1 /* 2 * validator/val_sigcrypt.c - validator signature crypto functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with signature verification and checking, the 41 * bridging between RR wireformat data and crypto calls. 42 */ 43 #include "config.h" 44 #include "validator/val_sigcrypt.h" 45 #include "validator/val_secalgo.h" 46 #include "validator/validator.h" 47 #include "util/data/msgreply.h" 48 #include "util/data/msgparse.h" 49 #include "util/data/dname.h" 50 #include "util/rbtree.h" 51 #include "util/module.h" 52 #include "util/net_help.h" 53 #include "util/regional.h" 54 #include "util/config_file.h" 55 #include "sldns/keyraw.h" 56 #include "sldns/sbuffer.h" 57 #include "sldns/parseutil.h" 58 #include "sldns/wire2str.h" 59 60 #include <ctype.h> 61 #if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE) 62 #error "Need crypto library to do digital signature cryptography" 63 #endif 64 65 #ifdef HAVE_OPENSSL_ERR_H 66 #include <openssl/err.h> 67 #endif 68 69 #ifdef HAVE_OPENSSL_RAND_H 70 #include <openssl/rand.h> 71 #endif 72 73 #ifdef HAVE_OPENSSL_CONF_H 74 #include <openssl/conf.h> 75 #endif 76 77 #ifdef HAVE_OPENSSL_ENGINE_H 78 #include <openssl/engine.h> 79 #endif 80 81 /** return number of rrs in an rrset */ 82 static size_t 83 rrset_get_count(struct ub_packed_rrset_key* rrset) 84 { 85 struct packed_rrset_data* d = (struct packed_rrset_data*) 86 rrset->entry.data; 87 if(!d) return 0; 88 return d->count; 89 } 90 91 /** 92 * Get RR signature count 93 */ 94 static size_t 95 rrset_get_sigcount(struct ub_packed_rrset_key* k) 96 { 97 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 98 return d->rrsig_count; 99 } 100 101 /** 102 * Get signature keytag value 103 * @param k: rrset (with signatures) 104 * @param sig_idx: signature index. 105 * @return keytag or 0 if malformed rrsig. 106 */ 107 static uint16_t 108 rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx) 109 { 110 uint16_t t; 111 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 112 log_assert(sig_idx < d->rrsig_count); 113 if(d->rr_len[d->count + sig_idx] < 2+18) 114 return 0; 115 memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2); 116 return ntohs(t); 117 } 118 119 /** 120 * Get signature signing algorithm value 121 * @param k: rrset (with signatures) 122 * @param sig_idx: signature index. 123 * @return algo or 0 if malformed rrsig. 124 */ 125 static int 126 rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx) 127 { 128 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 129 log_assert(sig_idx < d->rrsig_count); 130 if(d->rr_len[d->count + sig_idx] < 2+3) 131 return 0; 132 return (int)d->rr_data[d->count + sig_idx][2+2]; 133 } 134 135 /** get rdata pointer and size */ 136 static void 137 rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata, 138 size_t* len) 139 { 140 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 141 log_assert(d && idx < (d->count + d->rrsig_count)); 142 *rdata = d->rr_data[idx]; 143 *len = d->rr_len[idx]; 144 } 145 146 uint16_t 147 dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx) 148 { 149 uint8_t* rdata; 150 size_t len; 151 uint16_t f; 152 rrset_get_rdata(k, idx, &rdata, &len); 153 if(len < 2+2) 154 return 0; 155 memmove(&f, rdata+2, 2); 156 f = ntohs(f); 157 return f; 158 } 159 160 /** 161 * Get DNSKEY protocol value from rdata 162 * @param k: DNSKEY rrset. 163 * @param idx: which key. 164 * @return protocol octet value 165 */ 166 static int 167 dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx) 168 { 169 uint8_t* rdata; 170 size_t len; 171 rrset_get_rdata(k, idx, &rdata, &len); 172 if(len < 2+4) 173 return 0; 174 return (int)rdata[2+2]; 175 } 176 177 int 178 dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx) 179 { 180 uint8_t* rdata; 181 size_t len; 182 rrset_get_rdata(k, idx, &rdata, &len); 183 if(len < 2+4) 184 return 0; 185 return (int)rdata[2+3]; 186 } 187 188 /** get public key rdata field from a dnskey RR and do some checks */ 189 static void 190 dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx, 191 unsigned char** pk, unsigned int* pklen) 192 { 193 uint8_t* rdata; 194 size_t len; 195 rrset_get_rdata(k, idx, &rdata, &len); 196 if(len < 2+5) { 197 *pk = NULL; 198 *pklen = 0; 199 return; 200 } 201 *pk = (unsigned char*)rdata+2+4; 202 *pklen = (unsigned)len-2-4; 203 } 204 205 int 206 ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx) 207 { 208 uint8_t* rdata; 209 size_t len; 210 rrset_get_rdata(k, idx, &rdata, &len); 211 if(len < 2+3) 212 return 0; 213 return (int)rdata[2+2]; 214 } 215 216 int 217 ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx) 218 { 219 uint8_t* rdata; 220 size_t len; 221 rrset_get_rdata(k, idx, &rdata, &len); 222 if(len < 2+4) 223 return 0; 224 return (int)rdata[2+3]; 225 } 226 227 uint16_t 228 ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 229 { 230 uint16_t t; 231 uint8_t* rdata; 232 size_t len; 233 rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len); 234 if(len < 2+2) 235 return 0; 236 memmove(&t, rdata+2, 2); 237 return ntohs(t); 238 } 239 240 /** 241 * Return pointer to the digest in a DS RR. 242 * @param k: DS rrset. 243 * @param idx: which DS. 244 * @param digest: digest data is returned. 245 * on error, this is NULL. 246 * @param len: length of digest is returned. 247 * on error, the length is 0. 248 */ 249 static void 250 ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest, 251 size_t* len) 252 { 253 uint8_t* rdata; 254 size_t rdlen; 255 rrset_get_rdata(k, idx, &rdata, &rdlen); 256 if(rdlen < 2+5) { 257 *digest = NULL; 258 *len = 0; 259 return; 260 } 261 *digest = rdata + 2 + 4; 262 *len = rdlen - 2 - 4; 263 } 264 265 /** 266 * Return size of DS digest according to its hash algorithm. 267 * @param k: DS rrset. 268 * @param idx: which DS. 269 * @return size in bytes of digest, or 0 if not supported. 270 */ 271 static size_t 272 ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx) 273 { 274 return ds_digest_size_supported(ds_get_digest_algo(k, idx)); 275 } 276 277 /** 278 * Create a DS digest for a DNSKEY entry. 279 * 280 * @param env: module environment. Uses scratch space. 281 * @param dnskey_rrset: DNSKEY rrset. 282 * @param dnskey_idx: index of RR in rrset. 283 * @param ds_rrset: DS rrset 284 * @param ds_idx: index of RR in DS rrset. 285 * @param digest: digest is returned in here (must be correctly sized). 286 * @return false on error. 287 */ 288 static int 289 ds_create_dnskey_digest(struct module_env* env, 290 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 291 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx, 292 uint8_t* digest) 293 { 294 sldns_buffer* b = env->scratch_buffer; 295 uint8_t* dnskey_rdata; 296 size_t dnskey_len; 297 rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len); 298 299 /* create digest source material in buffer 300 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA); 301 * DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */ 302 sldns_buffer_clear(b); 303 sldns_buffer_write(b, dnskey_rrset->rk.dname, 304 dnskey_rrset->rk.dname_len); 305 query_dname_tolower(sldns_buffer_begin(b)); 306 sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/ 307 sldns_buffer_flip(b); 308 309 return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx), 310 (unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b), 311 (unsigned char*)digest); 312 } 313 314 int ds_digest_match_dnskey(struct module_env* env, 315 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 316 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 317 { 318 uint8_t* ds; /* DS digest */ 319 size_t dslen; 320 uint8_t* digest; /* generated digest */ 321 size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx); 322 323 if(digestlen == 0) { 324 verbose(VERB_QUERY, "DS fail: not supported, or DS RR " 325 "format error"); 326 return 0; /* not supported, or DS RR format error */ 327 } 328 #ifndef USE_SHA1 329 if(fake_sha1 && ds_get_digest_algo(ds_rrset, ds_idx)==LDNS_SHA1) 330 return 1; 331 #endif 332 333 /* check digest length in DS with length from hash function */ 334 ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen); 335 if(!ds || dslen != digestlen) { 336 verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not " 337 "match each other"); 338 return 0; /* DS algorithm and digest do not match */ 339 } 340 341 digest = regional_alloc(env->scratch, digestlen); 342 if(!digest) { 343 verbose(VERB_QUERY, "DS fail: out of memory"); 344 return 0; /* mem error */ 345 } 346 if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset, 347 ds_idx, digest)) { 348 verbose(VERB_QUERY, "DS fail: could not calc key digest"); 349 return 0; /* digest algo failed */ 350 } 351 if(memcmp(digest, ds, dslen) != 0) { 352 verbose(VERB_QUERY, "DS fail: digest is different"); 353 return 0; /* digest different */ 354 } 355 return 1; 356 } 357 358 int 359 ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 360 size_t ds_idx) 361 { 362 return (ds_digest_size_algo(ds_rrset, ds_idx) != 0); 363 } 364 365 int 366 ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 367 size_t ds_idx) 368 { 369 return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx)); 370 } 371 372 uint16_t 373 dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx) 374 { 375 uint8_t* data; 376 size_t len; 377 rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len); 378 /* do not pass rdatalen to ldns */ 379 return sldns_calc_keytag_raw(data+2, len-2); 380 } 381 382 int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset, 383 size_t dnskey_idx) 384 { 385 return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset, 386 dnskey_idx)); 387 } 388 389 int dnskey_size_is_supported(struct ub_packed_rrset_key* dnskey_rrset, 390 size_t dnskey_idx) 391 { 392 #ifdef DEPRECATE_RSA_1024 393 uint8_t* rdata; 394 size_t len; 395 int alg = dnskey_get_algo(dnskey_rrset, dnskey_idx); 396 size_t keysize; 397 398 rrset_get_rdata(dnskey_rrset, dnskey_idx, &rdata, &len); 399 if(len < 2+4) 400 return 0; 401 keysize = sldns_rr_dnskey_key_size_raw(rdata+2+4, len-2-4, alg); 402 403 switch((sldns_algorithm)alg) { 404 case LDNS_RSAMD5: 405 case LDNS_RSASHA1: 406 case LDNS_RSASHA1_NSEC3: 407 case LDNS_RSASHA256: 408 case LDNS_RSASHA512: 409 /* reject RSA keys of 1024 bits and shorter */ 410 if(keysize <= 1024) 411 return 0; 412 break; 413 default: 414 break; 415 } 416 #else 417 (void)dnskey_rrset; (void)dnskey_idx; 418 #endif /* DEPRECATE_RSA_1024 */ 419 return 1; 420 } 421 422 int dnskeyset_size_is_supported(struct ub_packed_rrset_key* dnskey_rrset) 423 { 424 size_t i, num = rrset_get_count(dnskey_rrset); 425 for(i=0; i<num; i++) { 426 if(!dnskey_size_is_supported(dnskey_rrset, i)) 427 return 0; 428 } 429 return 1; 430 } 431 432 void algo_needs_init_dnskey_add(struct algo_needs* n, 433 struct ub_packed_rrset_key* dnskey, uint8_t* sigalg) 434 { 435 uint8_t algo; 436 size_t i, total = n->num; 437 size_t num = rrset_get_count(dnskey); 438 439 for(i=0; i<num; i++) { 440 algo = (uint8_t)dnskey_get_algo(dnskey, i); 441 if(!dnskey_algo_id_is_supported((int)algo)) 442 continue; 443 if(n->needs[algo] == 0) { 444 n->needs[algo] = 1; 445 sigalg[total] = algo; 446 total++; 447 } 448 } 449 sigalg[total] = 0; 450 n->num = total; 451 } 452 453 void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg) 454 { 455 uint8_t algo; 456 size_t total = 0; 457 458 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 459 while( (algo=*sigalg++) != 0) { 460 log_assert(dnskey_algo_id_is_supported((int)algo)); 461 log_assert(n->needs[algo] == 0); 462 n->needs[algo] = 1; 463 total++; 464 } 465 n->num = total; 466 } 467 468 void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds, 469 int fav_ds_algo, uint8_t* sigalg) 470 { 471 uint8_t algo; 472 size_t i, total = 0; 473 size_t num = rrset_get_count(ds); 474 475 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 476 for(i=0; i<num; i++) { 477 if(ds_get_digest_algo(ds, i) != fav_ds_algo) 478 continue; 479 algo = (uint8_t)ds_get_key_algo(ds, i); 480 if(!dnskey_algo_id_is_supported((int)algo)) 481 continue; 482 log_assert(algo != 0); /* we do not support 0 and is EOS */ 483 if(n->needs[algo] == 0) { 484 n->needs[algo] = 1; 485 sigalg[total] = algo; 486 total++; 487 } 488 } 489 sigalg[total] = 0; 490 n->num = total; 491 } 492 493 int algo_needs_set_secure(struct algo_needs* n, uint8_t algo) 494 { 495 if(n->needs[algo]) { 496 n->needs[algo] = 0; 497 n->num --; 498 if(n->num == 0) /* done! */ 499 return 1; 500 } 501 return 0; 502 } 503 504 void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo) 505 { 506 if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */ 507 } 508 509 size_t algo_needs_num_missing(struct algo_needs* n) 510 { 511 return n->num; 512 } 513 514 int algo_needs_missing(struct algo_needs* n) 515 { 516 int i; 517 /* first check if a needed algo was bogus - report that */ 518 for(i=0; i<ALGO_NEEDS_MAX; i++) 519 if(n->needs[i] == 2) 520 return 0; 521 /* now check which algo is missing */ 522 for(i=0; i<ALGO_NEEDS_MAX; i++) 523 if(n->needs[i] == 1) 524 return i; 525 return 0; 526 } 527 528 static enum sec_status 529 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve, 530 time_t now, struct ub_packed_rrset_key* rrset, 531 struct ub_packed_rrset_key* dnskey, size_t sig_idx, 532 struct rbtree_type** sortree, 533 char** reason, sldns_ede_code *reason_bogus, 534 sldns_pkt_section section, struct module_qstate* qstate); 535 536 enum sec_status 537 dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve, 538 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 539 uint8_t* sigalg, char** reason, sldns_ede_code *reason_bogus, 540 sldns_pkt_section section, struct module_qstate* qstate) 541 { 542 enum sec_status sec; 543 size_t i, num; 544 rbtree_type* sortree = NULL; 545 /* make sure that for all DNSKEY algorithms there are valid sigs */ 546 struct algo_needs needs; 547 int alg; 548 549 num = rrset_get_sigcount(rrset); 550 if(num == 0) { 551 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 552 "signatures"); 553 *reason = "no signatures"; 554 if(reason_bogus) 555 *reason_bogus = LDNS_EDE_RRSIGS_MISSING; 556 return sec_status_bogus; 557 } 558 559 if(sigalg) { 560 algo_needs_init_list(&needs, sigalg); 561 if(algo_needs_num_missing(&needs) == 0) { 562 verbose(VERB_QUERY, "zone has no known algorithms"); 563 *reason = "zone has no known algorithms"; 564 if(reason_bogus) 565 *reason_bogus = LDNS_EDE_UNSUPPORTED_DNSKEY_ALG; 566 return sec_status_insecure; 567 } 568 } 569 for(i=0; i<num; i++) { 570 sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset, 571 dnskey, i, &sortree, reason, reason_bogus, 572 section, qstate); 573 /* see which algorithm has been fixed up */ 574 if(sec == sec_status_secure) { 575 if(!sigalg) 576 return sec; /* done! */ 577 else if(algo_needs_set_secure(&needs, 578 (uint8_t)rrset_get_sig_algo(rrset, i))) 579 return sec; /* done! */ 580 } else if(sigalg && sec == sec_status_bogus) { 581 algo_needs_set_bogus(&needs, 582 (uint8_t)rrset_get_sig_algo(rrset, i)); 583 } 584 } 585 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) { 586 verbose(VERB_ALGO, "rrset failed to verify: " 587 "no valid signatures for %d algorithms", 588 (int)algo_needs_num_missing(&needs)); 589 algo_needs_reason(env, alg, reason, "no signatures"); 590 } else { 591 verbose(VERB_ALGO, "rrset failed to verify: " 592 "no valid signatures"); 593 } 594 return sec_status_bogus; 595 } 596 597 void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s) 598 { 599 char buf[256]; 600 sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg); 601 if(t&&t->name) 602 snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name); 603 else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s, 604 (unsigned)alg); 605 *reason = regional_strdup(env->scratch, buf); 606 if(!*reason) 607 *reason = s; 608 } 609 610 enum sec_status 611 dnskey_verify_rrset(struct module_env* env, struct val_env* ve, 612 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 613 size_t dnskey_idx, char** reason, sldns_ede_code *reason_bogus, 614 sldns_pkt_section section, struct module_qstate* qstate) 615 { 616 enum sec_status sec; 617 size_t i, num, numchecked = 0; 618 rbtree_type* sortree = NULL; 619 int buf_canon = 0; 620 uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx); 621 int algo = dnskey_get_algo(dnskey, dnskey_idx); 622 623 num = rrset_get_sigcount(rrset); 624 if(num == 0) { 625 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 626 "signatures"); 627 *reason = "no signatures"; 628 if(reason_bogus) 629 *reason_bogus = LDNS_EDE_RRSIGS_MISSING; 630 return sec_status_bogus; 631 } 632 for(i=0; i<num; i++) { 633 /* see if sig matches keytag and algo */ 634 if(algo != rrset_get_sig_algo(rrset, i) || 635 tag != rrset_get_sig_keytag(rrset, i)) 636 continue; 637 buf_canon = 0; 638 sec = dnskey_verify_rrset_sig(env->scratch, 639 env->scratch_buffer, ve, *env->now, rrset, 640 dnskey, dnskey_idx, i, &sortree, &buf_canon, reason, 641 reason_bogus, section, qstate); 642 if(sec == sec_status_secure) 643 return sec; 644 numchecked ++; 645 } 646 verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus"); 647 if(!numchecked) *reason = "signature missing"; 648 return sec_status_bogus; 649 } 650 651 static enum sec_status 652 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve, 653 time_t now, struct ub_packed_rrset_key* rrset, 654 struct ub_packed_rrset_key* dnskey, size_t sig_idx, 655 struct rbtree_type** sortree, 656 char** reason, sldns_ede_code *reason_bogus, 657 sldns_pkt_section section, struct module_qstate* qstate) 658 { 659 /* find matching keys and check them */ 660 enum sec_status sec = sec_status_bogus; 661 uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx); 662 int algo = rrset_get_sig_algo(rrset, sig_idx); 663 size_t i, num = rrset_get_count(dnskey); 664 size_t numchecked = 0; 665 int buf_canon = 0; 666 verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo); 667 if(!dnskey_algo_id_is_supported(algo)) { 668 if(reason_bogus) 669 *reason_bogus = LDNS_EDE_UNSUPPORTED_DNSKEY_ALG; 670 verbose(VERB_QUERY, "verify sig: unknown algorithm"); 671 return sec_status_insecure; 672 } 673 674 for(i=0; i<num; i++) { 675 /* see if key matches keytag and algo */ 676 if(algo != dnskey_get_algo(dnskey, i) || 677 tag != dnskey_calc_keytag(dnskey, i)) 678 continue; 679 numchecked ++; 680 681 /* see if key verifies */ 682 sec = dnskey_verify_rrset_sig(env->scratch, 683 env->scratch_buffer, ve, now, rrset, dnskey, i, 684 sig_idx, sortree, &buf_canon, reason, reason_bogus, 685 section, qstate); 686 if(sec == sec_status_secure) 687 return sec; 688 } 689 if(numchecked == 0) { 690 *reason = "signatures from unknown keys"; 691 if(reason_bogus) 692 *reason_bogus = LDNS_EDE_DNSKEY_MISSING; 693 verbose(VERB_QUERY, "verify: could not find appropriate key"); 694 return sec_status_bogus; 695 } 696 return sec_status_bogus; 697 } 698 699 /** 700 * RR entries in a canonical sorted tree of RRs 701 */ 702 struct canon_rr { 703 /** rbtree node, key is this structure */ 704 rbnode_type node; 705 /** rrset the RR is in */ 706 struct ub_packed_rrset_key* rrset; 707 /** which RR in the rrset */ 708 size_t rr_idx; 709 }; 710 711 /** 712 * Compare two RR for canonical order, in a field-style sweep. 713 * @param d: rrset data 714 * @param desc: ldns wireformat descriptor. 715 * @param i: first RR to compare 716 * @param j: first RR to compare 717 * @return comparison code. 718 */ 719 static int 720 canonical_compare_byfield(struct packed_rrset_data* d, 721 const sldns_rr_descriptor* desc, size_t i, size_t j) 722 { 723 /* sweep across rdata, keep track of some state: 724 * which rr field, and bytes left in field. 725 * current position in rdata, length left. 726 * are we in a dname, length left in a label. 727 */ 728 int wfi = -1; /* current wireformat rdata field (rdf) */ 729 int wfj = -1; 730 uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */ 731 uint8_t* dj = d->rr_data[j]+2; 732 size_t ilen = d->rr_len[i]-2; /* length left in rdata */ 733 size_t jlen = d->rr_len[j]-2; 734 int dname_i = 0; /* true if these bytes are part of a name */ 735 int dname_j = 0; 736 size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/ 737 size_t lablen_j = 0; /* otherwise remaining length of rdf or label */ 738 int dname_num_i = (int)desc->_dname_count; /* decreased at root label */ 739 int dname_num_j = (int)desc->_dname_count; 740 741 /* loop while there are rdata bytes available for both rrs, 742 * and still some lowercasing needs to be done; either the dnames 743 * have not been reached yet, or they are currently being processed */ 744 while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) { 745 /* compare these two bytes */ 746 /* lowercase if in a dname and not a label length byte */ 747 if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 748 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj) 749 ) { 750 if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 751 < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)) 752 return -1; 753 return 1; 754 } 755 ilen--; 756 jlen--; 757 /* bytes are equal */ 758 759 /* advance field i */ 760 /* lablen 0 means that this byte is the first byte of the 761 * next rdata field; inspect this rdata field and setup 762 * to process the rest of this rdata field. 763 * The reason to first read the byte, then setup the rdf, 764 * is that we are then sure the byte is available and short 765 * rdata is handled gracefully (even if it is a formerr). */ 766 if(lablen_i == 0) { 767 if(dname_i) { 768 /* scan this dname label */ 769 /* capture length to lowercase */ 770 lablen_i = (size_t)*di; 771 if(lablen_i == 0) { 772 /* end root label */ 773 dname_i = 0; 774 dname_num_i--; 775 /* if dname num is 0, then the 776 * remainder is binary only */ 777 if(dname_num_i == 0) 778 lablen_i = ilen; 779 } 780 } else { 781 /* scan this rdata field */ 782 wfi++; 783 if(desc->_wireformat[wfi] 784 == LDNS_RDF_TYPE_DNAME) { 785 dname_i = 1; 786 lablen_i = (size_t)*di; 787 if(lablen_i == 0) { 788 dname_i = 0; 789 dname_num_i--; 790 if(dname_num_i == 0) 791 lablen_i = ilen; 792 } 793 } else if(desc->_wireformat[wfi] 794 == LDNS_RDF_TYPE_STR) 795 lablen_i = (size_t)*di; 796 else lablen_i = get_rdf_size( 797 desc->_wireformat[wfi]) - 1; 798 } 799 } else lablen_i--; 800 801 /* advance field j; same as for i */ 802 if(lablen_j == 0) { 803 if(dname_j) { 804 lablen_j = (size_t)*dj; 805 if(lablen_j == 0) { 806 dname_j = 0; 807 dname_num_j--; 808 if(dname_num_j == 0) 809 lablen_j = jlen; 810 } 811 } else { 812 wfj++; 813 if(desc->_wireformat[wfj] 814 == LDNS_RDF_TYPE_DNAME) { 815 dname_j = 1; 816 lablen_j = (size_t)*dj; 817 if(lablen_j == 0) { 818 dname_j = 0; 819 dname_num_j--; 820 if(dname_num_j == 0) 821 lablen_j = jlen; 822 } 823 } else if(desc->_wireformat[wfj] 824 == LDNS_RDF_TYPE_STR) 825 lablen_j = (size_t)*dj; 826 else lablen_j = get_rdf_size( 827 desc->_wireformat[wfj]) - 1; 828 } 829 } else lablen_j--; 830 di++; 831 dj++; 832 } 833 /* end of the loop; because we advanced byte by byte; now we have 834 * that the rdata has ended, or that there is a binary remainder */ 835 /* shortest first */ 836 if(ilen == 0 && jlen == 0) 837 return 0; 838 if(ilen == 0) 839 return -1; 840 if(jlen == 0) 841 return 1; 842 /* binary remainder, capture comparison in wfi variable */ 843 if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0) 844 return wfi; 845 if(ilen < jlen) 846 return -1; 847 if(jlen < ilen) 848 return 1; 849 return 0; 850 } 851 852 /** 853 * Compare two RRs in the same RRset and determine their relative 854 * canonical order. 855 * @param rrset: the rrset in which to perform compares. 856 * @param i: first RR to compare 857 * @param j: first RR to compare 858 * @return 0 if RR i== RR j, -1 if <, +1 if >. 859 */ 860 static int 861 canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j) 862 { 863 struct packed_rrset_data* d = (struct packed_rrset_data*) 864 rrset->entry.data; 865 const sldns_rr_descriptor* desc; 866 uint16_t type = ntohs(rrset->rk.type); 867 size_t minlen; 868 int c; 869 870 if(i==j) 871 return 0; 872 873 switch(type) { 874 /* These RR types have only a name as RDATA. 875 * This name has to be canonicalized.*/ 876 case LDNS_RR_TYPE_NS: 877 case LDNS_RR_TYPE_MD: 878 case LDNS_RR_TYPE_MF: 879 case LDNS_RR_TYPE_CNAME: 880 case LDNS_RR_TYPE_MB: 881 case LDNS_RR_TYPE_MG: 882 case LDNS_RR_TYPE_MR: 883 case LDNS_RR_TYPE_PTR: 884 case LDNS_RR_TYPE_DNAME: 885 /* the wireread function has already checked these 886 * dname's for correctness, and this double checks */ 887 if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) || 888 !dname_valid(d->rr_data[j]+2, d->rr_len[j]-2)) 889 return 0; 890 return query_dname_compare(d->rr_data[i]+2, 891 d->rr_data[j]+2); 892 893 /* These RR types have STR and fixed size rdata fields 894 * before one or more name fields that need canonicalizing, 895 * and after that a byte-for byte remainder can be compared. 896 */ 897 /* type starts with the name; remainder is binary compared */ 898 case LDNS_RR_TYPE_NXT: 899 /* use rdata field formats */ 900 case LDNS_RR_TYPE_MINFO: 901 case LDNS_RR_TYPE_RP: 902 case LDNS_RR_TYPE_SOA: 903 case LDNS_RR_TYPE_RT: 904 case LDNS_RR_TYPE_AFSDB: 905 case LDNS_RR_TYPE_KX: 906 case LDNS_RR_TYPE_MX: 907 case LDNS_RR_TYPE_SIG: 908 /* RRSIG signer name has to be downcased */ 909 case LDNS_RR_TYPE_RRSIG: 910 case LDNS_RR_TYPE_PX: 911 case LDNS_RR_TYPE_NAPTR: 912 case LDNS_RR_TYPE_SRV: 913 desc = sldns_rr_descript(type); 914 log_assert(desc); 915 /* this holds for the types that need canonicalizing */ 916 log_assert(desc->_minimum == desc->_maximum); 917 return canonical_compare_byfield(d, desc, i, j); 918 919 case LDNS_RR_TYPE_HINFO: /* no longer downcased */ 920 case LDNS_RR_TYPE_NSEC: 921 default: 922 /* For unknown RR types, or types not listed above, 923 * no canonicalization is needed, do binary compare */ 924 /* byte for byte compare, equal means shortest first*/ 925 minlen = d->rr_len[i]-2; 926 if(minlen > d->rr_len[j]-2) 927 minlen = d->rr_len[j]-2; 928 c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen); 929 if(c!=0) 930 return c; 931 /* rdata equal, shortest is first */ 932 if(d->rr_len[i] < d->rr_len[j]) 933 return -1; 934 if(d->rr_len[i] > d->rr_len[j]) 935 return 1; 936 /* rdata equal, length equal */ 937 break; 938 } 939 return 0; 940 } 941 942 int 943 canonical_tree_compare(const void* k1, const void* k2) 944 { 945 struct canon_rr* r1 = (struct canon_rr*)k1; 946 struct canon_rr* r2 = (struct canon_rr*)k2; 947 log_assert(r1->rrset == r2->rrset); 948 return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx); 949 } 950 951 /** 952 * Sort RRs for rrset in canonical order. 953 * Does not actually canonicalize the RR rdatas. 954 * Does not touch rrsigs. 955 * @param rrset: to sort. 956 * @param d: rrset data. 957 * @param sortree: tree to sort into. 958 * @param rrs: rr storage. 959 */ 960 static void 961 canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d, 962 rbtree_type* sortree, struct canon_rr* rrs) 963 { 964 size_t i; 965 /* insert into rbtree to sort and detect duplicates */ 966 for(i=0; i<d->count; i++) { 967 rrs[i].node.key = &rrs[i]; 968 rrs[i].rrset = rrset; 969 rrs[i].rr_idx = i; 970 if(!rbtree_insert(sortree, &rrs[i].node)) { 971 /* this was a duplicate */ 972 } 973 } 974 } 975 976 /** 977 * Insert canonical owner name into buffer. 978 * @param buf: buffer to insert into at current position. 979 * @param k: rrset with its owner name. 980 * @param sig: signature with signer name and label count. 981 * must be length checked, at least 18 bytes long. 982 * @param can_owner: position in buffer returned for future use. 983 * @param can_owner_len: length of canonical owner name. 984 */ 985 static void 986 insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k, 987 uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len) 988 { 989 int rrsig_labels = (int)sig[3]; 990 int fqdn_labels = dname_signame_label_count(k->rk.dname); 991 *can_owner = sldns_buffer_current(buf); 992 if(rrsig_labels == fqdn_labels) { 993 /* no change */ 994 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); 995 query_dname_tolower(*can_owner); 996 *can_owner_len = k->rk.dname_len; 997 return; 998 } 999 log_assert(rrsig_labels < fqdn_labels); 1000 /* *. | fqdn(rightmost rrsig_labels) */ 1001 if(rrsig_labels < fqdn_labels) { 1002 int i; 1003 uint8_t* nm = k->rk.dname; 1004 size_t len = k->rk.dname_len; 1005 /* so skip fqdn_labels-rrsig_labels */ 1006 for(i=0; i<fqdn_labels-rrsig_labels; i++) { 1007 dname_remove_label(&nm, &len); 1008 } 1009 *can_owner_len = len+2; 1010 sldns_buffer_write(buf, (uint8_t*)"\001*", 2); 1011 sldns_buffer_write(buf, nm, len); 1012 query_dname_tolower(*can_owner); 1013 } 1014 } 1015 1016 /** 1017 * Canonicalize Rdata in buffer. 1018 * @param buf: buffer at position just after the rdata. 1019 * @param rrset: rrset with type. 1020 * @param len: length of the rdata (including rdatalen uint16). 1021 */ 1022 static void 1023 canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset, 1024 size_t len) 1025 { 1026 uint8_t* datstart = sldns_buffer_current(buf)-len+2; 1027 switch(ntohs(rrset->rk.type)) { 1028 case LDNS_RR_TYPE_NXT: 1029 case LDNS_RR_TYPE_NS: 1030 case LDNS_RR_TYPE_MD: 1031 case LDNS_RR_TYPE_MF: 1032 case LDNS_RR_TYPE_CNAME: 1033 case LDNS_RR_TYPE_MB: 1034 case LDNS_RR_TYPE_MG: 1035 case LDNS_RR_TYPE_MR: 1036 case LDNS_RR_TYPE_PTR: 1037 case LDNS_RR_TYPE_DNAME: 1038 /* type only has a single argument, the name */ 1039 query_dname_tolower(datstart); 1040 return; 1041 case LDNS_RR_TYPE_MINFO: 1042 case LDNS_RR_TYPE_RP: 1043 case LDNS_RR_TYPE_SOA: 1044 /* two names after another */ 1045 query_dname_tolower(datstart); 1046 query_dname_tolower(datstart + 1047 dname_valid(datstart, len-2)); 1048 return; 1049 case LDNS_RR_TYPE_RT: 1050 case LDNS_RR_TYPE_AFSDB: 1051 case LDNS_RR_TYPE_KX: 1052 case LDNS_RR_TYPE_MX: 1053 /* skip fixed part */ 1054 if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */ 1055 return; 1056 datstart += 2; 1057 query_dname_tolower(datstart); 1058 return; 1059 case LDNS_RR_TYPE_SIG: 1060 /* downcase the RRSIG, compat with BIND (kept it from SIG) */ 1061 case LDNS_RR_TYPE_RRSIG: 1062 /* skip fixed part */ 1063 if(len < 2+18+1) 1064 return; 1065 datstart += 18; 1066 query_dname_tolower(datstart); 1067 return; 1068 case LDNS_RR_TYPE_PX: 1069 /* skip, then two names after another */ 1070 if(len < 2+2+1) 1071 return; 1072 datstart += 2; 1073 query_dname_tolower(datstart); 1074 query_dname_tolower(datstart + 1075 dname_valid(datstart, len-2-2)); 1076 return; 1077 case LDNS_RR_TYPE_NAPTR: 1078 if(len < 2+4) 1079 return; 1080 len -= 2+4; 1081 datstart += 4; 1082 if(len < (size_t)datstart[0]+1) /* skip text field */ 1083 return; 1084 len -= (size_t)datstart[0]+1; 1085 datstart += (size_t)datstart[0]+1; 1086 if(len < (size_t)datstart[0]+1) /* skip text field */ 1087 return; 1088 len -= (size_t)datstart[0]+1; 1089 datstart += (size_t)datstart[0]+1; 1090 if(len < (size_t)datstart[0]+1) /* skip text field */ 1091 return; 1092 len -= (size_t)datstart[0]+1; 1093 datstart += (size_t)datstart[0]+1; 1094 if(len < 1) /* check name is at least 1 byte*/ 1095 return; 1096 query_dname_tolower(datstart); 1097 return; 1098 case LDNS_RR_TYPE_SRV: 1099 /* skip fixed part */ 1100 if(len < 2+6+1) 1101 return; 1102 datstart += 6; 1103 query_dname_tolower(datstart); 1104 return; 1105 1106 /* do not canonicalize NSEC rdata name, compat with 1107 * from bind 9.4 signer, where it does not do so */ 1108 case LDNS_RR_TYPE_NSEC: /* type starts with the name */ 1109 case LDNS_RR_TYPE_HINFO: /* not downcased */ 1110 /* A6 not supported */ 1111 default: 1112 /* nothing to do for unknown types */ 1113 return; 1114 } 1115 } 1116 1117 int rrset_canonical_equal(struct regional* region, 1118 struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) 1119 { 1120 struct rbtree_type sortree1, sortree2; 1121 struct canon_rr *rrs1, *rrs2, *p1, *p2; 1122 struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data; 1123 struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data; 1124 struct ub_packed_rrset_key fk; 1125 struct packed_rrset_data fd; 1126 size_t flen[2]; 1127 uint8_t* fdata[2]; 1128 1129 /* basic compare */ 1130 if(k1->rk.dname_len != k2->rk.dname_len || 1131 k1->rk.flags != k2->rk.flags || 1132 k1->rk.type != k2->rk.type || 1133 k1->rk.rrset_class != k2->rk.rrset_class || 1134 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) 1135 return 0; 1136 if(d1->ttl != d2->ttl || 1137 d1->count != d2->count || 1138 d1->rrsig_count != d2->rrsig_count || 1139 d1->trust != d2->trust || 1140 d1->security != d2->security) 1141 return 0; 1142 1143 /* init */ 1144 memset(&fk, 0, sizeof(fk)); 1145 memset(&fd, 0, sizeof(fd)); 1146 fk.entry.data = &fd; 1147 fd.count = 2; 1148 fd.rr_len = flen; 1149 fd.rr_data = fdata; 1150 rbtree_init(&sortree1, &canonical_tree_compare); 1151 rbtree_init(&sortree2, &canonical_tree_compare); 1152 if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX) 1153 return 1; /* protection against integer overflow */ 1154 rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count); 1155 rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count); 1156 if(!rrs1 || !rrs2) return 1; /* alloc failure */ 1157 1158 /* sort */ 1159 canonical_sort(k1, d1, &sortree1, rrs1); 1160 canonical_sort(k2, d2, &sortree2, rrs2); 1161 1162 /* compare canonical-sorted RRs for canonical-equality */ 1163 if(sortree1.count != sortree2.count) 1164 return 0; 1165 p1 = (struct canon_rr*)rbtree_first(&sortree1); 1166 p2 = (struct canon_rr*)rbtree_first(&sortree2); 1167 while(p1 != (struct canon_rr*)RBTREE_NULL && 1168 p2 != (struct canon_rr*)RBTREE_NULL) { 1169 flen[0] = d1->rr_len[p1->rr_idx]; 1170 flen[1] = d2->rr_len[p2->rr_idx]; 1171 fdata[0] = d1->rr_data[p1->rr_idx]; 1172 fdata[1] = d2->rr_data[p2->rr_idx]; 1173 1174 if(canonical_compare(&fk, 0, 1) != 0) 1175 return 0; 1176 p1 = (struct canon_rr*)rbtree_next(&p1->node); 1177 p2 = (struct canon_rr*)rbtree_next(&p2->node); 1178 } 1179 return 1; 1180 } 1181 1182 /** 1183 * Create canonical form of rrset in the scratch buffer. 1184 * @param region: temporary region. 1185 * @param buf: the buffer to use. 1186 * @param k: the rrset to insert. 1187 * @param sig: RRSIG rdata to include. 1188 * @param siglen: RRSIG rdata len excluding signature field, but inclusive 1189 * signer name length. 1190 * @param sortree: if NULL is passed a new sorted rrset tree is built. 1191 * Otherwise it is reused. 1192 * @param section: section of packet where this rrset comes from. 1193 * @param qstate: qstate with region. 1194 * @return false on alloc error. 1195 */ 1196 static int 1197 rrset_canonical(struct regional* region, sldns_buffer* buf, 1198 struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen, 1199 struct rbtree_type** sortree, sldns_pkt_section section, 1200 struct module_qstate* qstate) 1201 { 1202 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1203 uint8_t* can_owner = NULL; 1204 size_t can_owner_len = 0; 1205 struct canon_rr* walk; 1206 struct canon_rr* rrs; 1207 1208 if(!*sortree) { 1209 *sortree = (struct rbtree_type*)regional_alloc(region, 1210 sizeof(rbtree_type)); 1211 if(!*sortree) 1212 return 0; 1213 if(d->count > RR_COUNT_MAX) 1214 return 0; /* integer overflow protection */ 1215 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count); 1216 if(!rrs) { 1217 *sortree = NULL; 1218 return 0; 1219 } 1220 rbtree_init(*sortree, &canonical_tree_compare); 1221 canonical_sort(k, d, *sortree, rrs); 1222 } 1223 1224 sldns_buffer_clear(buf); 1225 sldns_buffer_write(buf, sig, siglen); 1226 /* canonicalize signer name */ 1227 query_dname_tolower(sldns_buffer_begin(buf)+18); 1228 RBTREE_FOR(walk, struct canon_rr*, (*sortree)) { 1229 /* see if there is enough space left in the buffer */ 1230 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4 1231 + d->rr_len[walk->rr_idx]) { 1232 log_err("verify: failed to canonicalize, " 1233 "rrset too big"); 1234 return 0; 1235 } 1236 /* determine canonical owner name */ 1237 if(can_owner) 1238 sldns_buffer_write(buf, can_owner, can_owner_len); 1239 else insert_can_owner(buf, k, sig, &can_owner, 1240 &can_owner_len); 1241 sldns_buffer_write(buf, &k->rk.type, 2); 1242 sldns_buffer_write(buf, &k->rk.rrset_class, 2); 1243 sldns_buffer_write(buf, sig+4, 4); 1244 sldns_buffer_write(buf, d->rr_data[walk->rr_idx], 1245 d->rr_len[walk->rr_idx]); 1246 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]); 1247 } 1248 sldns_buffer_flip(buf); 1249 1250 /* Replace RR owner with canonical owner for NSEC records in authority 1251 * section, to prevent that a wildcard synthesized NSEC can be used in 1252 * the non-existence proves. */ 1253 if(ntohs(k->rk.type) == LDNS_RR_TYPE_NSEC && 1254 section == LDNS_SECTION_AUTHORITY && qstate) { 1255 k->rk.dname = regional_alloc_init(qstate->region, can_owner, 1256 can_owner_len); 1257 if(!k->rk.dname) 1258 return 0; 1259 k->rk.dname_len = can_owner_len; 1260 } 1261 1262 1263 return 1; 1264 } 1265 1266 int 1267 rrset_canonicalize_to_buffer(struct regional* region, sldns_buffer* buf, 1268 struct ub_packed_rrset_key* k) 1269 { 1270 struct rbtree_type* sortree = NULL; 1271 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1272 uint8_t* can_owner = NULL; 1273 size_t can_owner_len = 0; 1274 struct canon_rr* walk; 1275 struct canon_rr* rrs; 1276 1277 sortree = (struct rbtree_type*)regional_alloc(region, 1278 sizeof(rbtree_type)); 1279 if(!sortree) 1280 return 0; 1281 if(d->count > RR_COUNT_MAX) 1282 return 0; /* integer overflow protection */ 1283 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count); 1284 if(!rrs) { 1285 return 0; 1286 } 1287 rbtree_init(sortree, &canonical_tree_compare); 1288 canonical_sort(k, d, sortree, rrs); 1289 1290 sldns_buffer_clear(buf); 1291 RBTREE_FOR(walk, struct canon_rr*, sortree) { 1292 /* see if there is enough space left in the buffer */ 1293 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4 1294 + d->rr_len[walk->rr_idx]) { 1295 log_err("verify: failed to canonicalize, " 1296 "rrset too big"); 1297 return 0; 1298 } 1299 /* determine canonical owner name */ 1300 if(can_owner) 1301 sldns_buffer_write(buf, can_owner, can_owner_len); 1302 else { 1303 can_owner = sldns_buffer_current(buf); 1304 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); 1305 query_dname_tolower(can_owner); 1306 can_owner_len = k->rk.dname_len; 1307 } 1308 sldns_buffer_write(buf, &k->rk.type, 2); 1309 sldns_buffer_write(buf, &k->rk.rrset_class, 2); 1310 sldns_buffer_write_u32(buf, d->rr_ttl[walk->rr_idx]); 1311 sldns_buffer_write(buf, d->rr_data[walk->rr_idx], 1312 d->rr_len[walk->rr_idx]); 1313 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]); 1314 } 1315 sldns_buffer_flip(buf); 1316 return 1; 1317 } 1318 1319 /** pretty print rrsig error with dates */ 1320 static void 1321 sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now) 1322 { 1323 struct tm tm; 1324 char expi_buf[16]; 1325 char incep_buf[16]; 1326 char now_buf[16]; 1327 time_t te, ti, tn; 1328 1329 if(verbosity < VERB_QUERY) 1330 return; 1331 te = (time_t)expi; 1332 ti = (time_t)incep; 1333 tn = (time_t)now; 1334 memset(&tm, 0, sizeof(tm)); 1335 if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm) 1336 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm) 1337 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) { 1338 log_info("%s expi=%s incep=%s now=%s", str, expi_buf, 1339 incep_buf, now_buf); 1340 } else 1341 log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi, 1342 (unsigned)incep, (unsigned)now); 1343 } 1344 1345 /** RFC 1982 comparison, uses unsigned integers, and tries to avoid 1346 * compiler optimization (eg. by avoiding a-b<0 comparisons), 1347 * this routine matches compare_serial(), for SOA serial number checks */ 1348 static int 1349 compare_1982(uint32_t a, uint32_t b) 1350 { 1351 /* for 32 bit values */ 1352 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1353 1354 if (a == b) { 1355 return 0; 1356 } else if ((a < b && b - a < cutoff) || (a > b && a - b > cutoff)) { 1357 return -1; 1358 } else { 1359 return 1; 1360 } 1361 } 1362 1363 /** if we know that b is larger than a, return the difference between them, 1364 * that is the distance between them. in RFC1982 arith */ 1365 static uint32_t 1366 subtract_1982(uint32_t a, uint32_t b) 1367 { 1368 /* for 32 bit values */ 1369 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1370 1371 if(a == b) 1372 return 0; 1373 if(a < b && b - a < cutoff) { 1374 return b-a; 1375 } 1376 if(a > b && a - b > cutoff) { 1377 return ((uint32_t)0xffffffff) - (a-b-1); 1378 } 1379 /* wrong case, b smaller than a */ 1380 return 0; 1381 } 1382 1383 /** check rrsig dates */ 1384 static int 1385 check_dates(struct val_env* ve, uint32_t unow, uint8_t* expi_p, 1386 uint8_t* incep_p, char** reason, sldns_ede_code *reason_bogus) 1387 { 1388 /* read out the dates */ 1389 uint32_t expi, incep, now; 1390 memmove(&expi, expi_p, sizeof(expi)); 1391 memmove(&incep, incep_p, sizeof(incep)); 1392 expi = ntohl(expi); 1393 incep = ntohl(incep); 1394 1395 /* get current date */ 1396 if(ve->date_override) { 1397 if(ve->date_override == -1) { 1398 verbose(VERB_ALGO, "date override: ignore date"); 1399 return 1; 1400 } 1401 now = ve->date_override; 1402 verbose(VERB_ALGO, "date override option %d", (int)now); 1403 } else now = unow; 1404 1405 /* check them */ 1406 if(compare_1982(incep, expi) > 0) { 1407 sigdate_error("verify: inception after expiration, " 1408 "signature bad", expi, incep, now); 1409 *reason = "signature inception after expiration"; 1410 if(reason_bogus){ 1411 /* from RFC8914 on Signature Not Yet Valid: The resolver 1412 * attempted to perform DNSSEC validation, but no 1413 * signatures are presently valid and at least some are 1414 * not yet valid. */ 1415 *reason_bogus = LDNS_EDE_SIGNATURE_NOT_YET_VALID; 1416 } 1417 1418 return 0; 1419 } 1420 if(compare_1982(incep, now) > 0) { 1421 /* within skew ? (calc here to avoid calculation normally) */ 1422 uint32_t skew = subtract_1982(incep, expi)/10; 1423 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1424 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1425 if(subtract_1982(now, incep) > skew) { 1426 sigdate_error("verify: signature bad, current time is" 1427 " before inception date", expi, incep, now); 1428 *reason = "signature before inception date"; 1429 if(reason_bogus) 1430 *reason_bogus = LDNS_EDE_SIGNATURE_NOT_YET_VALID; 1431 return 0; 1432 } 1433 sigdate_error("verify warning suspicious signature inception " 1434 " or bad local clock", expi, incep, now); 1435 } 1436 if(compare_1982(now, expi) > 0) { 1437 uint32_t skew = subtract_1982(incep, expi)/10; 1438 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1439 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1440 if(subtract_1982(expi, now) > skew) { 1441 sigdate_error("verify: signature expired", expi, 1442 incep, now); 1443 *reason = "signature expired"; 1444 if(reason_bogus) 1445 *reason_bogus = LDNS_EDE_SIGNATURE_EXPIRED; 1446 return 0; 1447 } 1448 sigdate_error("verify warning suspicious signature expiration " 1449 " or bad local clock", expi, incep, now); 1450 } 1451 return 1; 1452 } 1453 1454 /** adjust rrset TTL for verified rrset, compare to original TTL and expi */ 1455 static void 1456 adjust_ttl(struct val_env* ve, uint32_t unow, 1457 struct ub_packed_rrset_key* rrset, uint8_t* orig_p, 1458 uint8_t* expi_p, uint8_t* incep_p) 1459 { 1460 struct packed_rrset_data* d = 1461 (struct packed_rrset_data*)rrset->entry.data; 1462 /* read out the dates */ 1463 int32_t origttl, expittl, expi, incep, now; 1464 memmove(&origttl, orig_p, sizeof(origttl)); 1465 memmove(&expi, expi_p, sizeof(expi)); 1466 memmove(&incep, incep_p, sizeof(incep)); 1467 expi = ntohl(expi); 1468 incep = ntohl(incep); 1469 origttl = ntohl(origttl); 1470 1471 /* get current date */ 1472 if(ve->date_override) { 1473 now = ve->date_override; 1474 } else now = (int32_t)unow; 1475 expittl = (int32_t)((uint32_t)expi - (uint32_t)now); 1476 1477 /* so now: 1478 * d->ttl: rrset ttl read from message or cache. May be reduced 1479 * origttl: original TTL from signature, authoritative TTL max. 1480 * MIN_TTL: minimum TTL from config. 1481 * expittl: TTL until the signature expires. 1482 * 1483 * Use the smallest of these, but don't let origttl set the TTL 1484 * below the minimum. 1485 */ 1486 if(MIN_TTL > (time_t)origttl && d->ttl > MIN_TTL) { 1487 verbose(VERB_QUERY, "rrset TTL larger than original and minimum" 1488 " TTL, adjusting TTL downwards to minimum ttl"); 1489 d->ttl = MIN_TTL; 1490 } 1491 else if(MIN_TTL <= origttl && d->ttl > (time_t)origttl) { 1492 verbose(VERB_QUERY, "rrset TTL larger than original TTL, " 1493 "adjusting TTL downwards to original ttl"); 1494 d->ttl = origttl; 1495 } 1496 1497 if(expittl > 0 && d->ttl > (time_t)expittl) { 1498 verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl," 1499 " adjusting TTL downwards"); 1500 d->ttl = expittl; 1501 } 1502 } 1503 1504 enum sec_status 1505 dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf, 1506 struct val_env* ve, time_t now, 1507 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 1508 size_t dnskey_idx, size_t sig_idx, 1509 struct rbtree_type** sortree, int* buf_canon, 1510 char** reason, sldns_ede_code *reason_bogus, 1511 sldns_pkt_section section, struct module_qstate* qstate) 1512 { 1513 enum sec_status sec; 1514 uint8_t* sig; /* RRSIG rdata */ 1515 size_t siglen; 1516 size_t rrnum = rrset_get_count(rrset); 1517 uint8_t* signer; /* rrsig signer name */ 1518 size_t signer_len; 1519 unsigned char* sigblock; /* signature rdata field */ 1520 unsigned int sigblock_len; 1521 uint16_t ktag; /* DNSKEY key tag */ 1522 unsigned char* key; /* public key rdata field */ 1523 unsigned int keylen; 1524 rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen); 1525 /* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */ 1526 if(siglen < 2+20) { 1527 verbose(VERB_QUERY, "verify: signature too short"); 1528 *reason = "signature too short"; 1529 if(reason_bogus) 1530 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1531 return sec_status_bogus; 1532 } 1533 1534 if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) { 1535 verbose(VERB_QUERY, "verify: dnskey without ZSK flag"); 1536 *reason = "dnskey without ZSK flag"; 1537 if(reason_bogus) 1538 *reason_bogus = LDNS_EDE_NO_ZONE_KEY_BIT_SET; 1539 return sec_status_bogus; 1540 } 1541 1542 if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) { 1543 /* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */ 1544 verbose(VERB_QUERY, "verify: dnskey has wrong key protocol"); 1545 *reason = "dnskey has wrong protocolnumber"; 1546 if(reason_bogus) 1547 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1548 return sec_status_bogus; 1549 } 1550 1551 /* verify as many fields in rrsig as possible */ 1552 signer = sig+2+18; 1553 signer_len = dname_valid(signer, siglen-2-18); 1554 if(!signer_len) { 1555 verbose(VERB_QUERY, "verify: malformed signer name"); 1556 *reason = "signer name malformed"; 1557 if(reason_bogus) 1558 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1559 return sec_status_bogus; /* signer name invalid */ 1560 } 1561 if(!dname_subdomain_c(rrset->rk.dname, signer)) { 1562 verbose(VERB_QUERY, "verify: signer name is off-tree"); 1563 *reason = "signer name off-tree"; 1564 if(reason_bogus) 1565 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1566 return sec_status_bogus; /* signer name offtree */ 1567 } 1568 sigblock = (unsigned char*)signer+signer_len; 1569 if(siglen < 2+18+signer_len+1) { 1570 verbose(VERB_QUERY, "verify: too short, no signature data"); 1571 *reason = "signature too short, no signature data"; 1572 if(reason_bogus) 1573 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1574 return sec_status_bogus; /* sig rdf is < 1 byte */ 1575 } 1576 sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len); 1577 1578 /* verify key dname == sig signer name */ 1579 if(query_dname_compare(signer, dnskey->rk.dname) != 0) { 1580 verbose(VERB_QUERY, "verify: wrong key for rrsig"); 1581 log_nametypeclass(VERB_QUERY, "RRSIG signername is", 1582 signer, 0, 0); 1583 log_nametypeclass(VERB_QUERY, "the key name is", 1584 dnskey->rk.dname, 0, 0); 1585 *reason = "signer name mismatches key name"; 1586 if(reason_bogus) 1587 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1588 return sec_status_bogus; 1589 } 1590 1591 /* verify covered type */ 1592 /* memcmp works because type is in network format for rrset */ 1593 if(memcmp(sig+2, &rrset->rk.type, 2) != 0) { 1594 verbose(VERB_QUERY, "verify: wrong type covered"); 1595 *reason = "signature covers wrong type"; 1596 if(reason_bogus) 1597 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1598 return sec_status_bogus; 1599 } 1600 /* verify keytag and sig algo (possibly again) */ 1601 if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) { 1602 verbose(VERB_QUERY, "verify: wrong algorithm"); 1603 *reason = "signature has wrong algorithm"; 1604 if(reason_bogus) 1605 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1606 return sec_status_bogus; 1607 } 1608 ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx)); 1609 if(memcmp(sig+2+16, &ktag, 2) != 0) { 1610 verbose(VERB_QUERY, "verify: wrong keytag"); 1611 *reason = "signature has wrong keytag"; 1612 if(reason_bogus) 1613 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1614 return sec_status_bogus; 1615 } 1616 1617 /* verify labels is in a valid range */ 1618 if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) { 1619 verbose(VERB_QUERY, "verify: labelcount out of range"); 1620 *reason = "signature labelcount out of range"; 1621 if(reason_bogus) 1622 *reason_bogus = LDNS_EDE_DNSSEC_BOGUS; 1623 return sec_status_bogus; 1624 } 1625 1626 /* original ttl, always ok */ 1627 1628 if(!*buf_canon) { 1629 /* create rrset canonical format in buffer, ready for 1630 * signature */ 1631 if(!rrset_canonical(region, buf, rrset, sig+2, 1632 18 + signer_len, sortree, section, qstate)) { 1633 log_err("verify: failed due to alloc error"); 1634 return sec_status_unchecked; 1635 } 1636 *buf_canon = 1; 1637 } 1638 1639 /* check that dnskey is available */ 1640 dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen); 1641 if(!key) { 1642 verbose(VERB_QUERY, "verify: short DNSKEY RR"); 1643 return sec_status_unchecked; 1644 } 1645 1646 /* verify */ 1647 sec = verify_canonrrset(buf, (int)sig[2+2], 1648 sigblock, sigblock_len, key, keylen, reason); 1649 1650 if(sec == sec_status_secure) { 1651 /* check if TTL is too high - reduce if so */ 1652 adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12); 1653 1654 /* verify inception, expiration dates 1655 * Do this last so that if you ignore expired-sigs the 1656 * rest is sure to be OK. */ 1657 if(!check_dates(ve, now, sig+2+8, sig+2+12, 1658 reason, reason_bogus)) { 1659 return sec_status_bogus; 1660 } 1661 } 1662 1663 return sec; 1664 } 1665