can be read on SIGHUP
1088# configuration reloads.
1089#wpa_psk_file=/etc/hostapd.wpa_psk
1090
1091# Optionally, WPA passphrase can be received from RADIUS authentication server
1092# This requires macaddr_acl to be set to 2 (RADIUS)
1093# 0 = disabled (default)
1094# 1 = optional; use default passphrase/psk if RADIUS server does not include
1095#	Tunnel-Password
1096# 2 = required; reject authentication if RADIUS server does not include
1097#	Tunnel-Password
1098#wpa_psk_radius=0
1099
1100# Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
1101# entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
1102# added to enable SHA256-based stronger algorithms.
1103# (dot11RSNAConfigAuthenticationSuitesTable)
1104#wpa_key_mgmt=WPA-PSK WPA-EAP
1105
1106# Set of accepted cipher suites (encryption algorithms) for pairwise keys
1107# (unicast packets). This is a space separated list of algorithms:
1108# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
1109# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
1110# Group cipher suite (encryption algorithm for broadcast and multicast frames)
1111# is automatically selected based on this configuration. If only CCMP is
1112# allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
1113# TKIP will be used as the group cipher.
1114# (dot11RSNAConfigPairwiseCiphersTable)
1115# Pairwise cipher for WPA (v1) (default: TKIP)
1116#wpa_pairwise=TKIP CCMP
1117# Pairwise cipher for RSN/WPA2 (default: use wpa_pairwise value)
1118#rsn_pairwise=CCMP
1119
1120# Time interval for rekeying GTK (broadcast/multicast encryption keys) in
1121# seconds. (dot11RSNAConfigGroupRekeyTime)
1122#wpa_group_rekey=600
1123
1124# Rekey GTK when any STA that possesses the current GTK is leaving the BSS.
1125# (dot11RSNAConfigGroupRekeyStrict)
1126#wpa_strict_rekey=1
1127
1128# Time interval for rekeying GMK (master key used internally to generate GTKs
1129# (in seconds).
1130#wpa_gmk_rekey=86400
1131
1132# Maximum lifetime for PTK in seconds. This can be used to enforce rekeying of
1133# PTK to mitigate some attacks against TKIP deficiencies.
1134#wpa_ptk_rekey=600
1135
1136# Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up
1137# roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN
1138# authentication and key handshake before actually associating with a new AP.
1139# (dot11RSNAPreauthenticationEnabled)
1140#rsn_preauth=1
1141#
1142# Space separated list of interfaces from which pre-authentication frames are
1143# accepted (e.g., 'eth0' or 'eth0 wlan0wds0'. This list should include all
1144# interface that are used for connections to other APs. This could include
1145# wired interfaces and WDS links. The normal wireless data interface towards
1146# associated stations (e.g., wlan0) should not be added, since
1147# pre-authentication is only used with APs other than the currently associated
1148# one.
1149#rsn_preauth_interfaces=eth0
1150
1151# peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e) is
1152# allowed. This is only used with RSN/WPA2.
1153# 0 = disabled (default)
1154# 1 = enabled
1155#peerkey=1
1156
1157# ieee80211w: Whether management frame protection (MFP) is enabled
1158# 0 = disabled (default)
1159# 1 = optional
1160# 2 = required
1161#ieee80211w=0
1162
1163# Group management cipher suite
1164# Default: AES-128-CMAC (BIP)
1165# Other options (depending on driver support):
1166# BIP-GMAC-128
1167# BIP-GMAC-256
1168# BIP-CMAC-256
1169# Note: All the stations connecting to the BSS will also need to support the
1170# selected cipher. The default AES-128-CMAC is the only option that is commonly
1171# available in deployed devices.
1172#group_mgmt_cipher=AES-128-CMAC
1173
1174# Association SA Query maximum timeout (in TU = 1.024 ms; for MFP)
1175# (maximum time to wait for a SA Query response)
1176# dot11AssociationSAQueryMaximumTimeout, 1...4294967295
1177#assoc_sa_query_max_timeout=1000
1178
1179# Association SA Query retry timeout (in TU = 1.024 ms; for MFP)
1180# (time between two subsequent SA Query requests)
1181# dot11AssociationSAQueryRetryTimeout, 1...4294967295
1182#assoc_sa_query_retry_timeout=201
1183
1184# disable_pmksa_caching: Disable PMKSA caching
1185# This parameter can be used to disable caching of PMKSA created through EAP
1186# authentication. RSN preauthentication may still end up using PMKSA caching if
1187# it is enabled (rsn_preauth=1).
1188# 0 = PMKSA caching enabled (default)
1189# 1 = PMKSA caching disabled
1190#disable_pmksa_caching=0
1191
1192# okc: Opportunistic Key Caching (aka Proactive Key Caching)
1193# Allow PMK cache to be shared opportunistically among configured interfaces
1194# and BSSes (i.e., all configurations within a single hostapd process).
1195# 0 = disabled (default)
1196# 1 = enabled
1197#okc=1
1198
1199# SAE threshold for anti-clogging mechanism (dot11RSNASAEAntiCloggingThreshold)
1200# This parameter defines how many open SAE instances can be in progress at the
1201# same time before the anti-clogging mechanism is taken into use.
1202#sae_anti_clogging_threshold=5
1203
1204# Enabled SAE finite cyclic groups
1205# SAE implementation are required to support group 19 (ECC group defined over a
1206# 256-bit prime order field). All groups that are supported by the
1207# implementation are enabled by default. This configuration parameter can be
1208# used to specify a limited set of allowed groups. The group values are listed
1209# in the IANA registry:
1210# http://www.iana.org/assignments/ipsec-registry/ipsec-registry.xml#ipsec-registry-9
1211#sae_groups=19 20 21 25 26
1212
1213##### IEEE 802.11r configuration ##############################################
1214
1215# Mobility Domain identifier (dot11FTMobilityDomainID, MDID)
1216# MDID is used to indicate a group of APs (within an ESS, i.e., sharing the
1217# same SSID) between which a STA can use Fast BSS Transition.
1218# 2-octet identifier as a hex string.
1219#mobility_domain=a1b2
1220
1221# PMK-R0 Key Holder identifier (dot11FTR0KeyHolderID)
1222# 1 to 48 octet identifier.
1223# This is configured with nas_identifier (see RADIUS client section above).
1224
1225# Default lifetime of the PMK-RO in minutes; range 1..65535
1226# (dot11FTR0KeyLifetime)
1227#r0_key_lifetime=10000
1228
1229# PMK-R1 Key Holder identifier (dot11FTR1KeyHolderID)
1230# 6-octet identifier as a hex string.
1231#r1_key_holder=000102030405
1232
1233# Reassociation deadline in time units (TUs / 1.024 ms; range 1000..65535)
1234# (dot11FTReassociationDeadline)
1235#reassociation_deadline=1000
1236
1237# List of R0KHs in the same Mobility Domain
1238# format: <MAC address> <NAS Identifier> <128-bit key as hex string>
1239# This list is used to map R0KH-ID (NAS Identifier) to a destination MAC
1240# address when requesting PMK-R1 key from the R0KH that the STA used during the
1241# Initial Mobility Domain Association.
1242#r0kh=02:01:02:03:04:05 r0kh-1.example.com 000102030405060708090a0b0c0d0e0f
1243#r0kh=02:01:02:03:04:06 r0kh-2.example.com 00112233445566778899aabbccddeeff
1244# And so on.. One line per R0KH.
1245
1246# List of R1KHs in the same Mobility Domain
1247# format: <MAC address> <R1KH-ID> <128-bit key as hex string>
1248# This list is used to map R1KH-ID to a destination MAC address when sending
1249# PMK-R1 key from the R0KH. This is also the list of authorized R1KHs in the MD
1250# that can request PMK-R1 keys.
1251#r1kh=02:01:02:03:04:05 02:11:22:33:44:55 000102030405060708090a0b0c0d0e0f
1252#r1kh=02:01:02:03:04:06 02:11:22:33:44:66 00112233445566778899aabbccddeeff
1253# And so on.. One line per R1KH.
1254
1255# Whether PMK-R1 push is enabled at R0KH
1256# 0 = do not push PMK-R1 to all configured R1KHs (default)
1257# 1 = push PMK-R1 to all configured R1KHs whenever a new PMK-R0 is derived
1258#pmk_r1_push=1
1259
1260# Whether to enable FT-over-DS
1261# 0 = FT-over-DS disabled
1262# 1 = FT-over-DS enabled (default)
1263#ft_over_ds=1
1264
1265##### Neighbor table ##########################################################
1266# Maximum number of entries kept in AP table (either for neigbor table or for
1267# detecting Overlapping Legacy BSS Condition). The oldest entry will be
1268# removed when adding a new entry that would make the list grow over this
1269# limit. Note! WFA certification for IEEE 802.11g requires that OLBC is
1270# enabled, so this field should not be set to 0 when using IEEE 802.11g.
1271# default: 255
1272#ap_table_max_size=255
1273
1274# Number of seconds of no frames received after which entries may be deleted
1275# from the AP table. Since passive scanning is not usually performed frequently
1276# this should not be set to very small value. In addition, there is no
1277# guarantee that every scan cycle will receive beacon frames from the
1278# neighboring APs.
1279# default: 60
1280#ap_table_expiration_time=3600
1281
1282# Maximum number of stations to track on the operating channel
1283# This can be used to detect dualband capable stations before they have
1284# associated, e.g., to provide guidance on which colocated BSS to use.
1285# Default: 0 (disabled)
1286#track_sta_max_num=100
1287
1288# Maximum age of a station tracking entry in seconds
1289# Default: 180
1290#track_sta_max_age=180
1291
1292# Do not reply to group-addressed Probe Request from a station that was seen on
1293# another radio.
1294# Default: Disabled
1295#
1296# This can be used with enabled track_sta_max_num configuration on another
1297# interface controlled by the same hostapd process to restrict Probe Request
1298# frame handling from replying to group-addressed Probe Request frames from a
1299# station that has been detected to be capable of operating on another band,
1300# e.g., to try to reduce likelihood of the station selecting a 2.4 GHz BSS when
1301# the AP operates both a 2.4 GHz and 5 GHz BSS concurrently.
1302#
1303# Note: Enabling this can cause connectivity issues and increase latency for
1304# discovering the AP.
1305#no_probe_resp_if_seen_on=wlan1
1306
1307# Reject authentication from a station that was seen on another radio.
1308# Default: Disabled
1309#
1310# This can be used with enabled track_sta_max_num configuration on another
1311# interface controlled by the same hostapd process to reject authentication
1312# attempts from a station that has been detected to be capable of operating on
1313# another band, e.g., to try to reduce likelihood of the station selecting a
1314# 2.4 GHz BSS when the AP operates both a 2.4 GHz and 5 GHz BSS concurrently.
1315#
1316# Note: Enabling this can cause connectivity issues and increase latency for
1317# connecting with the AP.
1318#no_auth_if_seen_on=wlan1
1319
1320##### Wi-Fi Protected Setup (WPS) #############################################
1321
1322# WPS state
1323# 0 = WPS disabled (default)
1324# 1 = WPS enabled, not configured
1325# 2 = WPS enabled, configured
1326#wps_state=2
1327
1328# Whether to manage this interface independently from other WPS interfaces
1329# By default, a single hostapd process applies WPS operations to all configured
1330# interfaces. This parameter can be used to disable that behavior for a subset
1331# of interfaces. If this is set to non-zero for an interface, WPS commands
1332# issued on that interface do not apply to other interfaces and WPS operations
1333# performed on other interfaces do not affect this interface.
1334#wps_independent=0
1335
1336# AP can be configured into a locked state where new WPS Registrar are not
1337# accepted, but previously authorized Registrars (including the internal one)
1338# can continue to add new Enrollees.
1339#ap_setup_locked=1
1340
1341# Universally Unique IDentifier (UUID; see RFC 4122) of the device
1342# This value is used as the UUID for the internal WPS Registrar. If the AP
1343# is also using UPnP, this value should be set to the device's UPnP UUID.
1344# If not configured, UUID will be generated based on the local MAC address.
1345#uuid=12345678-9abc-def0-1234-56789abcdef0
1346
1347# Note: If wpa_psk_file is set, WPS is used to generate random, per-device PSKs
1348# that will be appended to the wpa_psk_file. If wpa_psk_file is not set, the
1349# default PSK (wpa_psk/wpa_passphrase) will be delivered to Enrollees. Use of
1350# per-device PSKs is recommended as the more secure option (i.e., make sure to
1351# set wpa_psk_file when using WPS with WPA-PSK).
1352
1353# When an Enrollee requests access to the network with PIN method, the Enrollee
1354# PIN will need to be entered for the Registrar. PIN request notifications are
1355# sent to hostapd ctrl_iface monitor. In addition, they can be written to a
1356# text file that could be used, e.g., to populate the AP administration UI with
1357# pending PIN requests. If the following variable is set, the PIN requests will
1358# be written to the configured file.
1359#wps_pin_requests=/var/run/hostapd_wps_pin_requests
1360
1361# Device Name
1362# User-friendly description of device; up to 32 octets encoded in UTF-8
1363#device_name=Wireless AP
1364
1365# Manufacturer
1366# The manufacturer of the device (up to 64 ASCII characters)
1367#manufacturer=Company
1368
1369# Model Name
1370# Model of the device (up to 32 ASCII characters)
1371#model_name=WAP
1372
1373# Model Number
1374# Additional device description (up to 32 ASCII characters)
1375#model_number=123
1376
1377# Serial Number
1378# Serial number of the device (up to 32 characters)
1379#serial_number=12345
1380
1381# Primary Device Type
1382# Used format: <categ>-<OUI>-<subcateg>
1383# categ = Category as an integer value
1384# OUI = OUI and type octet as a 4-octet hex-encoded value; 0050F204 for
1385#       default WPS OUI
1386# subcateg = OUI-specific Sub Category as an integer value
1387# Examples:
1388#   1-0050F204-1 (Computer / PC)
1389#   1-0050F204-2 (Computer / Server)
1390#   5-0050F204-1 (Storage / NAS)
1391#   6-0050F204-1 (Network Infrastructure / AP)
1392#device_type=6-0050F204-1
1393
1394# OS Version
1395# 4-octet operating system version number (hex string)
1396#os_version=01020300
1397
1398# Config Methods
1399# List of the supported configuration methods
1400# Available methods: usba ethernet label display ext_nfc_token int_nfc_token
1401#	nfc_interface push_button keypad virtual_display physical_display
1402#	virtual_push_button physical_push_button
1403#config_methods=label virtual_display virtual_push_button keypad
1404
1405# WPS capability discovery workaround for PBC with Windows 7
1406# Windows 7 uses incorrect way of figuring out AP's WPS capabilities by acting
1407# as a Registrar and using M1 from the AP. The config methods attribute in that
1408# message is supposed to indicate only the configuration method supported by
1409# the AP in Enrollee role, i.e., to add an external Registrar. For that case,
1410# PBC shall not be used and as such, the PushButton config method is removed
1411# from M1 by default. If pbc_in_m1=1 is included in the configuration file,
1412# the PushButton config method is left in M1 (if included in config_methods
1413# parameter) to allow Windows 7 to use PBC instead of PIN (e.g., from a label
1414# in the AP).
1415#pbc_in_m1=1
1416
1417# Static access point PIN for initial configuration and adding Registrars
1418# If not set, hostapd will not allow external WPS Registrars to control the
1419# access point. The AP PIN can also be set at runtime with hostapd_cli
1420# wps_ap_pin command. Use of temporary (enabled by user action) and random
1421# AP PIN is much more secure than configuring a static AP PIN here. As such,
1422# use of the ap_pin parameter is not recommended if the AP device has means for
1423# displaying a random PIN.
1424#ap_pin=12345670
1425
1426# Skip building of automatic WPS credential
1427# This can be used to allow the automatically generated Credential attribute to
1428# be replaced with pre-configured Credential(s).
1429#skip_cred_build=1
1430
1431# Additional Credential attribute(s)
1432# This option can be used to add pre-configured Credential attributes into M8
1433# message when acting as a Registrar. If skip_cred_build=1, this data will also
1434# be able to override the Credential attribute that would have otherwise been
1435# automatically generated based on network configuration. This configuration
1436# option points to an external file that much contain the WPS Credential
1437# attribute(s) as binary data.
1438#extra_cred=hostapd.cred
1439
1440# Credential processing
1441#   0 = process received credentials internally (default)
1442#   1 = do not process received credentials; just pass them over ctrl_iface to
1443#	external program(s)
1444#   2 = process received credentials internally and pass them over ctrl_iface
1445#	to external program(s)
1446# Note: With wps_cred_processing=1, skip_cred_build should be set to 1 and
1447# extra_cred be used to provide the Credential data for Enrollees.
1448#
1449# wps_cred_processing=1 will disabled automatic updates of hostapd.conf file
1450# both for Credential processing and for marking AP Setup Locked based on
1451# validation failures of AP PIN. An external program is responsible on updating
1452# the configuration appropriately in this case.
1453#wps_cred_processing=0
1454
1455# AP Settings Attributes for M7
1456# By default, hostapd generates the AP Settings Attributes for M7 based on the
1457# current configuration. It is possible to override this by providing a file
1458# with pre-configured attributes. This is similar to extra_cred file format,
1459# but the AP Settings attributes are not encapsulated in a Credential
1460# attribute.
1461#ap_settings=hostapd.ap_settings
1462
1463# WPS UPnP interface
1464# If set, support for external Registrars is enabled.
1465#upnp_iface=br0
1466
1467# Friendly Name (required for UPnP)
1468# Short description for end use. Should be less than 64 characters.
1469#friendly_name=WPS Access Point
1470
1471# Manufacturer URL (optional for UPnP)
1472#manufacturer_url=http://www.example.com/
1473
1474# Model Description (recommended for UPnP)
1475# Long description for end user. Should be less than 128 characters.
1476#model_description=Wireless Access Point
1477
1478# Model URL (optional for UPnP)
1479#model_url=http://www.example.com/model/
1480
1481# Universal Product Code (optional for UPnP)
1482# 12-digit, all-numeric code that identifies the consumer package.
1483#upc=123456789012
1484
1485# WPS RF Bands (a = 5G, b = 2.4G, g = 2.4G, ag = dual band, ad = 60 GHz)
1486# This value should be set according to RF band(s) supported by the AP if
1487# hw_mode is not set. For dual band dual concurrent devices, this needs to be
1488# set to ag to allow both RF bands to be advertized.
1489#wps_rf_bands=ag
1490
1491# NFC password token for WPS
1492# These parameters can be used to configure a fixed NFC password token for the
1493# AP. This can be generated, e.g., with nfc_pw_token from wpa_supplicant. When
1494# these parameters are used, the AP is assumed to be deployed with a NFC tag
1495# that includes the matching NFC password token (e.g., written based on the
1496# NDEF record from nfc_pw_token).
1497#
1498#wps_nfc_dev_pw_id: Device Password ID (16..65535)
1499#wps_nfc_dh_pubkey: Hexdump of DH Public Key
1500#wps_nfc_dh_privkey: Hexdump of DH Private Key
1501#wps_nfc_dev_pw: Hexdump of Device Password
1502
1503##### Wi-Fi Direct (P2P) ######################################################
1504
1505# Enable P2P Device management
1506#manage_p2p=1
1507
1508# Allow cross connection
1509#allow_cross_connection=1
1510
1511#### TDLS (IEEE 802.11z-2010) #################################################
1512
1513# Prohibit use of TDLS in this BSS
1514#tdls_prohibit=1
1515
1516# Prohibit use of TDLS Channel Switching in this BSS
1517#tdls_prohibit_chan_switch=1
1518
1519##### IEEE 802.11v-2011 #######################################################
1520
1521# Time advertisement
1522# 0 = disabled (default)
1523# 2 = UTC time at which the TSF timer is 0
1524#time_advertisement=2
1525
1526# Local time zone as specified in 8.3 of IEEE Std 1003.1-2004:
1527# stdoffset[dst[offset][,start[/time],end[/time]]]
1528#time_zone=EST5
1529
1530# WNM-Sleep Mode (extended sleep mode for stations)
1531# 0 = disabled (default)
1532# 1 = enabled (allow stations to use WNM-Sleep Mode)
1533#wnm_sleep_mode=1
1534
1535# BSS Transition Management
1536# 0 = disabled (default)
1537# 1 = enabled
1538#bss_transition=1
1539
1540# Proxy ARP
1541# 0 = disabled (default)
1542# 1 = enabled
1543#proxy_arp=1
1544
1545# IPv6 Neighbor Advertisement multicast-to-unicast conversion
1546# This can be used with Proxy ARP to allow multicast NAs to be forwarded to
1547# associated STAs using link layer unicast delivery.
1548# 0 = disabled (default)
1549# 1 = enabled
1550#na_mcast_to_ucast=0
1551
1552##### IEEE 802.11u-2011 #######################################################
1553
1554# Enable Interworking service
1555#interworking=1
1556
1557# Access Network Type
1558# 0 = Private network
1559# 1 = Private network with guest access
1560# 2 = Chargeable public network
1561# 3 = Free public network
1562# 4 = Personal device network
1563# 5 = Emergency services only network
1564# 14 = Test or experimental
1565# 15 = Wildcard
1566#access_network_type=0
1567
1568# Whether the network provides connectivity to the Internet
1569# 0 = Unspecified
1570# 1 = Network provides connectivity to the Internet
1571#internet=1
1572
1573# Additional Step Required for Access
1574# Note: This is only used with open network, i.e., ASRA shall ne set to 0 if
1575# RSN is used.
1576#asra=0
1577
1578# Emergency services reachable
1579#esr=0
1580
1581# Unauthenticated emergency service accessible
1582#uesa=0
1583
1584# Venue Info (optional)
1585# The available values are defined in IEEE Std 802.11u-2011, 7.3.1.34.
1586# Example values (group,type):
1587# 0,0 = Unspecified
1588# 1,7 = Convention Center
1589# 1,13 = Coffee Shop
1590# 2,0 = Unspecified Business
1591# 7,1  Private Residence
1592#venue_group=7
1593#venue_type=1
1594
1595# Homogeneous ESS identifier (optional; dot11HESSID)
1596# If set, this shall be identifical to one of the BSSIDs in the homogeneous
1597# ESS and this shall be set to the same value across all BSSs in homogeneous
1598# ESS.
1599#hessid=02:03:04:05:06:07
1600
1601# Roaming Consortium List
1602# Arbitrary number of Roaming Consortium OIs can be configured with each line
1603# adding a new OI to the list. The first three entries are available through
1604# Beacon and Probe Response frames. Any additional entry will be available only
1605# through ANQP queries. Each OI is between 3 and 15 octets and is configured as
1606# a hexstring.
1607#roaming_consortium=021122
1608#roaming_consortium=2233445566
1609
1610# Venue Name information
1611# This parameter can be used to configure one or more Venue Name Duples for
1612# Venue Name ANQP information. Each entry has a two or three character language
1613# code (ISO-639) separated by colon from the venue name string.
1614# Note that venue_group and venue_type have to be set for Venue Name
1615# information to be complete.
1616#venue_name=eng:Example venue
1617#venue_name=fin:Esimerkkipaikka
1618# Alternative format for language:value strings:
1619# (double quoted string, printf-escaped string)
1620#venue_name=P"eng:Example\nvenue"
1621
1622# Network Authentication Type
1623# This parameter indicates what type of network authentication is used in the
1624# network.
1625# format: <network auth type indicator (1-octet hex str)> [redirect URL]
1626# Network Authentication Type Indicator values:
1627# 00 = Acceptance of terms and conditions
1628# 01 = On-line enrollment supported
1629# 02 = http/https redirection
1630# 03 = DNS redirection
1631#network_auth_type=00
1632#network_auth_type=02http://www.example.com/redirect/me/here/
1633
1634# IP Address Type Availability
1635# format: <1-octet encoded value as hex str>
1636# (ipv4_type & 0x3f) << 2 | (ipv6_type & 0x3)
1637# ipv4_type:
1638# 0 = Address type not available
1639# 1 = Public IPv4 address available
1640# 2 = Port-restricted IPv4 address available
1641# 3 = Single NATed private IPv4 address available
1642# 4 = Double NATed private IPv4 address available
1643# 5 = Port-restricted IPv4 address and single NATed IPv4 address available
1644# 6 = Port-restricted IPv4 address and double NATed IPv4 address available
1645# 7 = Availability of the address type is not known
1646# ipv6_type:
1647# 0 = Address type not available
1648# 1 = Address type available
1649# 2 = Availability of the address type not known
1650#ipaddr_type_availability=14
1651
1652# Domain Name
1653# format: <variable-octet str>[,<variable-octet str>]
1654#domain_name=example.com,another.example.com,yet-another.example.com
1655
1656# 3GPP Cellular Network information
1657# format: <MCC1,MNC1>[;<MCC2,MNC2>][;...]
1658#anqp_3gpp_cell_net=244,91;310,026;234,56
1659
1660# NAI Realm information
1661# One or more realm can be advertised. Each nai_realm line adds a new realm to
1662# the set. These parameters provide information for stations using Interworking
1663# network selection to allow automatic connection to a network based on
1664# credentials.
1665# format: <encoding>,<NAI Realm(s)>[,<EAP Method 1>][,<EAP Method 2>][,...]
1666# encoding:
1667#	0 = Realm formatted in accordance with IETF RFC 4282
1668#	1 = UTF-8 formatted character string that is not formatted in
1669#	    accordance with IETF RFC 4282
1670# NAI Realm(s): Semi-colon delimited NAI Realm(s)
1671# EAP Method: <EAP Method>[:<[AuthParam1:Val1]>][<[AuthParam2:Val2]>][...]
1672# EAP Method types, see:
1673# http://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-4
1674# AuthParam (Table 8-188 in IEEE Std 802.11-2012):
1675# ID 2 = Non-EAP Inner Authentication Type
1676#	1 = PAP, 2 = CHAP, 3 = MSCHAP, 4 = MSCHAPV2
1677# ID 3 = Inner authentication EAP Method Type
1678# ID 5 = Credential Type
1679#	1 = SIM, 2 = USIM, 3 = NFC Secure Element, 4 = Hardware Token,
1680#	5 = Softoken, 6 = Certificate, 7 = username/password, 9 = Anonymous,
1681#	10 = Vendor Specific
1682#nai_realm=0,example.com;example.net
1683# EAP methods EAP-TLS with certificate and EAP-TTLS/MSCHAPv2 with
1684# username/password
1685#nai_realm=0,example.org,13[5:6],21[2:4][5:7]
1686
1687# QoS Map Set configuration
1688#
1689# Comma delimited QoS Map Set in decimal values
1690# (see IEEE Std 802.11-2012, 8.4.2.97)
1691#
1692# format:
1693# [<DSCP Exceptions[DSCP,UP]>,]<UP 0 range[low,high]>,...<UP 7 range[low,high]>
1694#
1695# There can be up to 21 optional DSCP Exceptions which are pairs of DSCP Value
1696# (0..63 or 255) and User Priority (0..7). This is followed by eight DSCP Range
1697# descriptions with DSCP Low Value and DSCP High Value pairs (0..63 or 255) for
1698# each UP starting from 0. If both low and high value are set to 255, the
1699# corresponding UP is not used.
1700#
1701# default: not set
1702#qos_map_set=53,2,22,6,8,15,0,7,255,255,16,31,32,39,255,255,40,47,255,255
1703
1704##### Hotspot 2.0 #############################################################
1705
1706# Enable Hotspot 2.0 support
1707#hs20=1
1708
1709# Disable Downstream Group-Addressed Forwarding (DGAF)
1710# This can be used to configure a network where no group-addressed frames are
1711# allowed. The AP will not forward any group-address frames to the stations and
1712# random GTKs are issued for each station to prevent associated stations from
1713# forging such frames to other stations in the BSS.
1714#disable_dgaf=1
1715
1716# OSU Server-Only Authenticated L2 Encryption Network
1717#osen=1
1718
1719# ANQP Domain ID (0..65535)
1720# An identifier for a set of APs in an ESS that share the same common ANQP
1721# information. 0 = Some of the ANQP information is unique to this AP (default).
1722#anqp_domain_id=1234
1723
1724# Deauthentication request timeout
1725# If the RADIUS server indicates that the station is not allowed to connect to
1726# the BSS/ESS, the AP can allow the station some time to download a
1727# notification page (URL included in the message). This parameter sets that
1728# timeout in seconds.
1729#hs20_deauth_req_timeout=60
1730
1731# Operator Friendly Name
1732# This parameter can be used to configure one or more Operator Friendly Name
1733# Duples. Each entry has a two or three character language code (ISO-639)
1734# separated by colon from the operator friendly name string.
1735#hs20_oper_friendly_name=eng:Example operator
1736#hs20_oper_friendly_name=fin:Esimerkkioperaattori
1737
1738# Connection Capability
1739# This can be used to advertise what type of IP traffic can be sent through the
1740# hotspot (e.g., due to firewall allowing/blocking protocols/ports).
1741# format: <IP Protocol>:<Port Number>:<Status>
1742# IP Protocol: 1 = ICMP, 6 = TCP, 17 = UDP
1743# Port Number: 0..65535
1744# Status: 0 = Closed, 1 = Open, 2 = Unknown
1745# Each hs20_conn_capab line is added to the list of advertised tuples.
1746#hs20_conn_capab=1:0:2
1747#hs20_conn_capab=6:22:1
1748#hs20_conn_capab=17:5060:0
1749
1750# WAN Metrics
1751# format: <WAN Info>:<DL Speed>:<UL Speed>:<DL Load>:<UL Load>:<LMD>
1752# WAN Info: B0-B1: Link Status, B2: Symmetric Link, B3: At Capabity
1753#    (encoded as two hex digits)
1754#    Link Status: 1 = Link up, 2 = Link down, 3 = Link in test state
1755# Downlink Speed: Estimate of WAN backhaul link current downlink speed in kbps;
1756#	1..4294967295; 0 = unknown
1757# Uplink Speed: Estimate of WAN backhaul link current uplink speed in kbps
1758#	1..4294967295; 0 = unknown
1759# Downlink Load: Current load of downlink WAN connection (scaled to 255 = 100%)
1760# Uplink Load: Current load of uplink WAN connection (scaled to 255 = 100%)
1761# Load Measurement Duration: Duration for measuring downlink/uplink load in
1762# tenths of a second (1..65535); 0 if load cannot be determined
1763#hs20_wan_metrics=01:8000:1000:80:240:3000
1764
1765# Operating Class Indication
1766# List of operating classes the BSSes in this ESS use. The Global operating
1767# classes in Table E-4 of IEEE Std 802.11-2012 Annex E define the values that
1768# can be used in this.
1769# format: hexdump of operating class octets
1770# for example, operating classes 81 (2.4 GHz channels 1-13) and 115 (5 GHz
1771# channels 36-48):
1772#hs20_operating_class=5173
1773
1774# OSU icons
1775# <Icon Width>:<Icon Height>:<Language code>:<Icon Type>:<Name>:<file path>
1776#hs20_icon=32:32:eng:image/png:icon32:/tmp/icon32.png
1777#hs20_icon=64:64:eng:image/png:icon64:/tmp/icon64.png
1778
1779# OSU SSID (see ssid2 for format description)
1780# This is the SSID used for all OSU connections to all the listed OSU Providers.
1781#osu_ssid="example"
1782
1783# OSU Providers
1784# One or more sets of following parameter. Each OSU provider is started by the
1785# mandatory osu_server_uri item. The other parameters add information for the
1786# last added OSU provider.
1787#
1788#osu_server_uri=https://example.com/osu/
1789#osu_friendly_name=eng:Example operator
1790#osu_friendly_name=fin:Esimerkkipalveluntarjoaja
1791#osu_nai=anonymous@example.com
1792#osu_method_list=1 0
1793#osu_icon=icon32
1794#osu_icon=icon64
1795#osu_service_desc=eng:Example services
1796#osu_service_desc=fin:Esimerkkipalveluja
1797#
1798#osu_server_uri=...
1799
1800##### Fast Session Transfer (FST) support #####################################
1801#
1802# The options in this section are only available when the build configuration
1803# option CONFIG_FST is set while compiling hostapd. They allow this interface
1804# to be a part of FST setup.
1805#
1806# FST is the transfer of a session from a channel to another channel, in the
1807# same or different frequency bands.
1808#
1809# For detals, see IEEE Std 802.11ad-2012.
1810
1811# Identifier of an FST Group the interface belongs to.
1812#fst_group_id=bond0
1813
1814# Interface priority within the FST Group.
1815# Announcing a higher priority for an interface means declaring it more
1816# preferable for FST switch.
1817# fst_priority is in 1..255 range with 1 being the lowest priority.
1818#fst_priority=100
1819
1820# Default LLT value for this interface in milliseconds. The value used in case
1821# no value provided during session setup. Default is 50 ms.
1822# fst_llt is in 1..4294967 range (due to spec limitation, see 10.32.2.2
1823# Transitioning between states).
1824#fst_llt=100
1825
1826##### TESTING OPTIONS #########################################################
1827#
1828# The options in this section are only available when the build configuration
1829# option CONFIG_TESTING_OPTIONS is set while compiling hostapd. They allow
1830# testing some scenarios that are otherwise difficult to reproduce.
1831#
1832# Ignore probe requests sent to hostapd with the given probability, must be a
1833# floating point number in the range [0, 1).
1834#ignore_probe_probability=0.0
1835#
1836# Ignore authentication frames with the given probability
1837#ignore_auth_probability=0.0
1838#
1839# Ignore association requests with the given probability
1840#ignore_assoc_probability=0.0
1841#
1842# Ignore reassociation requests with the given probability
1843#ignore_reassoc_probability=0.0
1844#
1845# Corrupt Key MIC in GTK rekey EAPOL-Key frames with the given probability
1846#corrupt_gtk_rekey_mic_probability=0.0
1847
1848##### Multiple BSSID support ##################################################
1849#
1850# Above configuration is using the default interface (wlan#, or multi-SSID VLAN
1851# interfaces). Other BSSIDs can be added by using separator 'bss' with
1852# default interface name to be allocated for the data packets of the new BSS.
1853#
1854# hostapd will generate BSSID mask based on the BSSIDs that are
1855# configured. hostapd will verify that dev_addr & MASK == dev_addr. If this is
1856# not the case, the MAC address of the radio must be changed before starting
1857# hostapd (ifconfig wlan0 hw ether <MAC addr>). If a BSSID is configured for
1858# every secondary BSS, this limitation is not applied at hostapd and other
1859# masks may be used if the driver supports them (e.g., swap the locally
1860# administered bit)
1861#
1862# BSSIDs are assigned in order to each BSS, unless an explicit BSSID is
1863# specified using the 'bssid' parameter.
1864# If an explicit BSSID is specified, it must be chosen such that it:
1865# - results in a valid MASK that covers it and the dev_addr
1866# - is not the same as the MAC address of the radio
1867# - is not the same as any other explicitly specified BSSID
1868#
1869# Not all drivers support multiple BSSes. The exact mechanism for determining
1870# the driver capabilities is driver specific. With the current (i.e., a recent
1871# kernel) drivers using nl80211, this information can be checked with "iw list"
1872# (search for "valid interface combinations").
1873#
1874# Please note that hostapd uses some of the values configured for the first BSS
1875# as the defaults for the following BSSes. However, it is recommended that all
1876# BSSes include explicit configuration of all relevant configuration items.
1877#
1878#bss=wlan0_0
1879#ssid=test2
1880# most of the above items can be used here (apart from radio interface specific
1881# items, like channel)
1882
1883#bss=wlan0_1
1884#bssid=00:13:10:95:fe:0b
1885# ...
1886