1 /* 2 * validator/val_sigcrypt.c - validator signature crypto functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with signature verification and checking, the 41 * bridging between RR wireformat data and crypto calls. 42 */ 43 #include "config.h" 44 #include "validator/val_sigcrypt.h" 45 #include "validator/val_secalgo.h" 46 #include "validator/validator.h" 47 #include "util/data/msgreply.h" 48 #include "util/data/msgparse.h" 49 #include "util/data/dname.h" 50 #include "util/rbtree.h" 51 #include "util/module.h" 52 #include "util/net_help.h" 53 #include "util/regional.h" 54 #include "util/config_file.h" 55 #include "sldns/keyraw.h" 56 #include "sldns/sbuffer.h" 57 #include "sldns/parseutil.h" 58 #include "sldns/wire2str.h" 59 60 #include <ctype.h> 61 #if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE) 62 #error "Need crypto library to do digital signature cryptography" 63 #endif 64 65 #ifdef HAVE_OPENSSL_ERR_H 66 #include <openssl/err.h> 67 #endif 68 69 #ifdef HAVE_OPENSSL_RAND_H 70 #include <openssl/rand.h> 71 #endif 72 73 #ifdef HAVE_OPENSSL_CONF_H 74 #include <openssl/conf.h> 75 #endif 76 77 #ifdef HAVE_OPENSSL_ENGINE_H 78 #include <openssl/engine.h> 79 #endif 80 81 /** return number of rrs in an rrset */ 82 static size_t 83 rrset_get_count(struct ub_packed_rrset_key* rrset) 84 { 85 struct packed_rrset_data* d = (struct packed_rrset_data*) 86 rrset->entry.data; 87 if(!d) return 0; 88 return d->count; 89 } 90 91 /** 92 * Get RR signature count 93 */ 94 static size_t 95 rrset_get_sigcount(struct ub_packed_rrset_key* k) 96 { 97 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 98 return d->rrsig_count; 99 } 100 101 /** 102 * Get signature keytag value 103 * @param k: rrset (with signatures) 104 * @param sig_idx: signature index. 105 * @return keytag or 0 if malformed rrsig. 106 */ 107 static uint16_t 108 rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx) 109 { 110 uint16_t t; 111 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 112 log_assert(sig_idx < d->rrsig_count); 113 if(d->rr_len[d->count + sig_idx] < 2+18) 114 return 0; 115 memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2); 116 return ntohs(t); 117 } 118 119 /** 120 * Get signature signing algorithm value 121 * @param k: rrset (with signatures) 122 * @param sig_idx: signature index. 123 * @return algo or 0 if malformed rrsig. 124 */ 125 static int 126 rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx) 127 { 128 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 129 log_assert(sig_idx < d->rrsig_count); 130 if(d->rr_len[d->count + sig_idx] < 2+3) 131 return 0; 132 return (int)d->rr_data[d->count + sig_idx][2+2]; 133 } 134 135 /** get rdata pointer and size */ 136 static void 137 rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata, 138 size_t* len) 139 { 140 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 141 log_assert(d && idx < (d->count + d->rrsig_count)); 142 *rdata = d->rr_data[idx]; 143 *len = d->rr_len[idx]; 144 } 145 146 uint16_t 147 dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx) 148 { 149 uint8_t* rdata; 150 size_t len; 151 uint16_t f; 152 rrset_get_rdata(k, idx, &rdata, &len); 153 if(len < 2+2) 154 return 0; 155 memmove(&f, rdata+2, 2); 156 f = ntohs(f); 157 return f; 158 } 159 160 /** 161 * Get DNSKEY protocol value from rdata 162 * @param k: DNSKEY rrset. 163 * @param idx: which key. 164 * @return protocol octet value 165 */ 166 static int 167 dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx) 168 { 169 uint8_t* rdata; 170 size_t len; 171 rrset_get_rdata(k, idx, &rdata, &len); 172 if(len < 2+4) 173 return 0; 174 return (int)rdata[2+2]; 175 } 176 177 int 178 dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx) 179 { 180 uint8_t* rdata; 181 size_t len; 182 rrset_get_rdata(k, idx, &rdata, &len); 183 if(len < 2+4) 184 return 0; 185 return (int)rdata[2+3]; 186 } 187 188 /** get public key rdata field from a dnskey RR and do some checks */ 189 static void 190 dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx, 191 unsigned char** pk, unsigned int* pklen) 192 { 193 uint8_t* rdata; 194 size_t len; 195 rrset_get_rdata(k, idx, &rdata, &len); 196 if(len < 2+5) { 197 *pk = NULL; 198 *pklen = 0; 199 return; 200 } 201 *pk = (unsigned char*)rdata+2+4; 202 *pklen = (unsigned)len-2-4; 203 } 204 205 int 206 ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx) 207 { 208 uint8_t* rdata; 209 size_t len; 210 rrset_get_rdata(k, idx, &rdata, &len); 211 if(len < 2+3) 212 return 0; 213 return (int)rdata[2+2]; 214 } 215 216 int 217 ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx) 218 { 219 uint8_t* rdata; 220 size_t len; 221 rrset_get_rdata(k, idx, &rdata, &len); 222 if(len < 2+4) 223 return 0; 224 return (int)rdata[2+3]; 225 } 226 227 uint16_t 228 ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 229 { 230 uint16_t t; 231 uint8_t* rdata; 232 size_t len; 233 rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len); 234 if(len < 2+2) 235 return 0; 236 memmove(&t, rdata+2, 2); 237 return ntohs(t); 238 } 239 240 /** 241 * Return pointer to the digest in a DS RR. 242 * @param k: DS rrset. 243 * @param idx: which DS. 244 * @param digest: digest data is returned. 245 * on error, this is NULL. 246 * @param len: length of digest is returned. 247 * on error, the length is 0. 248 */ 249 static void 250 ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest, 251 size_t* len) 252 { 253 uint8_t* rdata; 254 size_t rdlen; 255 rrset_get_rdata(k, idx, &rdata, &rdlen); 256 if(rdlen < 2+5) { 257 *digest = NULL; 258 *len = 0; 259 return; 260 } 261 *digest = rdata + 2 + 4; 262 *len = rdlen - 2 - 4; 263 } 264 265 /** 266 * Return size of DS digest according to its hash algorithm. 267 * @param k: DS rrset. 268 * @param idx: which DS. 269 * @return size in bytes of digest, or 0 if not supported. 270 */ 271 static size_t 272 ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx) 273 { 274 return ds_digest_size_supported(ds_get_digest_algo(k, idx)); 275 } 276 277 /** 278 * Create a DS digest for a DNSKEY entry. 279 * 280 * @param env: module environment. Uses scratch space. 281 * @param dnskey_rrset: DNSKEY rrset. 282 * @param dnskey_idx: index of RR in rrset. 283 * @param ds_rrset: DS rrset 284 * @param ds_idx: index of RR in DS rrset. 285 * @param digest: digest is returned in here (must be correctly sized). 286 * @return false on error. 287 */ 288 static int 289 ds_create_dnskey_digest(struct module_env* env, 290 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 291 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx, 292 uint8_t* digest) 293 { 294 sldns_buffer* b = env->scratch_buffer; 295 uint8_t* dnskey_rdata; 296 size_t dnskey_len; 297 rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len); 298 299 /* create digest source material in buffer 300 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA); 301 * DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */ 302 sldns_buffer_clear(b); 303 sldns_buffer_write(b, dnskey_rrset->rk.dname, 304 dnskey_rrset->rk.dname_len); 305 query_dname_tolower(sldns_buffer_begin(b)); 306 sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/ 307 sldns_buffer_flip(b); 308 309 return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx), 310 (unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b), 311 (unsigned char*)digest); 312 } 313 314 int ds_digest_match_dnskey(struct module_env* env, 315 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 316 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 317 { 318 uint8_t* ds; /* DS digest */ 319 size_t dslen; 320 uint8_t* digest; /* generated digest */ 321 size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx); 322 323 if(digestlen == 0) { 324 verbose(VERB_QUERY, "DS fail: not supported, or DS RR " 325 "format error"); 326 return 0; /* not supported, or DS RR format error */ 327 } 328 #ifndef USE_SHA1 329 if(fake_sha1 && ds_get_digest_algo(ds_rrset, ds_idx)==LDNS_SHA1) 330 return 1; 331 #endif 332 333 /* check digest length in DS with length from hash function */ 334 ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen); 335 if(!ds || dslen != digestlen) { 336 verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not " 337 "match each other"); 338 return 0; /* DS algorithm and digest do not match */ 339 } 340 341 digest = regional_alloc(env->scratch, digestlen); 342 if(!digest) { 343 verbose(VERB_QUERY, "DS fail: out of memory"); 344 return 0; /* mem error */ 345 } 346 if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset, 347 ds_idx, digest)) { 348 verbose(VERB_QUERY, "DS fail: could not calc key digest"); 349 return 0; /* digest algo failed */ 350 } 351 if(memcmp(digest, ds, dslen) != 0) { 352 verbose(VERB_QUERY, "DS fail: digest is different"); 353 return 0; /* digest different */ 354 } 355 return 1; 356 } 357 358 int 359 ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 360 size_t ds_idx) 361 { 362 return (ds_digest_size_algo(ds_rrset, ds_idx) != 0); 363 } 364 365 int 366 ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 367 size_t ds_idx) 368 { 369 return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx)); 370 } 371 372 uint16_t 373 dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx) 374 { 375 uint8_t* data; 376 size_t len; 377 rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len); 378 /* do not pass rdatalen to ldns */ 379 return sldns_calc_keytag_raw(data+2, len-2); 380 } 381 382 int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset, 383 size_t dnskey_idx) 384 { 385 return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset, 386 dnskey_idx)); 387 } 388 389 int dnskey_size_is_supported(struct ub_packed_rrset_key* dnskey_rrset, 390 size_t dnskey_idx) 391 { 392 #ifdef DEPRECATE_RSA_1024 393 uint8_t* rdata; 394 size_t len; 395 int alg = dnskey_get_algo(dnskey_rrset, dnskey_idx); 396 size_t keysize; 397 398 rrset_get_rdata(dnskey_rrset, dnskey_idx, &rdata, &len); 399 if(len < 2+4) 400 return 0; 401 keysize = sldns_rr_dnskey_key_size_raw(rdata+2+4, len-2-4, alg); 402 403 switch((sldns_algorithm)alg) { 404 case LDNS_RSAMD5: 405 case LDNS_RSASHA1: 406 case LDNS_RSASHA1_NSEC3: 407 case LDNS_RSASHA256: 408 case LDNS_RSASHA512: 409 /* reject RSA keys of 1024 bits and shorter */ 410 if(keysize <= 1024) 411 return 0; 412 break; 413 default: 414 break; 415 } 416 #else 417 (void)dnskey_rrset; (void)dnskey_idx; 418 #endif /* DEPRECATE_RSA_1024 */ 419 return 1; 420 } 421 422 int dnskeyset_size_is_supported(struct ub_packed_rrset_key* dnskey_rrset) 423 { 424 size_t i, num = rrset_get_count(dnskey_rrset); 425 for(i=0; i<num; i++) { 426 if(!dnskey_size_is_supported(dnskey_rrset, i)) 427 return 0; 428 } 429 return 1; 430 } 431 432 void algo_needs_init_dnskey_add(struct algo_needs* n, 433 struct ub_packed_rrset_key* dnskey, uint8_t* sigalg) 434 { 435 uint8_t algo; 436 size_t i, total = n->num; 437 size_t num = rrset_get_count(dnskey); 438 439 for(i=0; i<num; i++) { 440 algo = (uint8_t)dnskey_get_algo(dnskey, i); 441 if(!dnskey_algo_id_is_supported((int)algo)) 442 continue; 443 if(n->needs[algo] == 0) { 444 n->needs[algo] = 1; 445 sigalg[total] = algo; 446 total++; 447 } 448 } 449 sigalg[total] = 0; 450 n->num = total; 451 } 452 453 void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg) 454 { 455 uint8_t algo; 456 size_t total = 0; 457 458 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 459 while( (algo=*sigalg++) != 0) { 460 log_assert(dnskey_algo_id_is_supported((int)algo)); 461 log_assert(n->needs[algo] == 0); 462 n->needs[algo] = 1; 463 total++; 464 } 465 n->num = total; 466 } 467 468 void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds, 469 int fav_ds_algo, uint8_t* sigalg) 470 { 471 uint8_t algo; 472 size_t i, total = 0; 473 size_t num = rrset_get_count(ds); 474 475 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 476 for(i=0; i<num; i++) { 477 if(ds_get_digest_algo(ds, i) != fav_ds_algo) 478 continue; 479 algo = (uint8_t)ds_get_key_algo(ds, i); 480 if(!dnskey_algo_id_is_supported((int)algo)) 481 continue; 482 log_assert(algo != 0); /* we do not support 0 and is EOS */ 483 if(n->needs[algo] == 0) { 484 n->needs[algo] = 1; 485 sigalg[total] = algo; 486 total++; 487 } 488 } 489 sigalg[total] = 0; 490 n->num = total; 491 } 492 493 int algo_needs_set_secure(struct algo_needs* n, uint8_t algo) 494 { 495 if(n->needs[algo]) { 496 n->needs[algo] = 0; 497 n->num --; 498 if(n->num == 0) /* done! */ 499 return 1; 500 } 501 return 0; 502 } 503 504 void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo) 505 { 506 if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */ 507 } 508 509 size_t algo_needs_num_missing(struct algo_needs* n) 510 { 511 return n->num; 512 } 513 514 int algo_needs_missing(struct algo_needs* n) 515 { 516 int i; 517 /* first check if a needed algo was bogus - report that */ 518 for(i=0; i<ALGO_NEEDS_MAX; i++) 519 if(n->needs[i] == 2) 520 return 0; 521 /* now check which algo is missing */ 522 for(i=0; i<ALGO_NEEDS_MAX; i++) 523 if(n->needs[i] == 1) 524 return i; 525 return 0; 526 } 527 528 enum sec_status 529 dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve, 530 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 531 uint8_t* sigalg, char** reason, sldns_pkt_section section, 532 struct module_qstate* qstate) 533 { 534 enum sec_status sec; 535 size_t i, num; 536 rbtree_type* sortree = NULL; 537 /* make sure that for all DNSKEY algorithms there are valid sigs */ 538 struct algo_needs needs; 539 int alg; 540 541 num = rrset_get_sigcount(rrset); 542 if(num == 0) { 543 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 544 "signatures"); 545 *reason = "no signatures"; 546 return sec_status_bogus; 547 } 548 549 if(sigalg) { 550 algo_needs_init_list(&needs, sigalg); 551 if(algo_needs_num_missing(&needs) == 0) { 552 verbose(VERB_QUERY, "zone has no known algorithms"); 553 *reason = "zone has no known algorithms"; 554 return sec_status_insecure; 555 } 556 } 557 for(i=0; i<num; i++) { 558 sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset, 559 dnskey, i, &sortree, reason, section, qstate); 560 /* see which algorithm has been fixed up */ 561 if(sec == sec_status_secure) { 562 if(!sigalg) 563 return sec; /* done! */ 564 else if(algo_needs_set_secure(&needs, 565 (uint8_t)rrset_get_sig_algo(rrset, i))) 566 return sec; /* done! */ 567 } else if(sigalg && sec == sec_status_bogus) { 568 algo_needs_set_bogus(&needs, 569 (uint8_t)rrset_get_sig_algo(rrset, i)); 570 } 571 } 572 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) { 573 verbose(VERB_ALGO, "rrset failed to verify: " 574 "no valid signatures for %d algorithms", 575 (int)algo_needs_num_missing(&needs)); 576 algo_needs_reason(env, alg, reason, "no signatures"); 577 } else { 578 verbose(VERB_ALGO, "rrset failed to verify: " 579 "no valid signatures"); 580 } 581 return sec_status_bogus; 582 } 583 584 void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s) 585 { 586 char buf[256]; 587 sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg); 588 if(t&&t->name) 589 snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name); 590 else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s, 591 (unsigned)alg); 592 *reason = regional_strdup(env->scratch, buf); 593 if(!*reason) 594 *reason = s; 595 } 596 597 enum sec_status 598 dnskey_verify_rrset(struct module_env* env, struct val_env* ve, 599 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 600 size_t dnskey_idx, char** reason, sldns_pkt_section section, 601 struct module_qstate* qstate) 602 { 603 enum sec_status sec; 604 size_t i, num, numchecked = 0; 605 rbtree_type* sortree = NULL; 606 int buf_canon = 0; 607 uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx); 608 int algo = dnskey_get_algo(dnskey, dnskey_idx); 609 610 num = rrset_get_sigcount(rrset); 611 if(num == 0) { 612 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 613 "signatures"); 614 *reason = "no signatures"; 615 return sec_status_bogus; 616 } 617 for(i=0; i<num; i++) { 618 /* see if sig matches keytag and algo */ 619 if(algo != rrset_get_sig_algo(rrset, i) || 620 tag != rrset_get_sig_keytag(rrset, i)) 621 continue; 622 buf_canon = 0; 623 sec = dnskey_verify_rrset_sig(env->scratch, 624 env->scratch_buffer, ve, *env->now, rrset, 625 dnskey, dnskey_idx, i, &sortree, &buf_canon, reason, 626 section, qstate); 627 if(sec == sec_status_secure) 628 return sec; 629 numchecked ++; 630 } 631 verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus"); 632 if(!numchecked) *reason = "signature missing"; 633 return sec_status_bogus; 634 } 635 636 enum sec_status 637 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve, 638 time_t now, struct ub_packed_rrset_key* rrset, 639 struct ub_packed_rrset_key* dnskey, size_t sig_idx, 640 struct rbtree_type** sortree, char** reason, sldns_pkt_section section, 641 struct module_qstate* qstate) 642 { 643 /* find matching keys and check them */ 644 enum sec_status sec = sec_status_bogus; 645 uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx); 646 int algo = rrset_get_sig_algo(rrset, sig_idx); 647 size_t i, num = rrset_get_count(dnskey); 648 size_t numchecked = 0; 649 int buf_canon = 0; 650 verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo); 651 if(!dnskey_algo_id_is_supported(algo)) { 652 verbose(VERB_QUERY, "verify sig: unknown algorithm"); 653 return sec_status_insecure; 654 } 655 656 for(i=0; i<num; i++) { 657 /* see if key matches keytag and algo */ 658 if(algo != dnskey_get_algo(dnskey, i) || 659 tag != dnskey_calc_keytag(dnskey, i)) 660 continue; 661 numchecked ++; 662 663 /* see if key verifies */ 664 sec = dnskey_verify_rrset_sig(env->scratch, 665 env->scratch_buffer, ve, now, rrset, dnskey, i, 666 sig_idx, sortree, &buf_canon, reason, section, qstate); 667 if(sec == sec_status_secure) 668 return sec; 669 } 670 if(numchecked == 0) { 671 *reason = "signatures from unknown keys"; 672 verbose(VERB_QUERY, "verify: could not find appropriate key"); 673 return sec_status_bogus; 674 } 675 return sec_status_bogus; 676 } 677 678 /** 679 * RR entries in a canonical sorted tree of RRs 680 */ 681 struct canon_rr { 682 /** rbtree node, key is this structure */ 683 rbnode_type node; 684 /** rrset the RR is in */ 685 struct ub_packed_rrset_key* rrset; 686 /** which RR in the rrset */ 687 size_t rr_idx; 688 }; 689 690 /** 691 * Compare two RR for canonical order, in a field-style sweep. 692 * @param d: rrset data 693 * @param desc: ldns wireformat descriptor. 694 * @param i: first RR to compare 695 * @param j: first RR to compare 696 * @return comparison code. 697 */ 698 static int 699 canonical_compare_byfield(struct packed_rrset_data* d, 700 const sldns_rr_descriptor* desc, size_t i, size_t j) 701 { 702 /* sweep across rdata, keep track of some state: 703 * which rr field, and bytes left in field. 704 * current position in rdata, length left. 705 * are we in a dname, length left in a label. 706 */ 707 int wfi = -1; /* current wireformat rdata field (rdf) */ 708 int wfj = -1; 709 uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */ 710 uint8_t* dj = d->rr_data[j]+2; 711 size_t ilen = d->rr_len[i]-2; /* length left in rdata */ 712 size_t jlen = d->rr_len[j]-2; 713 int dname_i = 0; /* true if these bytes are part of a name */ 714 int dname_j = 0; 715 size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/ 716 size_t lablen_j = 0; /* otherwise remaining length of rdf or label */ 717 int dname_num_i = (int)desc->_dname_count; /* decreased at root label */ 718 int dname_num_j = (int)desc->_dname_count; 719 720 /* loop while there are rdata bytes available for both rrs, 721 * and still some lowercasing needs to be done; either the dnames 722 * have not been reached yet, or they are currently being processed */ 723 while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) { 724 /* compare these two bytes */ 725 /* lowercase if in a dname and not a label length byte */ 726 if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 727 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj) 728 ) { 729 if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 730 < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)) 731 return -1; 732 return 1; 733 } 734 ilen--; 735 jlen--; 736 /* bytes are equal */ 737 738 /* advance field i */ 739 /* lablen 0 means that this byte is the first byte of the 740 * next rdata field; inspect this rdata field and setup 741 * to process the rest of this rdata field. 742 * The reason to first read the byte, then setup the rdf, 743 * is that we are then sure the byte is available and short 744 * rdata is handled gracefully (even if it is a formerr). */ 745 if(lablen_i == 0) { 746 if(dname_i) { 747 /* scan this dname label */ 748 /* capture length to lowercase */ 749 lablen_i = (size_t)*di; 750 if(lablen_i == 0) { 751 /* end root label */ 752 dname_i = 0; 753 dname_num_i--; 754 /* if dname num is 0, then the 755 * remainder is binary only */ 756 if(dname_num_i == 0) 757 lablen_i = ilen; 758 } 759 } else { 760 /* scan this rdata field */ 761 wfi++; 762 if(desc->_wireformat[wfi] 763 == LDNS_RDF_TYPE_DNAME) { 764 dname_i = 1; 765 lablen_i = (size_t)*di; 766 if(lablen_i == 0) { 767 dname_i = 0; 768 dname_num_i--; 769 if(dname_num_i == 0) 770 lablen_i = ilen; 771 } 772 } else if(desc->_wireformat[wfi] 773 == LDNS_RDF_TYPE_STR) 774 lablen_i = (size_t)*di; 775 else lablen_i = get_rdf_size( 776 desc->_wireformat[wfi]) - 1; 777 } 778 } else lablen_i--; 779 780 /* advance field j; same as for i */ 781 if(lablen_j == 0) { 782 if(dname_j) { 783 lablen_j = (size_t)*dj; 784 if(lablen_j == 0) { 785 dname_j = 0; 786 dname_num_j--; 787 if(dname_num_j == 0) 788 lablen_j = jlen; 789 } 790 } else { 791 wfj++; 792 if(desc->_wireformat[wfj] 793 == LDNS_RDF_TYPE_DNAME) { 794 dname_j = 1; 795 lablen_j = (size_t)*dj; 796 if(lablen_j == 0) { 797 dname_j = 0; 798 dname_num_j--; 799 if(dname_num_j == 0) 800 lablen_j = jlen; 801 } 802 } else if(desc->_wireformat[wfj] 803 == LDNS_RDF_TYPE_STR) 804 lablen_j = (size_t)*dj; 805 else lablen_j = get_rdf_size( 806 desc->_wireformat[wfj]) - 1; 807 } 808 } else lablen_j--; 809 di++; 810 dj++; 811 } 812 /* end of the loop; because we advanced byte by byte; now we have 813 * that the rdata has ended, or that there is a binary remainder */ 814 /* shortest first */ 815 if(ilen == 0 && jlen == 0) 816 return 0; 817 if(ilen == 0) 818 return -1; 819 if(jlen == 0) 820 return 1; 821 /* binary remainder, capture comparison in wfi variable */ 822 if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0) 823 return wfi; 824 if(ilen < jlen) 825 return -1; 826 if(jlen < ilen) 827 return 1; 828 return 0; 829 } 830 831 /** 832 * Compare two RRs in the same RRset and determine their relative 833 * canonical order. 834 * @param rrset: the rrset in which to perform compares. 835 * @param i: first RR to compare 836 * @param j: first RR to compare 837 * @return 0 if RR i== RR j, -1 if <, +1 if >. 838 */ 839 static int 840 canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j) 841 { 842 struct packed_rrset_data* d = (struct packed_rrset_data*) 843 rrset->entry.data; 844 const sldns_rr_descriptor* desc; 845 uint16_t type = ntohs(rrset->rk.type); 846 size_t minlen; 847 int c; 848 849 if(i==j) 850 return 0; 851 852 switch(type) { 853 /* These RR types have only a name as RDATA. 854 * This name has to be canonicalized.*/ 855 case LDNS_RR_TYPE_NS: 856 case LDNS_RR_TYPE_MD: 857 case LDNS_RR_TYPE_MF: 858 case LDNS_RR_TYPE_CNAME: 859 case LDNS_RR_TYPE_MB: 860 case LDNS_RR_TYPE_MG: 861 case LDNS_RR_TYPE_MR: 862 case LDNS_RR_TYPE_PTR: 863 case LDNS_RR_TYPE_DNAME: 864 /* the wireread function has already checked these 865 * dname's for correctness, and this double checks */ 866 if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) || 867 !dname_valid(d->rr_data[j]+2, d->rr_len[j]-2)) 868 return 0; 869 return query_dname_compare(d->rr_data[i]+2, 870 d->rr_data[j]+2); 871 872 /* These RR types have STR and fixed size rdata fields 873 * before one or more name fields that need canonicalizing, 874 * and after that a byte-for byte remainder can be compared. 875 */ 876 /* type starts with the name; remainder is binary compared */ 877 case LDNS_RR_TYPE_NXT: 878 /* use rdata field formats */ 879 case LDNS_RR_TYPE_MINFO: 880 case LDNS_RR_TYPE_RP: 881 case LDNS_RR_TYPE_SOA: 882 case LDNS_RR_TYPE_RT: 883 case LDNS_RR_TYPE_AFSDB: 884 case LDNS_RR_TYPE_KX: 885 case LDNS_RR_TYPE_MX: 886 case LDNS_RR_TYPE_SIG: 887 /* RRSIG signer name has to be downcased */ 888 case LDNS_RR_TYPE_RRSIG: 889 case LDNS_RR_TYPE_PX: 890 case LDNS_RR_TYPE_NAPTR: 891 case LDNS_RR_TYPE_SRV: 892 desc = sldns_rr_descript(type); 893 log_assert(desc); 894 /* this holds for the types that need canonicalizing */ 895 log_assert(desc->_minimum == desc->_maximum); 896 return canonical_compare_byfield(d, desc, i, j); 897 898 case LDNS_RR_TYPE_HINFO: /* no longer downcased */ 899 case LDNS_RR_TYPE_NSEC: 900 default: 901 /* For unknown RR types, or types not listed above, 902 * no canonicalization is needed, do binary compare */ 903 /* byte for byte compare, equal means shortest first*/ 904 minlen = d->rr_len[i]-2; 905 if(minlen > d->rr_len[j]-2) 906 minlen = d->rr_len[j]-2; 907 c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen); 908 if(c!=0) 909 return c; 910 /* rdata equal, shortest is first */ 911 if(d->rr_len[i] < d->rr_len[j]) 912 return -1; 913 if(d->rr_len[i] > d->rr_len[j]) 914 return 1; 915 /* rdata equal, length equal */ 916 break; 917 } 918 return 0; 919 } 920 921 int 922 canonical_tree_compare(const void* k1, const void* k2) 923 { 924 struct canon_rr* r1 = (struct canon_rr*)k1; 925 struct canon_rr* r2 = (struct canon_rr*)k2; 926 log_assert(r1->rrset == r2->rrset); 927 return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx); 928 } 929 930 /** 931 * Sort RRs for rrset in canonical order. 932 * Does not actually canonicalize the RR rdatas. 933 * Does not touch rrsigs. 934 * @param rrset: to sort. 935 * @param d: rrset data. 936 * @param sortree: tree to sort into. 937 * @param rrs: rr storage. 938 */ 939 static void 940 canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d, 941 rbtree_type* sortree, struct canon_rr* rrs) 942 { 943 size_t i; 944 /* insert into rbtree to sort and detect duplicates */ 945 for(i=0; i<d->count; i++) { 946 rrs[i].node.key = &rrs[i]; 947 rrs[i].rrset = rrset; 948 rrs[i].rr_idx = i; 949 if(!rbtree_insert(sortree, &rrs[i].node)) { 950 /* this was a duplicate */ 951 } 952 } 953 } 954 955 /** 956 * Insert canonical owner name into buffer. 957 * @param buf: buffer to insert into at current position. 958 * @param k: rrset with its owner name. 959 * @param sig: signature with signer name and label count. 960 * must be length checked, at least 18 bytes long. 961 * @param can_owner: position in buffer returned for future use. 962 * @param can_owner_len: length of canonical owner name. 963 */ 964 static void 965 insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k, 966 uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len) 967 { 968 int rrsig_labels = (int)sig[3]; 969 int fqdn_labels = dname_signame_label_count(k->rk.dname); 970 *can_owner = sldns_buffer_current(buf); 971 if(rrsig_labels == fqdn_labels) { 972 /* no change */ 973 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); 974 query_dname_tolower(*can_owner); 975 *can_owner_len = k->rk.dname_len; 976 return; 977 } 978 log_assert(rrsig_labels < fqdn_labels); 979 /* *. | fqdn(rightmost rrsig_labels) */ 980 if(rrsig_labels < fqdn_labels) { 981 int i; 982 uint8_t* nm = k->rk.dname; 983 size_t len = k->rk.dname_len; 984 /* so skip fqdn_labels-rrsig_labels */ 985 for(i=0; i<fqdn_labels-rrsig_labels; i++) { 986 dname_remove_label(&nm, &len); 987 } 988 *can_owner_len = len+2; 989 sldns_buffer_write(buf, (uint8_t*)"\001*", 2); 990 sldns_buffer_write(buf, nm, len); 991 query_dname_tolower(*can_owner); 992 } 993 } 994 995 /** 996 * Canonicalize Rdata in buffer. 997 * @param buf: buffer at position just after the rdata. 998 * @param rrset: rrset with type. 999 * @param len: length of the rdata (including rdatalen uint16). 1000 */ 1001 static void 1002 canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset, 1003 size_t len) 1004 { 1005 uint8_t* datstart = sldns_buffer_current(buf)-len+2; 1006 switch(ntohs(rrset->rk.type)) { 1007 case LDNS_RR_TYPE_NXT: 1008 case LDNS_RR_TYPE_NS: 1009 case LDNS_RR_TYPE_MD: 1010 case LDNS_RR_TYPE_MF: 1011 case LDNS_RR_TYPE_CNAME: 1012 case LDNS_RR_TYPE_MB: 1013 case LDNS_RR_TYPE_MG: 1014 case LDNS_RR_TYPE_MR: 1015 case LDNS_RR_TYPE_PTR: 1016 case LDNS_RR_TYPE_DNAME: 1017 /* type only has a single argument, the name */ 1018 query_dname_tolower(datstart); 1019 return; 1020 case LDNS_RR_TYPE_MINFO: 1021 case LDNS_RR_TYPE_RP: 1022 case LDNS_RR_TYPE_SOA: 1023 /* two names after another */ 1024 query_dname_tolower(datstart); 1025 query_dname_tolower(datstart + 1026 dname_valid(datstart, len-2)); 1027 return; 1028 case LDNS_RR_TYPE_RT: 1029 case LDNS_RR_TYPE_AFSDB: 1030 case LDNS_RR_TYPE_KX: 1031 case LDNS_RR_TYPE_MX: 1032 /* skip fixed part */ 1033 if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */ 1034 return; 1035 datstart += 2; 1036 query_dname_tolower(datstart); 1037 return; 1038 case LDNS_RR_TYPE_SIG: 1039 /* downcase the RRSIG, compat with BIND (kept it from SIG) */ 1040 case LDNS_RR_TYPE_RRSIG: 1041 /* skip fixed part */ 1042 if(len < 2+18+1) 1043 return; 1044 datstart += 18; 1045 query_dname_tolower(datstart); 1046 return; 1047 case LDNS_RR_TYPE_PX: 1048 /* skip, then two names after another */ 1049 if(len < 2+2+1) 1050 return; 1051 datstart += 2; 1052 query_dname_tolower(datstart); 1053 query_dname_tolower(datstart + 1054 dname_valid(datstart, len-2-2)); 1055 return; 1056 case LDNS_RR_TYPE_NAPTR: 1057 if(len < 2+4) 1058 return; 1059 len -= 2+4; 1060 datstart += 4; 1061 if(len < (size_t)datstart[0]+1) /* skip text field */ 1062 return; 1063 len -= (size_t)datstart[0]+1; 1064 datstart += (size_t)datstart[0]+1; 1065 if(len < (size_t)datstart[0]+1) /* skip text field */ 1066 return; 1067 len -= (size_t)datstart[0]+1; 1068 datstart += (size_t)datstart[0]+1; 1069 if(len < (size_t)datstart[0]+1) /* skip text field */ 1070 return; 1071 len -= (size_t)datstart[0]+1; 1072 datstart += (size_t)datstart[0]+1; 1073 if(len < 1) /* check name is at least 1 byte*/ 1074 return; 1075 query_dname_tolower(datstart); 1076 return; 1077 case LDNS_RR_TYPE_SRV: 1078 /* skip fixed part */ 1079 if(len < 2+6+1) 1080 return; 1081 datstart += 6; 1082 query_dname_tolower(datstart); 1083 return; 1084 1085 /* do not canonicalize NSEC rdata name, compat with 1086 * from bind 9.4 signer, where it does not do so */ 1087 case LDNS_RR_TYPE_NSEC: /* type starts with the name */ 1088 case LDNS_RR_TYPE_HINFO: /* not downcased */ 1089 /* A6 not supported */ 1090 default: 1091 /* nothing to do for unknown types */ 1092 return; 1093 } 1094 } 1095 1096 int rrset_canonical_equal(struct regional* region, 1097 struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) 1098 { 1099 struct rbtree_type sortree1, sortree2; 1100 struct canon_rr *rrs1, *rrs2, *p1, *p2; 1101 struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data; 1102 struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data; 1103 struct ub_packed_rrset_key fk; 1104 struct packed_rrset_data fd; 1105 size_t flen[2]; 1106 uint8_t* fdata[2]; 1107 1108 /* basic compare */ 1109 if(k1->rk.dname_len != k2->rk.dname_len || 1110 k1->rk.flags != k2->rk.flags || 1111 k1->rk.type != k2->rk.type || 1112 k1->rk.rrset_class != k2->rk.rrset_class || 1113 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) 1114 return 0; 1115 if(d1->ttl != d2->ttl || 1116 d1->count != d2->count || 1117 d1->rrsig_count != d2->rrsig_count || 1118 d1->trust != d2->trust || 1119 d1->security != d2->security) 1120 return 0; 1121 1122 /* init */ 1123 memset(&fk, 0, sizeof(fk)); 1124 memset(&fd, 0, sizeof(fd)); 1125 fk.entry.data = &fd; 1126 fd.count = 2; 1127 fd.rr_len = flen; 1128 fd.rr_data = fdata; 1129 rbtree_init(&sortree1, &canonical_tree_compare); 1130 rbtree_init(&sortree2, &canonical_tree_compare); 1131 if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX) 1132 return 1; /* protection against integer overflow */ 1133 rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count); 1134 rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count); 1135 if(!rrs1 || !rrs2) return 1; /* alloc failure */ 1136 1137 /* sort */ 1138 canonical_sort(k1, d1, &sortree1, rrs1); 1139 canonical_sort(k2, d2, &sortree2, rrs2); 1140 1141 /* compare canonical-sorted RRs for canonical-equality */ 1142 if(sortree1.count != sortree2.count) 1143 return 0; 1144 p1 = (struct canon_rr*)rbtree_first(&sortree1); 1145 p2 = (struct canon_rr*)rbtree_first(&sortree2); 1146 while(p1 != (struct canon_rr*)RBTREE_NULL && 1147 p2 != (struct canon_rr*)RBTREE_NULL) { 1148 flen[0] = d1->rr_len[p1->rr_idx]; 1149 flen[1] = d2->rr_len[p2->rr_idx]; 1150 fdata[0] = d1->rr_data[p1->rr_idx]; 1151 fdata[1] = d2->rr_data[p2->rr_idx]; 1152 1153 if(canonical_compare(&fk, 0, 1) != 0) 1154 return 0; 1155 p1 = (struct canon_rr*)rbtree_next(&p1->node); 1156 p2 = (struct canon_rr*)rbtree_next(&p2->node); 1157 } 1158 return 1; 1159 } 1160 1161 /** 1162 * Create canonical form of rrset in the scratch buffer. 1163 * @param region: temporary region. 1164 * @param buf: the buffer to use. 1165 * @param k: the rrset to insert. 1166 * @param sig: RRSIG rdata to include. 1167 * @param siglen: RRSIG rdata len excluding signature field, but inclusive 1168 * signer name length. 1169 * @param sortree: if NULL is passed a new sorted rrset tree is built. 1170 * Otherwise it is reused. 1171 * @param section: section of packet where this rrset comes from. 1172 * @param qstate: qstate with region. 1173 * @return false on alloc error. 1174 */ 1175 static int 1176 rrset_canonical(struct regional* region, sldns_buffer* buf, 1177 struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen, 1178 struct rbtree_type** sortree, sldns_pkt_section section, 1179 struct module_qstate* qstate) 1180 { 1181 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1182 uint8_t* can_owner = NULL; 1183 size_t can_owner_len = 0; 1184 struct canon_rr* walk; 1185 struct canon_rr* rrs; 1186 1187 if(!*sortree) { 1188 *sortree = (struct rbtree_type*)regional_alloc(region, 1189 sizeof(rbtree_type)); 1190 if(!*sortree) 1191 return 0; 1192 if(d->count > RR_COUNT_MAX) 1193 return 0; /* integer overflow protection */ 1194 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count); 1195 if(!rrs) { 1196 *sortree = NULL; 1197 return 0; 1198 } 1199 rbtree_init(*sortree, &canonical_tree_compare); 1200 canonical_sort(k, d, *sortree, rrs); 1201 } 1202 1203 sldns_buffer_clear(buf); 1204 sldns_buffer_write(buf, sig, siglen); 1205 /* canonicalize signer name */ 1206 query_dname_tolower(sldns_buffer_begin(buf)+18); 1207 RBTREE_FOR(walk, struct canon_rr*, (*sortree)) { 1208 /* see if there is enough space left in the buffer */ 1209 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4 1210 + d->rr_len[walk->rr_idx]) { 1211 log_err("verify: failed to canonicalize, " 1212 "rrset too big"); 1213 return 0; 1214 } 1215 /* determine canonical owner name */ 1216 if(can_owner) 1217 sldns_buffer_write(buf, can_owner, can_owner_len); 1218 else insert_can_owner(buf, k, sig, &can_owner, 1219 &can_owner_len); 1220 sldns_buffer_write(buf, &k->rk.type, 2); 1221 sldns_buffer_write(buf, &k->rk.rrset_class, 2); 1222 sldns_buffer_write(buf, sig+4, 4); 1223 sldns_buffer_write(buf, d->rr_data[walk->rr_idx], 1224 d->rr_len[walk->rr_idx]); 1225 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]); 1226 } 1227 sldns_buffer_flip(buf); 1228 1229 /* Replace RR owner with canonical owner for NSEC records in authority 1230 * section, to prevent that a wildcard synthesized NSEC can be used in 1231 * the non-existence proves. */ 1232 if(ntohs(k->rk.type) == LDNS_RR_TYPE_NSEC && 1233 section == LDNS_SECTION_AUTHORITY && qstate) { 1234 k->rk.dname = regional_alloc_init(qstate->region, can_owner, 1235 can_owner_len); 1236 if(!k->rk.dname) 1237 return 0; 1238 k->rk.dname_len = can_owner_len; 1239 } 1240 1241 1242 return 1; 1243 } 1244 1245 int 1246 rrset_canonicalize_to_buffer(struct regional* region, sldns_buffer* buf, 1247 struct ub_packed_rrset_key* k) 1248 { 1249 struct rbtree_type* sortree = NULL; 1250 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1251 uint8_t* can_owner = NULL; 1252 size_t can_owner_len = 0; 1253 struct canon_rr* walk; 1254 struct canon_rr* rrs; 1255 1256 sortree = (struct rbtree_type*)regional_alloc(region, 1257 sizeof(rbtree_type)); 1258 if(!sortree) 1259 return 0; 1260 if(d->count > RR_COUNT_MAX) 1261 return 0; /* integer overflow protection */ 1262 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count); 1263 if(!rrs) { 1264 return 0; 1265 } 1266 rbtree_init(sortree, &canonical_tree_compare); 1267 canonical_sort(k, d, sortree, rrs); 1268 1269 sldns_buffer_clear(buf); 1270 RBTREE_FOR(walk, struct canon_rr*, sortree) { 1271 /* see if there is enough space left in the buffer */ 1272 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4 1273 + d->rr_len[walk->rr_idx]) { 1274 log_err("verify: failed to canonicalize, " 1275 "rrset too big"); 1276 return 0; 1277 } 1278 /* determine canonical owner name */ 1279 if(can_owner) 1280 sldns_buffer_write(buf, can_owner, can_owner_len); 1281 else { 1282 can_owner = sldns_buffer_current(buf); 1283 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); 1284 query_dname_tolower(can_owner); 1285 can_owner_len = k->rk.dname_len; 1286 } 1287 sldns_buffer_write(buf, &k->rk.type, 2); 1288 sldns_buffer_write(buf, &k->rk.rrset_class, 2); 1289 sldns_buffer_write_u32(buf, d->rr_ttl[walk->rr_idx]); 1290 sldns_buffer_write(buf, d->rr_data[walk->rr_idx], 1291 d->rr_len[walk->rr_idx]); 1292 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]); 1293 } 1294 sldns_buffer_flip(buf); 1295 return 1; 1296 } 1297 1298 /** pretty print rrsig error with dates */ 1299 static void 1300 sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now) 1301 { 1302 struct tm tm; 1303 char expi_buf[16]; 1304 char incep_buf[16]; 1305 char now_buf[16]; 1306 time_t te, ti, tn; 1307 1308 if(verbosity < VERB_QUERY) 1309 return; 1310 te = (time_t)expi; 1311 ti = (time_t)incep; 1312 tn = (time_t)now; 1313 memset(&tm, 0, sizeof(tm)); 1314 if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm) 1315 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm) 1316 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) { 1317 log_info("%s expi=%s incep=%s now=%s", str, expi_buf, 1318 incep_buf, now_buf); 1319 } else 1320 log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi, 1321 (unsigned)incep, (unsigned)now); 1322 } 1323 1324 /** RFC 1982 comparison, uses unsigned integers, and tries to avoid 1325 * compiler optimization (eg. by avoiding a-b<0 comparisons), 1326 * this routine matches compare_serial(), for SOA serial number checks */ 1327 static int 1328 compare_1982(uint32_t a, uint32_t b) 1329 { 1330 /* for 32 bit values */ 1331 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1332 1333 if (a == b) { 1334 return 0; 1335 } else if ((a < b && b - a < cutoff) || (a > b && a - b > cutoff)) { 1336 return -1; 1337 } else { 1338 return 1; 1339 } 1340 } 1341 1342 /** if we know that b is larger than a, return the difference between them, 1343 * that is the distance between them. in RFC1982 arith */ 1344 static uint32_t 1345 subtract_1982(uint32_t a, uint32_t b) 1346 { 1347 /* for 32 bit values */ 1348 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1349 1350 if(a == b) 1351 return 0; 1352 if(a < b && b - a < cutoff) { 1353 return b-a; 1354 } 1355 if(a > b && a - b > cutoff) { 1356 return ((uint32_t)0xffffffff) - (a-b-1); 1357 } 1358 /* wrong case, b smaller than a */ 1359 return 0; 1360 } 1361 1362 /** check rrsig dates */ 1363 static int 1364 check_dates(struct val_env* ve, uint32_t unow, 1365 uint8_t* expi_p, uint8_t* incep_p, char** reason) 1366 { 1367 /* read out the dates */ 1368 uint32_t expi, incep, now; 1369 memmove(&expi, expi_p, sizeof(expi)); 1370 memmove(&incep, incep_p, sizeof(incep)); 1371 expi = ntohl(expi); 1372 incep = ntohl(incep); 1373 1374 /* get current date */ 1375 if(ve->date_override) { 1376 if(ve->date_override == -1) { 1377 verbose(VERB_ALGO, "date override: ignore date"); 1378 return 1; 1379 } 1380 now = ve->date_override; 1381 verbose(VERB_ALGO, "date override option %d", (int)now); 1382 } else now = unow; 1383 1384 /* check them */ 1385 if(compare_1982(incep, expi) > 0) { 1386 sigdate_error("verify: inception after expiration, " 1387 "signature bad", expi, incep, now); 1388 *reason = "signature inception after expiration"; 1389 return 0; 1390 } 1391 if(compare_1982(incep, now) > 0) { 1392 /* within skew ? (calc here to avoid calculation normally) */ 1393 uint32_t skew = subtract_1982(incep, expi)/10; 1394 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1395 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1396 if(subtract_1982(now, incep) > skew) { 1397 sigdate_error("verify: signature bad, current time is" 1398 " before inception date", expi, incep, now); 1399 *reason = "signature before inception date"; 1400 return 0; 1401 } 1402 sigdate_error("verify warning suspicious signature inception " 1403 " or bad local clock", expi, incep, now); 1404 } 1405 if(compare_1982(now, expi) > 0) { 1406 uint32_t skew = subtract_1982(incep, expi)/10; 1407 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1408 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1409 if(subtract_1982(expi, now) > skew) { 1410 sigdate_error("verify: signature expired", expi, 1411 incep, now); 1412 *reason = "signature expired"; 1413 return 0; 1414 } 1415 sigdate_error("verify warning suspicious signature expiration " 1416 " or bad local clock", expi, incep, now); 1417 } 1418 return 1; 1419 } 1420 1421 /** adjust rrset TTL for verified rrset, compare to original TTL and expi */ 1422 static void 1423 adjust_ttl(struct val_env* ve, uint32_t unow, 1424 struct ub_packed_rrset_key* rrset, uint8_t* orig_p, 1425 uint8_t* expi_p, uint8_t* incep_p) 1426 { 1427 struct packed_rrset_data* d = 1428 (struct packed_rrset_data*)rrset->entry.data; 1429 /* read out the dates */ 1430 int32_t origttl, expittl, expi, incep, now; 1431 memmove(&origttl, orig_p, sizeof(origttl)); 1432 memmove(&expi, expi_p, sizeof(expi)); 1433 memmove(&incep, incep_p, sizeof(incep)); 1434 expi = ntohl(expi); 1435 incep = ntohl(incep); 1436 origttl = ntohl(origttl); 1437 1438 /* get current date */ 1439 if(ve->date_override) { 1440 now = ve->date_override; 1441 } else now = (int32_t)unow; 1442 expittl = (int32_t)((uint32_t)expi - (uint32_t)now); 1443 1444 /* so now: 1445 * d->ttl: rrset ttl read from message or cache. May be reduced 1446 * origttl: original TTL from signature, authoritative TTL max. 1447 * MIN_TTL: minimum TTL from config. 1448 * expittl: TTL until the signature expires. 1449 * 1450 * Use the smallest of these, but don't let origttl set the TTL 1451 * below the minimum. 1452 */ 1453 if(MIN_TTL > (time_t)origttl && d->ttl > MIN_TTL) { 1454 verbose(VERB_QUERY, "rrset TTL larger than original and minimum" 1455 " TTL, adjusting TTL downwards to minimum ttl"); 1456 d->ttl = MIN_TTL; 1457 } 1458 else if(MIN_TTL <= origttl && d->ttl > (time_t)origttl) { 1459 verbose(VERB_QUERY, "rrset TTL larger than original TTL, " 1460 "adjusting TTL downwards to original ttl"); 1461 d->ttl = origttl; 1462 } 1463 1464 if(expittl > 0 && d->ttl > (time_t)expittl) { 1465 verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl," 1466 " adjusting TTL downwards"); 1467 d->ttl = expittl; 1468 } 1469 } 1470 1471 enum sec_status 1472 dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf, 1473 struct val_env* ve, time_t now, 1474 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 1475 size_t dnskey_idx, size_t sig_idx, 1476 struct rbtree_type** sortree, int* buf_canon, char** reason, 1477 sldns_pkt_section section, struct module_qstate* qstate) 1478 { 1479 enum sec_status sec; 1480 uint8_t* sig; /* RRSIG rdata */ 1481 size_t siglen; 1482 size_t rrnum = rrset_get_count(rrset); 1483 uint8_t* signer; /* rrsig signer name */ 1484 size_t signer_len; 1485 unsigned char* sigblock; /* signature rdata field */ 1486 unsigned int sigblock_len; 1487 uint16_t ktag; /* DNSKEY key tag */ 1488 unsigned char* key; /* public key rdata field */ 1489 unsigned int keylen; 1490 rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen); 1491 /* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */ 1492 if(siglen < 2+20) { 1493 verbose(VERB_QUERY, "verify: signature too short"); 1494 *reason = "signature too short"; 1495 return sec_status_bogus; 1496 } 1497 1498 if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) { 1499 verbose(VERB_QUERY, "verify: dnskey without ZSK flag"); 1500 *reason = "dnskey without ZSK flag"; 1501 return sec_status_bogus; 1502 } 1503 1504 if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) { 1505 /* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */ 1506 verbose(VERB_QUERY, "verify: dnskey has wrong key protocol"); 1507 *reason = "dnskey has wrong protocolnumber"; 1508 return sec_status_bogus; 1509 } 1510 1511 /* verify as many fields in rrsig as possible */ 1512 signer = sig+2+18; 1513 signer_len = dname_valid(signer, siglen-2-18); 1514 if(!signer_len) { 1515 verbose(VERB_QUERY, "verify: malformed signer name"); 1516 *reason = "signer name malformed"; 1517 return sec_status_bogus; /* signer name invalid */ 1518 } 1519 if(!dname_subdomain_c(rrset->rk.dname, signer)) { 1520 verbose(VERB_QUERY, "verify: signer name is off-tree"); 1521 *reason = "signer name off-tree"; 1522 return sec_status_bogus; /* signer name offtree */ 1523 } 1524 sigblock = (unsigned char*)signer+signer_len; 1525 if(siglen < 2+18+signer_len+1) { 1526 verbose(VERB_QUERY, "verify: too short, no signature data"); 1527 *reason = "signature too short, no signature data"; 1528 return sec_status_bogus; /* sig rdf is < 1 byte */ 1529 } 1530 sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len); 1531 1532 /* verify key dname == sig signer name */ 1533 if(query_dname_compare(signer, dnskey->rk.dname) != 0) { 1534 verbose(VERB_QUERY, "verify: wrong key for rrsig"); 1535 log_nametypeclass(VERB_QUERY, "RRSIG signername is", 1536 signer, 0, 0); 1537 log_nametypeclass(VERB_QUERY, "the key name is", 1538 dnskey->rk.dname, 0, 0); 1539 *reason = "signer name mismatches key name"; 1540 return sec_status_bogus; 1541 } 1542 1543 /* verify covered type */ 1544 /* memcmp works because type is in network format for rrset */ 1545 if(memcmp(sig+2, &rrset->rk.type, 2) != 0) { 1546 verbose(VERB_QUERY, "verify: wrong type covered"); 1547 *reason = "signature covers wrong type"; 1548 return sec_status_bogus; 1549 } 1550 /* verify keytag and sig algo (possibly again) */ 1551 if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) { 1552 verbose(VERB_QUERY, "verify: wrong algorithm"); 1553 *reason = "signature has wrong algorithm"; 1554 return sec_status_bogus; 1555 } 1556 ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx)); 1557 if(memcmp(sig+2+16, &ktag, 2) != 0) { 1558 verbose(VERB_QUERY, "verify: wrong keytag"); 1559 *reason = "signature has wrong keytag"; 1560 return sec_status_bogus; 1561 } 1562 1563 /* verify labels is in a valid range */ 1564 if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) { 1565 verbose(VERB_QUERY, "verify: labelcount out of range"); 1566 *reason = "signature labelcount out of range"; 1567 return sec_status_bogus; 1568 } 1569 1570 /* original ttl, always ok */ 1571 1572 if(!*buf_canon) { 1573 /* create rrset canonical format in buffer, ready for 1574 * signature */ 1575 if(!rrset_canonical(region, buf, rrset, sig+2, 1576 18 + signer_len, sortree, section, qstate)) { 1577 log_err("verify: failed due to alloc error"); 1578 return sec_status_unchecked; 1579 } 1580 *buf_canon = 1; 1581 } 1582 1583 /* check that dnskey is available */ 1584 dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen); 1585 if(!key) { 1586 verbose(VERB_QUERY, "verify: short DNSKEY RR"); 1587 return sec_status_unchecked; 1588 } 1589 1590 /* verify */ 1591 sec = verify_canonrrset(buf, (int)sig[2+2], 1592 sigblock, sigblock_len, key, keylen, reason); 1593 1594 if(sec == sec_status_secure) { 1595 /* check if TTL is too high - reduce if so */ 1596 adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12); 1597 1598 /* verify inception, expiration dates 1599 * Do this last so that if you ignore expired-sigs the 1600 * rest is sure to be OK. */ 1601 if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) { 1602 return sec_status_bogus; 1603 } 1604 } 1605 1606 return sec; 1607 } 1608