xref: /freebsd/contrib/unbound/validator/val_sigcrypt.c (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*
2  * validator/val_sigcrypt.c - validator signature crypto functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * The functions help with signature verification and checking, the
41  * bridging between RR wireformat data and crypto calls.
42  */
43 #include "config.h"
44 #include <ldns/ldns.h>
45 #include "validator/val_sigcrypt.h"
46 #include "validator/val_secalgo.h"
47 #include "validator/validator.h"
48 #include "util/data/msgreply.h"
49 #include "util/data/msgparse.h"
50 #include "util/data/dname.h"
51 #include "util/rbtree.h"
52 #include "util/module.h"
53 #include "util/net_help.h"
54 #include "util/regional.h"
55 
56 #if !defined(HAVE_SSL) && !defined(HAVE_NSS)
57 #error "Need crypto library to do digital signature cryptography"
58 #endif
59 
60 #ifdef HAVE_OPENSSL_ERR_H
61 #include <openssl/err.h>
62 #endif
63 
64 #ifdef HAVE_OPENSSL_RAND_H
65 #include <openssl/rand.h>
66 #endif
67 
68 #ifdef HAVE_OPENSSL_CONF_H
69 #include <openssl/conf.h>
70 #endif
71 
72 #ifdef HAVE_OPENSSL_ENGINE_H
73 #include <openssl/engine.h>
74 #endif
75 
76 /** return number of rrs in an rrset */
77 static size_t
78 rrset_get_count(struct ub_packed_rrset_key* rrset)
79 {
80 	struct packed_rrset_data* d = (struct packed_rrset_data*)
81 	rrset->entry.data;
82 	if(!d) return 0;
83 	return d->count;
84 }
85 
86 /**
87  * Get RR signature count
88  */
89 static size_t
90 rrset_get_sigcount(struct ub_packed_rrset_key* k)
91 {
92 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
93 	return d->rrsig_count;
94 }
95 
96 /**
97  * Get signature keytag value
98  * @param k: rrset (with signatures)
99  * @param sig_idx: signature index.
100  * @return keytag or 0 if malformed rrsig.
101  */
102 static uint16_t
103 rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
104 {
105 	uint16_t t;
106 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
107 	log_assert(sig_idx < d->rrsig_count);
108 	if(d->rr_len[d->count + sig_idx] < 2+18)
109 		return 0;
110 	memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
111 	return ntohs(t);
112 }
113 
114 /**
115  * Get signature signing algorithm value
116  * @param k: rrset (with signatures)
117  * @param sig_idx: signature index.
118  * @return algo or 0 if malformed rrsig.
119  */
120 static int
121 rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
122 {
123 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
124 	log_assert(sig_idx < d->rrsig_count);
125 	if(d->rr_len[d->count + sig_idx] < 2+3)
126 		return 0;
127 	return (int)d->rr_data[d->count + sig_idx][2+2];
128 }
129 
130 /** get rdata pointer and size */
131 static void
132 rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
133 	size_t* len)
134 {
135 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
136 	log_assert(d && idx < (d->count + d->rrsig_count));
137 	*rdata = d->rr_data[idx];
138 	*len = d->rr_len[idx];
139 }
140 
141 uint16_t
142 dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
143 {
144 	uint8_t* rdata;
145 	size_t len;
146 	uint16_t f;
147 	rrset_get_rdata(k, idx, &rdata, &len);
148 	if(len < 2+2)
149 		return 0;
150 	memmove(&f, rdata+2, 2);
151 	f = ntohs(f);
152 	return f;
153 }
154 
155 /**
156  * Get DNSKEY protocol value from rdata
157  * @param k: DNSKEY rrset.
158  * @param idx: which key.
159  * @return protocol octet value
160  */
161 static int
162 dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
163 {
164 	uint8_t* rdata;
165 	size_t len;
166 	rrset_get_rdata(k, idx, &rdata, &len);
167 	if(len < 2+4)
168 		return 0;
169 	return (int)rdata[2+2];
170 }
171 
172 int
173 dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
174 {
175 	uint8_t* rdata;
176 	size_t len;
177 	rrset_get_rdata(k, idx, &rdata, &len);
178 	if(len < 2+4)
179 		return 0;
180 	return (int)rdata[2+3];
181 }
182 
183 /** get public key rdata field from a dnskey RR and do some checks */
184 static void
185 dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
186 	unsigned char** pk, unsigned int* pklen)
187 {
188 	uint8_t* rdata;
189 	size_t len;
190 	rrset_get_rdata(k, idx, &rdata, &len);
191 	if(len < 2+5) {
192 		*pk = NULL;
193 		*pklen = 0;
194 		return;
195 	}
196 	*pk = (unsigned char*)rdata+2+4;
197 	*pklen = (unsigned)len-2-4;
198 }
199 
200 int
201 ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
202 {
203 	uint8_t* rdata;
204 	size_t len;
205 	rrset_get_rdata(k, idx, &rdata, &len);
206 	if(len < 2+3)
207 		return 0;
208 	return (int)rdata[2+2];
209 }
210 
211 int
212 ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
213 {
214 	uint8_t* rdata;
215 	size_t len;
216 	rrset_get_rdata(k, idx, &rdata, &len);
217 	if(len < 2+4)
218 		return 0;
219 	return (int)rdata[2+3];
220 }
221 
222 uint16_t
223 ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
224 {
225 	uint16_t t;
226 	uint8_t* rdata;
227 	size_t len;
228 	rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
229 	if(len < 2+2)
230 		return 0;
231 	memmove(&t, rdata+2, 2);
232 	return ntohs(t);
233 }
234 
235 /**
236  * Return pointer to the digest in a DS RR.
237  * @param k: DS rrset.
238  * @param idx: which DS.
239  * @param digest: digest data is returned.
240  *	on error, this is NULL.
241  * @param len: length of digest is returned.
242  *	on error, the length is 0.
243  */
244 static void
245 ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
246         size_t* len)
247 {
248 	uint8_t* rdata;
249 	size_t rdlen;
250 	rrset_get_rdata(k, idx, &rdata, &rdlen);
251 	if(rdlen < 2+5) {
252 		*digest = NULL;
253 		*len = 0;
254 		return;
255 	}
256 	*digest = rdata + 2 + 4;
257 	*len = rdlen - 2 - 4;
258 }
259 
260 /**
261  * Return size of DS digest according to its hash algorithm.
262  * @param k: DS rrset.
263  * @param idx: which DS.
264  * @return size in bytes of digest, or 0 if not supported.
265  */
266 static size_t
267 ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
268 {
269 	return ds_digest_size_supported(ds_get_digest_algo(k, idx));
270 }
271 
272 /**
273  * Create a DS digest for a DNSKEY entry.
274  *
275  * @param env: module environment. Uses scratch space.
276  * @param dnskey_rrset: DNSKEY rrset.
277  * @param dnskey_idx: index of RR in rrset.
278  * @param ds_rrset: DS rrset
279  * @param ds_idx: index of RR in DS rrset.
280  * @param digest: digest is returned in here (must be correctly sized).
281  * @return false on error.
282  */
283 static int
284 ds_create_dnskey_digest(struct module_env* env,
285 	struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
286 	struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
287 	uint8_t* digest)
288 {
289 	ldns_buffer* b = env->scratch_buffer;
290 	uint8_t* dnskey_rdata;
291 	size_t dnskey_len;
292 	rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
293 
294 	/* create digest source material in buffer
295 	 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
296 	 *	DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
297 	ldns_buffer_clear(b);
298 	ldns_buffer_write(b, dnskey_rrset->rk.dname,
299 		dnskey_rrset->rk.dname_len);
300 	query_dname_tolower(ldns_buffer_begin(b));
301 	ldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
302 	ldns_buffer_flip(b);
303 
304 	return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
305 		(unsigned char*)ldns_buffer_begin(b), ldns_buffer_limit(b),
306 		(unsigned char*)digest);
307 }
308 
309 int ds_digest_match_dnskey(struct module_env* env,
310 	struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
311 	struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
312 {
313 	uint8_t* ds;	/* DS digest */
314 	size_t dslen;
315 	uint8_t* digest; /* generated digest */
316 	size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
317 
318 	if(digestlen == 0) {
319 		verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
320 			"format error");
321 		return 0; /* not supported, or DS RR format error */
322 	}
323 	/* check digest length in DS with length from hash function */
324 	ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
325 	if(!ds || dslen != digestlen) {
326 		verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
327 			"match each other");
328 		return 0; /* DS algorithm and digest do not match */
329 	}
330 
331 	digest = regional_alloc(env->scratch, digestlen);
332 	if(!digest) {
333 		verbose(VERB_QUERY, "DS fail: out of memory");
334 		return 0; /* mem error */
335 	}
336 	if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
337 		ds_idx, digest)) {
338 		verbose(VERB_QUERY, "DS fail: could not calc key digest");
339 		return 0; /* digest algo failed */
340 	}
341 	if(memcmp(digest, ds, dslen) != 0) {
342 		verbose(VERB_QUERY, "DS fail: digest is different");
343 		return 0; /* digest different */
344 	}
345 	return 1;
346 }
347 
348 int
349 ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
350 	size_t ds_idx)
351 {
352 	return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
353 }
354 
355 int
356 ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
357 	size_t ds_idx)
358 {
359 	return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
360 }
361 
362 uint16_t
363 dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
364 {
365 	uint8_t* data;
366 	size_t len;
367 	rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
368 	/* do not pass rdatalen to ldns */
369 	return ldns_calc_keytag_raw(data+2, len-2);
370 }
371 
372 int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
373         size_t dnskey_idx)
374 {
375 	return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
376 		dnskey_idx));
377 }
378 
379 void algo_needs_init_dnskey_add(struct algo_needs* n,
380         struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
381 {
382 	uint8_t algo;
383 	size_t i, total = n->num;
384 	size_t num = rrset_get_count(dnskey);
385 
386 	for(i=0; i<num; i++) {
387 		algo = (uint8_t)dnskey_get_algo(dnskey, i);
388 		if(!dnskey_algo_id_is_supported((int)algo))
389 			continue;
390 		if(n->needs[algo] == 0) {
391 			n->needs[algo] = 1;
392 			sigalg[total] = algo;
393 			total++;
394 		}
395 	}
396 	sigalg[total] = 0;
397 	n->num = total;
398 }
399 
400 void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
401 {
402 	uint8_t algo;
403 	size_t total = 0;
404 
405 	memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
406 	while( (algo=*sigalg++) != 0) {
407 		log_assert(dnskey_algo_id_is_supported((int)algo));
408 		log_assert(n->needs[algo] == 0);
409 		n->needs[algo] = 1;
410 		total++;
411 	}
412 	n->num = total;
413 }
414 
415 void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
416 	int fav_ds_algo, uint8_t* sigalg)
417 {
418 	uint8_t algo;
419 	size_t i, total = 0;
420 	size_t num = rrset_get_count(ds);
421 
422 	memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
423 	for(i=0; i<num; i++) {
424 		if(ds_get_digest_algo(ds, i) != fav_ds_algo)
425 			continue;
426 		algo = (uint8_t)ds_get_key_algo(ds, i);
427 		if(!dnskey_algo_id_is_supported((int)algo))
428 			continue;
429 		log_assert(algo != 0); /* we do not support 0 and is EOS */
430 		if(n->needs[algo] == 0) {
431 			n->needs[algo] = 1;
432 			sigalg[total] = algo;
433 			total++;
434 		}
435 	}
436 	sigalg[total] = 0;
437 	n->num = total;
438 }
439 
440 int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
441 {
442 	if(n->needs[algo]) {
443 		n->needs[algo] = 0;
444 		n->num --;
445 		if(n->num == 0) /* done! */
446 			return 1;
447 	}
448 	return 0;
449 }
450 
451 void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
452 {
453 	if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
454 }
455 
456 size_t algo_needs_num_missing(struct algo_needs* n)
457 {
458 	return n->num;
459 }
460 
461 int algo_needs_missing(struct algo_needs* n)
462 {
463 	int i;
464 	/* first check if a needed algo was bogus - report that */
465 	for(i=0; i<ALGO_NEEDS_MAX; i++)
466 		if(n->needs[i] == 2)
467 			return 0;
468 	/* now check which algo is missing */
469 	for(i=0; i<ALGO_NEEDS_MAX; i++)
470 		if(n->needs[i] == 1)
471 			return i;
472 	return 0;
473 }
474 
475 enum sec_status
476 dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
477 	struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
478 	uint8_t* sigalg, char** reason)
479 {
480 	enum sec_status sec;
481 	size_t i, num;
482 	rbtree_t* sortree = NULL;
483 	/* make sure that for all DNSKEY algorithms there are valid sigs */
484 	struct algo_needs needs;
485 	int alg;
486 
487 	num = rrset_get_sigcount(rrset);
488 	if(num == 0) {
489 		verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
490 			"signatures");
491 		*reason = "no signatures";
492 		return sec_status_bogus;
493 	}
494 
495 	if(sigalg) {
496 		algo_needs_init_list(&needs, sigalg);
497 		if(algo_needs_num_missing(&needs) == 0) {
498 			verbose(VERB_QUERY, "zone has no known algorithms");
499 			*reason = "zone has no known algorithms";
500 			return sec_status_insecure;
501 		}
502 	}
503 	for(i=0; i<num; i++) {
504 		sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
505 			dnskey, i, &sortree, reason);
506 		/* see which algorithm has been fixed up */
507 		if(sec == sec_status_secure) {
508 			if(!sigalg)
509 				return sec; /* done! */
510 			else if(algo_needs_set_secure(&needs,
511 				(uint8_t)rrset_get_sig_algo(rrset, i)))
512 				return sec; /* done! */
513 		} else if(sigalg && sec == sec_status_bogus) {
514 			algo_needs_set_bogus(&needs,
515 				(uint8_t)rrset_get_sig_algo(rrset, i));
516 		}
517 	}
518 	if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
519 		verbose(VERB_ALGO, "rrset failed to verify: "
520 			"no valid signatures for %d algorithms",
521 			(int)algo_needs_num_missing(&needs));
522 		algo_needs_reason(env, alg, reason, "no signatures");
523 	} else {
524 		verbose(VERB_ALGO, "rrset failed to verify: "
525 			"no valid signatures");
526 	}
527 	return sec_status_bogus;
528 }
529 
530 void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
531 {
532 	char buf[256];
533 	ldns_lookup_table *t = ldns_lookup_by_id(ldns_algorithms, alg);
534 	if(t&&t->name)
535 		snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
536 	else	snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
537 			(unsigned)alg);
538 	*reason = regional_strdup(env->scratch, buf);
539 	if(!*reason)
540 		*reason = s;
541 }
542 
543 enum sec_status
544 dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
545         struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
546 	size_t dnskey_idx, char** reason)
547 {
548 	enum sec_status sec;
549 	size_t i, num, numchecked = 0;
550 	rbtree_t* sortree = NULL;
551 	int buf_canon = 0;
552 	uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
553 	int algo = dnskey_get_algo(dnskey, dnskey_idx);
554 
555 	num = rrset_get_sigcount(rrset);
556 	if(num == 0) {
557 		verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
558 			"signatures");
559 		*reason = "no signatures";
560 		return sec_status_bogus;
561 	}
562 	for(i=0; i<num; i++) {
563 		/* see if sig matches keytag and algo */
564 		if(algo != rrset_get_sig_algo(rrset, i) ||
565 			tag != rrset_get_sig_keytag(rrset, i))
566 			continue;
567 		buf_canon = 0;
568 		sec = dnskey_verify_rrset_sig(env->scratch,
569 			env->scratch_buffer, ve, *env->now, rrset,
570 			dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
571 		if(sec == sec_status_secure)
572 			return sec;
573 		numchecked ++;
574 	}
575 	verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
576 	if(!numchecked) *reason = "signature missing";
577 	return sec_status_bogus;
578 }
579 
580 enum sec_status
581 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
582 	uint32_t now, struct ub_packed_rrset_key* rrset,
583 	struct ub_packed_rrset_key* dnskey, size_t sig_idx,
584 	struct rbtree_t** sortree, char** reason)
585 {
586 	/* find matching keys and check them */
587 	enum sec_status sec = sec_status_bogus;
588 	uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
589 	int algo = rrset_get_sig_algo(rrset, sig_idx);
590 	size_t i, num = rrset_get_count(dnskey);
591 	size_t numchecked = 0;
592 	int buf_canon = 0;
593 	verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
594 	if(!dnskey_algo_id_is_supported(algo)) {
595 		verbose(VERB_QUERY, "verify sig: unknown algorithm");
596 		return sec_status_insecure;
597 	}
598 
599 	for(i=0; i<num; i++) {
600 		/* see if key matches keytag and algo */
601 		if(algo != dnskey_get_algo(dnskey, i) ||
602 			tag != dnskey_calc_keytag(dnskey, i))
603 			continue;
604 		numchecked ++;
605 
606 		/* see if key verifies */
607 		sec = dnskey_verify_rrset_sig(env->scratch,
608 			env->scratch_buffer, ve, now, rrset, dnskey, i,
609 			sig_idx, sortree, &buf_canon, reason);
610 		if(sec == sec_status_secure)
611 			return sec;
612 	}
613 	if(numchecked == 0) {
614 		*reason = "signatures from unknown keys";
615 		verbose(VERB_QUERY, "verify: could not find appropriate key");
616 		return sec_status_bogus;
617 	}
618 	return sec_status_bogus;
619 }
620 
621 /**
622  * RR entries in a canonical sorted tree of RRs
623  */
624 struct canon_rr {
625 	/** rbtree node, key is this structure */
626 	rbnode_t node;
627 	/** rrset the RR is in */
628 	struct ub_packed_rrset_key* rrset;
629 	/** which RR in the rrset */
630 	size_t rr_idx;
631 };
632 
633 /**
634  * Compare two RR for canonical order, in a field-style sweep.
635  * @param d: rrset data
636  * @param desc: ldns wireformat descriptor.
637  * @param i: first RR to compare
638  * @param j: first RR to compare
639  * @return comparison code.
640  */
641 static int
642 canonical_compare_byfield(struct packed_rrset_data* d,
643 	const ldns_rr_descriptor* desc, size_t i, size_t j)
644 {
645 	/* sweep across rdata, keep track of some state:
646 	 * 	which rr field, and bytes left in field.
647 	 * 	current position in rdata, length left.
648 	 * 	are we in a dname, length left in a label.
649 	 */
650 	int wfi = -1;	/* current wireformat rdata field (rdf) */
651 	int wfj = -1;
652 	uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
653 	uint8_t* dj = d->rr_data[j]+2;
654 	size_t ilen = d->rr_len[i]-2; /* length left in rdata */
655 	size_t jlen = d->rr_len[j]-2;
656 	int dname_i = 0;  /* true if these bytes are part of a name */
657 	int dname_j = 0;
658 	size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
659 	size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
660 	int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
661 	int dname_num_j = (int)desc->_dname_count;
662 
663 	/* loop while there are rdata bytes available for both rrs,
664 	 * and still some lowercasing needs to be done; either the dnames
665 	 * have not been reached yet, or they are currently being processed */
666 	while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
667 		/* compare these two bytes */
668 		/* lowercase if in a dname and not a label length byte */
669 		if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
670 		 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
671 		 ) {
672 		  if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
673 		  < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
674 		 	return -1;
675 		    return 1;
676 		}
677 		ilen--;
678 		jlen--;
679 		/* bytes are equal */
680 
681 		/* advance field i */
682 		/* lablen 0 means that this byte is the first byte of the
683 		 * next rdata field; inspect this rdata field and setup
684 		 * to process the rest of this rdata field.
685 		 * The reason to first read the byte, then setup the rdf,
686 		 * is that we are then sure the byte is available and short
687 		 * rdata is handled gracefully (even if it is a formerr). */
688 		if(lablen_i == 0) {
689 			if(dname_i) {
690 				/* scan this dname label */
691 				/* capture length to lowercase */
692 				lablen_i = (size_t)*di;
693 				if(lablen_i == 0) {
694 					/* end root label */
695 					dname_i = 0;
696 					dname_num_i--;
697 					/* if dname num is 0, then the
698 					 * remainder is binary only */
699 					if(dname_num_i == 0)
700 						lablen_i = ilen;
701 				}
702 			} else {
703 				/* scan this rdata field */
704 				wfi++;
705 				if(desc->_wireformat[wfi]
706 					== LDNS_RDF_TYPE_DNAME) {
707 					dname_i = 1;
708 					lablen_i = (size_t)*di;
709 					if(lablen_i == 0) {
710 						dname_i = 0;
711 						dname_num_i--;
712 						if(dname_num_i == 0)
713 							lablen_i = ilen;
714 					}
715 				} else if(desc->_wireformat[wfi]
716 					== LDNS_RDF_TYPE_STR)
717 					lablen_i = (size_t)*di;
718 				else	lablen_i = get_rdf_size(
719 					desc->_wireformat[wfi]) - 1;
720 			}
721 		} else	lablen_i--;
722 
723 		/* advance field j; same as for i */
724 		if(lablen_j == 0) {
725 			if(dname_j) {
726 				lablen_j = (size_t)*dj;
727 				if(lablen_j == 0) {
728 					dname_j = 0;
729 					dname_num_j--;
730 					if(dname_num_j == 0)
731 						lablen_j = jlen;
732 				}
733 			} else {
734 				wfj++;
735 				if(desc->_wireformat[wfj]
736 					== LDNS_RDF_TYPE_DNAME) {
737 					dname_j = 1;
738 					lablen_j = (size_t)*dj;
739 					if(lablen_j == 0) {
740 						dname_j = 0;
741 						dname_num_j--;
742 						if(dname_num_j == 0)
743 							lablen_j = jlen;
744 					}
745 				} else if(desc->_wireformat[wfj]
746 					== LDNS_RDF_TYPE_STR)
747 					lablen_j = (size_t)*dj;
748 				else	lablen_j = get_rdf_size(
749 					desc->_wireformat[wfj]) - 1;
750 			}
751 		} else	lablen_j--;
752 		di++;
753 		dj++;
754 	}
755 	/* end of the loop; because we advanced byte by byte; now we have
756 	 * that the rdata has ended, or that there is a binary remainder */
757 	/* shortest first */
758 	if(ilen == 0 && jlen == 0)
759 		return 0;
760 	if(ilen == 0)
761 		return -1;
762 	if(jlen == 0)
763 		return 1;
764 	/* binary remainder, capture comparison in wfi variable */
765 	if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
766 		return wfi;
767 	if(ilen < jlen)
768 		return -1;
769 	if(jlen < ilen)
770 		return 1;
771 	return 0;
772 }
773 
774 /**
775  * Compare two RRs in the same RRset and determine their relative
776  * canonical order.
777  * @param rrset: the rrset in which to perform compares.
778  * @param i: first RR to compare
779  * @param j: first RR to compare
780  * @return 0 if RR i== RR j, -1 if <, +1 if >.
781  */
782 static int
783 canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
784 {
785 	struct packed_rrset_data* d = (struct packed_rrset_data*)
786 		rrset->entry.data;
787 	const ldns_rr_descriptor* desc;
788 	uint16_t type = ntohs(rrset->rk.type);
789 	size_t minlen;
790 	int c;
791 
792 	if(i==j)
793 		return 0;
794 	/* in case rdata-len is to be compared for canonical order
795 	c = memcmp(d->rr_data[i], d->rr_data[j], 2);
796 	if(c != 0)
797 		return c; */
798 
799 	switch(type) {
800 		/* These RR types have only a name as RDATA.
801 		 * This name has to be canonicalized.*/
802 		case LDNS_RR_TYPE_NS:
803 		case LDNS_RR_TYPE_MD:
804 		case LDNS_RR_TYPE_MF:
805 		case LDNS_RR_TYPE_CNAME:
806 		case LDNS_RR_TYPE_MB:
807 		case LDNS_RR_TYPE_MG:
808 		case LDNS_RR_TYPE_MR:
809 		case LDNS_RR_TYPE_PTR:
810 		case LDNS_RR_TYPE_DNAME:
811 			return query_dname_compare(d->rr_data[i]+2,
812 				d->rr_data[j]+2);
813 
814 		/* These RR types have STR and fixed size rdata fields
815 		 * before one or more name fields that need canonicalizing,
816 		 * and after that a byte-for byte remainder can be compared.
817 		 */
818 		/* type starts with the name; remainder is binary compared */
819 		case LDNS_RR_TYPE_NXT:
820 		/* use rdata field formats */
821 		case LDNS_RR_TYPE_MINFO:
822 		case LDNS_RR_TYPE_RP:
823 		case LDNS_RR_TYPE_SOA:
824 		case LDNS_RR_TYPE_RT:
825 		case LDNS_RR_TYPE_AFSDB:
826 		case LDNS_RR_TYPE_KX:
827 		case LDNS_RR_TYPE_MX:
828 		case LDNS_RR_TYPE_SIG:
829 		/* RRSIG signer name has to be downcased */
830 		case LDNS_RR_TYPE_RRSIG:
831 		case LDNS_RR_TYPE_PX:
832 		case LDNS_RR_TYPE_NAPTR:
833 		case LDNS_RR_TYPE_SRV:
834 			desc = ldns_rr_descript(type);
835 			log_assert(desc);
836 			/* this holds for the types that need canonicalizing */
837 			log_assert(desc->_minimum == desc->_maximum);
838 			return canonical_compare_byfield(d, desc, i, j);
839 
840 		case LDNS_RR_TYPE_HINFO: /* no longer downcased */
841 		case LDNS_RR_TYPE_NSEC:
842 	default:
843 		/* For unknown RR types, or types not listed above,
844 		 * no canonicalization is needed, do binary compare */
845 		/* byte for byte compare, equal means shortest first*/
846 		minlen = d->rr_len[i]-2;
847 		if(minlen > d->rr_len[j]-2)
848 			minlen = d->rr_len[j]-2;
849 		c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
850 		if(c!=0)
851 			return c;
852 		/* rdata equal, shortest is first */
853 		if(d->rr_len[i] < d->rr_len[j])
854 			return -1;
855 		if(d->rr_len[i] > d->rr_len[j])
856 			return 1;
857 		/* rdata equal, length equal */
858 		break;
859 	}
860 	return 0;
861 }
862 
863 int
864 canonical_tree_compare(const void* k1, const void* k2)
865 {
866 	struct canon_rr* r1 = (struct canon_rr*)k1;
867 	struct canon_rr* r2 = (struct canon_rr*)k2;
868 	log_assert(r1->rrset == r2->rrset);
869 	return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
870 }
871 
872 /**
873  * Sort RRs for rrset in canonical order.
874  * Does not actually canonicalize the RR rdatas.
875  * Does not touch rrsigs.
876  * @param rrset: to sort.
877  * @param d: rrset data.
878  * @param sortree: tree to sort into.
879  * @param rrs: rr storage.
880  */
881 static void
882 canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
883 	rbtree_t* sortree, struct canon_rr* rrs)
884 {
885 	size_t i;
886 	/* insert into rbtree to sort and detect duplicates */
887 	for(i=0; i<d->count; i++) {
888 		rrs[i].node.key = &rrs[i];
889 		rrs[i].rrset = rrset;
890 		rrs[i].rr_idx = i;
891 		if(!rbtree_insert(sortree, &rrs[i].node)) {
892 			/* this was a duplicate */
893 		}
894 	}
895 }
896 
897 /**
898  * Inser canonical owner name into buffer.
899  * @param buf: buffer to insert into at current position.
900  * @param k: rrset with its owner name.
901  * @param sig: signature with signer name and label count.
902  * 	must be length checked, at least 18 bytes long.
903  * @param can_owner: position in buffer returned for future use.
904  * @param can_owner_len: length of canonical owner name.
905  */
906 static void
907 insert_can_owner(ldns_buffer* buf, struct ub_packed_rrset_key* k,
908 	uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
909 {
910 	int rrsig_labels = (int)sig[3];
911 	int fqdn_labels = dname_signame_label_count(k->rk.dname);
912 	*can_owner = ldns_buffer_current(buf);
913 	if(rrsig_labels == fqdn_labels) {
914 		/* no change */
915 		ldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
916 		query_dname_tolower(*can_owner);
917 		*can_owner_len = k->rk.dname_len;
918 		return;
919 	}
920 	log_assert(rrsig_labels < fqdn_labels);
921 	/* *. | fqdn(rightmost rrsig_labels) */
922 	if(rrsig_labels < fqdn_labels) {
923 		int i;
924 		uint8_t* nm = k->rk.dname;
925 		size_t len = k->rk.dname_len;
926 		/* so skip fqdn_labels-rrsig_labels */
927 		for(i=0; i<fqdn_labels-rrsig_labels; i++) {
928 			dname_remove_label(&nm, &len);
929 		}
930 		*can_owner_len = len+2;
931 		ldns_buffer_write(buf, (uint8_t*)"\001*", 2);
932 		ldns_buffer_write(buf, nm, len);
933 		query_dname_tolower(*can_owner);
934 	}
935 }
936 
937 /**
938  * Canonicalize Rdata in buffer.
939  * @param buf: buffer at position just after the rdata.
940  * @param rrset: rrset with type.
941  * @param len: length of the rdata (including rdatalen uint16).
942  */
943 static void
944 canonicalize_rdata(ldns_buffer* buf, struct ub_packed_rrset_key* rrset,
945 	size_t len)
946 {
947 	uint8_t* datstart = ldns_buffer_current(buf)-len+2;
948 	switch(ntohs(rrset->rk.type)) {
949 		case LDNS_RR_TYPE_NXT:
950 		case LDNS_RR_TYPE_NS:
951 		case LDNS_RR_TYPE_MD:
952 		case LDNS_RR_TYPE_MF:
953 		case LDNS_RR_TYPE_CNAME:
954 		case LDNS_RR_TYPE_MB:
955 		case LDNS_RR_TYPE_MG:
956 		case LDNS_RR_TYPE_MR:
957 		case LDNS_RR_TYPE_PTR:
958 		case LDNS_RR_TYPE_DNAME:
959 			/* type only has a single argument, the name */
960 			query_dname_tolower(datstart);
961 			return;
962 		case LDNS_RR_TYPE_MINFO:
963 		case LDNS_RR_TYPE_RP:
964 		case LDNS_RR_TYPE_SOA:
965 			/* two names after another */
966 			query_dname_tolower(datstart);
967 			query_dname_tolower(datstart +
968 				dname_valid(datstart, len-2));
969 			return;
970 		case LDNS_RR_TYPE_RT:
971 		case LDNS_RR_TYPE_AFSDB:
972 		case LDNS_RR_TYPE_KX:
973 		case LDNS_RR_TYPE_MX:
974 			/* skip fixed part */
975 			if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
976 				return;
977 			datstart += 2;
978 			query_dname_tolower(datstart);
979 			return;
980 		case LDNS_RR_TYPE_SIG:
981 		/* downcase the RRSIG, compat with BIND (kept it from SIG) */
982 		case LDNS_RR_TYPE_RRSIG:
983 			/* skip fixed part */
984 			if(len < 2+18+1)
985 				return;
986 			datstart += 18;
987 			query_dname_tolower(datstart);
988 			return;
989 		case LDNS_RR_TYPE_PX:
990 			/* skip, then two names after another */
991 			if(len < 2+2+1)
992 				return;
993 			datstart += 2;
994 			query_dname_tolower(datstart);
995 			query_dname_tolower(datstart +
996 				dname_valid(datstart, len-2-2));
997 			return;
998 		case LDNS_RR_TYPE_NAPTR:
999 			if(len < 2+4)
1000 				return;
1001 			len -= 2+4;
1002 			datstart += 4;
1003 			if(len < (size_t)datstart[0]+1) /* skip text field */
1004 				return;
1005 			len -= (size_t)datstart[0]+1;
1006 			datstart += (size_t)datstart[0]+1;
1007 			if(len < (size_t)datstart[0]+1) /* skip text field */
1008 				return;
1009 			len -= (size_t)datstart[0]+1;
1010 			datstart += (size_t)datstart[0]+1;
1011 			if(len < (size_t)datstart[0]+1) /* skip text field */
1012 				return;
1013 			len -= (size_t)datstart[0]+1;
1014 			datstart += (size_t)datstart[0]+1;
1015 			if(len < 1)	/* check name is at least 1 byte*/
1016 				return;
1017 			query_dname_tolower(datstart);
1018 			return;
1019 		case LDNS_RR_TYPE_SRV:
1020 			/* skip fixed part */
1021 			if(len < 2+6+1)
1022 				return;
1023 			datstart += 6;
1024 			query_dname_tolower(datstart);
1025 			return;
1026 
1027 		/* do not canonicalize NSEC rdata name, compat with
1028 		 * from bind 9.4 signer, where it does not do so */
1029 		case LDNS_RR_TYPE_NSEC: /* type starts with the name */
1030 		case LDNS_RR_TYPE_HINFO: /* not downcased */
1031 		/* A6 not supported */
1032 		default:
1033 			/* nothing to do for unknown types */
1034 			return;
1035 	}
1036 }
1037 
1038 /**
1039  * Create canonical form of rrset in the scratch buffer.
1040  * @param region: temporary region.
1041  * @param buf: the buffer to use.
1042  * @param k: the rrset to insert.
1043  * @param sig: RRSIG rdata to include.
1044  * @param siglen: RRSIG rdata len excluding signature field, but inclusive
1045  * 	signer name length.
1046  * @param sortree: if NULL is passed a new sorted rrset tree is built.
1047  * 	Otherwise it is reused.
1048  * @return false on alloc error.
1049  */
1050 static int
1051 rrset_canonical(struct regional* region, ldns_buffer* buf,
1052 	struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
1053 	struct rbtree_t** sortree)
1054 {
1055 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
1056 	uint8_t* can_owner = NULL;
1057 	size_t can_owner_len = 0;
1058 	struct canon_rr* walk;
1059 	struct canon_rr* rrs;
1060 
1061 	if(!*sortree) {
1062 		*sortree = (struct rbtree_t*)regional_alloc(region,
1063 			sizeof(rbtree_t));
1064 		if(!*sortree)
1065 			return 0;
1066 		rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
1067 		if(!rrs) {
1068 			*sortree = NULL;
1069 			return 0;
1070 		}
1071 		rbtree_init(*sortree, &canonical_tree_compare);
1072 		canonical_sort(k, d, *sortree, rrs);
1073 	}
1074 
1075 	ldns_buffer_clear(buf);
1076 	ldns_buffer_write(buf, sig, siglen);
1077 	/* canonicalize signer name */
1078 	query_dname_tolower(ldns_buffer_begin(buf)+18);
1079 	RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
1080 		/* see if there is enough space left in the buffer */
1081 		if(ldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
1082 			+ d->rr_len[walk->rr_idx]) {
1083 			log_err("verify: failed to canonicalize, "
1084 				"rrset too big");
1085 			return 0;
1086 		}
1087 		/* determine canonical owner name */
1088 		if(can_owner)
1089 			ldns_buffer_write(buf, can_owner, can_owner_len);
1090 		else	insert_can_owner(buf, k, sig, &can_owner,
1091 				&can_owner_len);
1092 		ldns_buffer_write(buf, &k->rk.type, 2);
1093 		ldns_buffer_write(buf, &k->rk.rrset_class, 2);
1094 		ldns_buffer_write(buf, sig+4, 4);
1095 		ldns_buffer_write(buf, d->rr_data[walk->rr_idx],
1096 			d->rr_len[walk->rr_idx]);
1097 		canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
1098 	}
1099 	ldns_buffer_flip(buf);
1100 	return 1;
1101 }
1102 
1103 /** pretty print rrsig error with dates */
1104 static void
1105 sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
1106 {
1107 	struct tm tm;
1108 	char expi_buf[16];
1109 	char incep_buf[16];
1110 	char now_buf[16];
1111 	time_t te, ti, tn;
1112 
1113 	if(verbosity < VERB_QUERY)
1114 		return;
1115 	te = (time_t)expi;
1116 	ti = (time_t)incep;
1117 	tn = (time_t)now;
1118 	memset(&tm, 0, sizeof(tm));
1119 	if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
1120 	 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
1121 	 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
1122 		log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
1123 			incep_buf, now_buf);
1124 	} else
1125 		log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
1126 			(unsigned)incep, (unsigned)now);
1127 }
1128 
1129 /** check rrsig dates */
1130 static int
1131 check_dates(struct val_env* ve, uint32_t unow,
1132 	uint8_t* expi_p, uint8_t* incep_p, char** reason)
1133 {
1134 	/* read out the dates */
1135 	int32_t expi, incep, now;
1136 	memmove(&expi, expi_p, sizeof(expi));
1137 	memmove(&incep, incep_p, sizeof(incep));
1138 	expi = ntohl(expi);
1139 	incep = ntohl(incep);
1140 
1141 	/* get current date */
1142 	if(ve->date_override) {
1143 		if(ve->date_override == -1) {
1144 			verbose(VERB_ALGO, "date override: ignore date");
1145 			return 1;
1146 		}
1147 		now = ve->date_override;
1148 		verbose(VERB_ALGO, "date override option %d", (int)now);
1149 	} else	now = (int32_t)unow;
1150 
1151 	/* check them */
1152 	if(incep - expi > 0) {
1153 		sigdate_error("verify: inception after expiration, "
1154 			"signature bad", expi, incep, now);
1155 		*reason = "signature inception after expiration";
1156 		return 0;
1157 	}
1158 	if(incep - now > 0) {
1159 		/* within skew ? (calc here to avoid calculation normally) */
1160 		int32_t skew = (expi-incep)/10;
1161 		if(skew < ve->skew_min) skew = ve->skew_min;
1162 		if(skew > ve->skew_max) skew = ve->skew_max;
1163 		if(incep - now > skew) {
1164 			sigdate_error("verify: signature bad, current time is"
1165 				" before inception date", expi, incep, now);
1166 			*reason = "signature before inception date";
1167 			return 0;
1168 		}
1169 		sigdate_error("verify warning suspicious signature inception "
1170 			" or bad local clock", expi, incep, now);
1171 	}
1172 	if(now - expi > 0) {
1173 		int32_t skew = (expi-incep)/10;
1174 		if(skew < ve->skew_min) skew = ve->skew_min;
1175 		if(skew > ve->skew_max) skew = ve->skew_max;
1176 		if(now - expi > skew) {
1177 			sigdate_error("verify: signature expired", expi,
1178 				incep, now);
1179 			*reason = "signature expired";
1180 			return 0;
1181 		}
1182 		sigdate_error("verify warning suspicious signature expiration "
1183 			" or bad local clock", expi, incep, now);
1184 	}
1185 	return 1;
1186 }
1187 
1188 /** adjust rrset TTL for verified rrset, compare to original TTL and expi */
1189 static void
1190 adjust_ttl(struct val_env* ve, uint32_t unow,
1191 	struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
1192 	uint8_t* expi_p, uint8_t* incep_p)
1193 {
1194 	struct packed_rrset_data* d =
1195 		(struct packed_rrset_data*)rrset->entry.data;
1196 	/* read out the dates */
1197 	int32_t origttl, expittl, expi, incep, now;
1198 	memmove(&origttl, orig_p, sizeof(origttl));
1199 	memmove(&expi, expi_p, sizeof(expi));
1200 	memmove(&incep, incep_p, sizeof(incep));
1201 	expi = ntohl(expi);
1202 	incep = ntohl(incep);
1203 	origttl = ntohl(origttl);
1204 
1205 	/* get current date */
1206 	if(ve->date_override) {
1207 		now = ve->date_override;
1208 	} else	now = (int32_t)unow;
1209 	expittl = expi - now;
1210 
1211 	/* so now:
1212 	 * d->ttl: rrset ttl read from message or cache. May be reduced
1213 	 * origttl: original TTL from signature, authoritative TTL max.
1214 	 * expittl: TTL until the signature expires.
1215 	 *
1216 	 * Use the smallest of these.
1217 	 */
1218 	if(d->ttl > (uint32_t)origttl) {
1219 		verbose(VERB_QUERY, "rrset TTL larger than original TTL,"
1220 			" adjusting TTL downwards");
1221 		d->ttl = origttl;
1222 	}
1223 	if(expittl > 0 && d->ttl > (uint32_t)expittl) {
1224 		verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
1225 			" adjusting TTL downwards");
1226 		d->ttl = expittl;
1227 	}
1228 }
1229 
1230 enum sec_status
1231 dnskey_verify_rrset_sig(struct regional* region, ldns_buffer* buf,
1232 	struct val_env* ve, uint32_t now,
1233         struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
1234         size_t dnskey_idx, size_t sig_idx,
1235 	struct rbtree_t** sortree, int* buf_canon, char** reason)
1236 {
1237 	enum sec_status sec;
1238 	uint8_t* sig;		/* RRSIG rdata */
1239 	size_t siglen;
1240 	size_t rrnum = rrset_get_count(rrset);
1241 	uint8_t* signer;	/* rrsig signer name */
1242 	size_t signer_len;
1243 	unsigned char* sigblock; /* signature rdata field */
1244 	unsigned int sigblock_len;
1245 	uint16_t ktag;		/* DNSKEY key tag */
1246 	unsigned char* key;	/* public key rdata field */
1247 	unsigned int keylen;
1248 	rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
1249 	/* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
1250 	if(siglen < 2+20) {
1251 		verbose(VERB_QUERY, "verify: signature too short");
1252 		*reason = "signature too short";
1253 		return sec_status_bogus;
1254 	}
1255 
1256 	if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
1257 		verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
1258 		*reason = "dnskey without ZSK flag";
1259 		return sec_status_bogus;
1260 	}
1261 
1262 	if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
1263 		/* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
1264 		verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
1265 		*reason = "dnskey has wrong protocolnumber";
1266 		return sec_status_bogus;
1267 	}
1268 
1269 	/* verify as many fields in rrsig as possible */
1270 	signer = sig+2+18;
1271 	signer_len = dname_valid(signer, siglen-2-18);
1272 	if(!signer_len) {
1273 		verbose(VERB_QUERY, "verify: malformed signer name");
1274 		*reason = "signer name malformed";
1275 		return sec_status_bogus; /* signer name invalid */
1276 	}
1277 	if(!dname_subdomain_c(rrset->rk.dname, signer)) {
1278 		verbose(VERB_QUERY, "verify: signer name is off-tree");
1279 		*reason = "signer name off-tree";
1280 		return sec_status_bogus; /* signer name offtree */
1281 	}
1282 	sigblock = (unsigned char*)signer+signer_len;
1283 	if(siglen < 2+18+signer_len+1) {
1284 		verbose(VERB_QUERY, "verify: too short, no signature data");
1285 		*reason = "signature too short, no signature data";
1286 		return sec_status_bogus; /* sig rdf is < 1 byte */
1287 	}
1288 	sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
1289 
1290 	/* verify key dname == sig signer name */
1291 	if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
1292 		verbose(VERB_QUERY, "verify: wrong key for rrsig");
1293 		log_nametypeclass(VERB_QUERY, "RRSIG signername is",
1294 			signer, 0, 0);
1295 		log_nametypeclass(VERB_QUERY, "the key name is",
1296 			dnskey->rk.dname, 0, 0);
1297 		*reason = "signer name mismatches key name";
1298 		return sec_status_bogus;
1299 	}
1300 
1301 	/* verify covered type */
1302 	/* memcmp works because type is in network format for rrset */
1303 	if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
1304 		verbose(VERB_QUERY, "verify: wrong type covered");
1305 		*reason = "signature covers wrong type";
1306 		return sec_status_bogus;
1307 	}
1308 	/* verify keytag and sig algo (possibly again) */
1309 	if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
1310 		verbose(VERB_QUERY, "verify: wrong algorithm");
1311 		*reason = "signature has wrong algorithm";
1312 		return sec_status_bogus;
1313 	}
1314 	ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
1315 	if(memcmp(sig+2+16, &ktag, 2) != 0) {
1316 		verbose(VERB_QUERY, "verify: wrong keytag");
1317 		*reason = "signature has wrong keytag";
1318 		return sec_status_bogus;
1319 	}
1320 
1321 	/* verify labels is in a valid range */
1322 	if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
1323 		verbose(VERB_QUERY, "verify: labelcount out of range");
1324 		*reason = "signature labelcount out of range";
1325 		return sec_status_bogus;
1326 	}
1327 
1328 	/* original ttl, always ok */
1329 
1330 	if(!*buf_canon) {
1331 		/* create rrset canonical format in buffer, ready for
1332 		 * signature */
1333 		if(!rrset_canonical(region, buf, rrset, sig+2,
1334 			18 + signer_len, sortree)) {
1335 			log_err("verify: failed due to alloc error");
1336 			return sec_status_unchecked;
1337 		}
1338 		*buf_canon = 1;
1339 	}
1340 
1341 	/* check that dnskey is available */
1342 	dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
1343 	if(!key) {
1344 		verbose(VERB_QUERY, "verify: short DNSKEY RR");
1345 		return sec_status_unchecked;
1346 	}
1347 
1348 	/* verify */
1349 	sec = verify_canonrrset(buf, (int)sig[2+2],
1350 		sigblock, sigblock_len, key, keylen, reason);
1351 
1352 	if(sec == sec_status_secure) {
1353 		/* check if TTL is too high - reduce if so */
1354 		adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
1355 
1356 		/* verify inception, expiration dates
1357 		 * Do this last so that if you ignore expired-sigs the
1358 		 * rest is sure to be OK. */
1359 		if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
1360 			return sec_status_bogus;
1361 		}
1362 	}
1363 
1364 	return sec;
1365 }
1366