1 /* 2 * validator/val_sigcrypt.c - validator signature crypto functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with signature verification and checking, the 41 * bridging between RR wireformat data and crypto calls. 42 */ 43 #include "config.h" 44 #include "validator/val_sigcrypt.h" 45 #include "validator/val_secalgo.h" 46 #include "validator/validator.h" 47 #include "util/data/msgreply.h" 48 #include "util/data/msgparse.h" 49 #include "util/data/dname.h" 50 #include "util/rbtree.h" 51 #include "util/module.h" 52 #include "util/net_help.h" 53 #include "util/regional.h" 54 #include "util/config_file.h" 55 #include "sldns/keyraw.h" 56 #include "sldns/sbuffer.h" 57 #include "sldns/parseutil.h" 58 #include "sldns/wire2str.h" 59 60 #include <ctype.h> 61 #if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE) 62 #error "Need crypto library to do digital signature cryptography" 63 #endif 64 65 #ifdef HAVE_OPENSSL_ERR_H 66 #include <openssl/err.h> 67 #endif 68 69 #ifdef HAVE_OPENSSL_RAND_H 70 #include <openssl/rand.h> 71 #endif 72 73 #ifdef HAVE_OPENSSL_CONF_H 74 #include <openssl/conf.h> 75 #endif 76 77 #ifdef HAVE_OPENSSL_ENGINE_H 78 #include <openssl/engine.h> 79 #endif 80 81 /** return number of rrs in an rrset */ 82 static size_t 83 rrset_get_count(struct ub_packed_rrset_key* rrset) 84 { 85 struct packed_rrset_data* d = (struct packed_rrset_data*) 86 rrset->entry.data; 87 if(!d) return 0; 88 return d->count; 89 } 90 91 /** 92 * Get RR signature count 93 */ 94 static size_t 95 rrset_get_sigcount(struct ub_packed_rrset_key* k) 96 { 97 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 98 return d->rrsig_count; 99 } 100 101 /** 102 * Get signature keytag value 103 * @param k: rrset (with signatures) 104 * @param sig_idx: signature index. 105 * @return keytag or 0 if malformed rrsig. 106 */ 107 static uint16_t 108 rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx) 109 { 110 uint16_t t; 111 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 112 log_assert(sig_idx < d->rrsig_count); 113 if(d->rr_len[d->count + sig_idx] < 2+18) 114 return 0; 115 memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2); 116 return ntohs(t); 117 } 118 119 /** 120 * Get signature signing algorithm value 121 * @param k: rrset (with signatures) 122 * @param sig_idx: signature index. 123 * @return algo or 0 if malformed rrsig. 124 */ 125 static int 126 rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx) 127 { 128 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 129 log_assert(sig_idx < d->rrsig_count); 130 if(d->rr_len[d->count + sig_idx] < 2+3) 131 return 0; 132 return (int)d->rr_data[d->count + sig_idx][2+2]; 133 } 134 135 /** get rdata pointer and size */ 136 static void 137 rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata, 138 size_t* len) 139 { 140 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 141 log_assert(d && idx < (d->count + d->rrsig_count)); 142 *rdata = d->rr_data[idx]; 143 *len = d->rr_len[idx]; 144 } 145 146 uint16_t 147 dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx) 148 { 149 uint8_t* rdata; 150 size_t len; 151 uint16_t f; 152 rrset_get_rdata(k, idx, &rdata, &len); 153 if(len < 2+2) 154 return 0; 155 memmove(&f, rdata+2, 2); 156 f = ntohs(f); 157 return f; 158 } 159 160 /** 161 * Get DNSKEY protocol value from rdata 162 * @param k: DNSKEY rrset. 163 * @param idx: which key. 164 * @return protocol octet value 165 */ 166 static int 167 dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx) 168 { 169 uint8_t* rdata; 170 size_t len; 171 rrset_get_rdata(k, idx, &rdata, &len); 172 if(len < 2+4) 173 return 0; 174 return (int)rdata[2+2]; 175 } 176 177 int 178 dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx) 179 { 180 uint8_t* rdata; 181 size_t len; 182 rrset_get_rdata(k, idx, &rdata, &len); 183 if(len < 2+4) 184 return 0; 185 return (int)rdata[2+3]; 186 } 187 188 /** get public key rdata field from a dnskey RR and do some checks */ 189 static void 190 dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx, 191 unsigned char** pk, unsigned int* pklen) 192 { 193 uint8_t* rdata; 194 size_t len; 195 rrset_get_rdata(k, idx, &rdata, &len); 196 if(len < 2+5) { 197 *pk = NULL; 198 *pklen = 0; 199 return; 200 } 201 *pk = (unsigned char*)rdata+2+4; 202 *pklen = (unsigned)len-2-4; 203 } 204 205 int 206 ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx) 207 { 208 uint8_t* rdata; 209 size_t len; 210 rrset_get_rdata(k, idx, &rdata, &len); 211 if(len < 2+3) 212 return 0; 213 return (int)rdata[2+2]; 214 } 215 216 int 217 ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx) 218 { 219 uint8_t* rdata; 220 size_t len; 221 rrset_get_rdata(k, idx, &rdata, &len); 222 if(len < 2+4) 223 return 0; 224 return (int)rdata[2+3]; 225 } 226 227 uint16_t 228 ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 229 { 230 uint16_t t; 231 uint8_t* rdata; 232 size_t len; 233 rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len); 234 if(len < 2+2) 235 return 0; 236 memmove(&t, rdata+2, 2); 237 return ntohs(t); 238 } 239 240 /** 241 * Return pointer to the digest in a DS RR. 242 * @param k: DS rrset. 243 * @param idx: which DS. 244 * @param digest: digest data is returned. 245 * on error, this is NULL. 246 * @param len: length of digest is returned. 247 * on error, the length is 0. 248 */ 249 static void 250 ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest, 251 size_t* len) 252 { 253 uint8_t* rdata; 254 size_t rdlen; 255 rrset_get_rdata(k, idx, &rdata, &rdlen); 256 if(rdlen < 2+5) { 257 *digest = NULL; 258 *len = 0; 259 return; 260 } 261 *digest = rdata + 2 + 4; 262 *len = rdlen - 2 - 4; 263 } 264 265 /** 266 * Return size of DS digest according to its hash algorithm. 267 * @param k: DS rrset. 268 * @param idx: which DS. 269 * @return size in bytes of digest, or 0 if not supported. 270 */ 271 static size_t 272 ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx) 273 { 274 return ds_digest_size_supported(ds_get_digest_algo(k, idx)); 275 } 276 277 /** 278 * Create a DS digest for a DNSKEY entry. 279 * 280 * @param env: module environment. Uses scratch space. 281 * @param dnskey_rrset: DNSKEY rrset. 282 * @param dnskey_idx: index of RR in rrset. 283 * @param ds_rrset: DS rrset 284 * @param ds_idx: index of RR in DS rrset. 285 * @param digest: digest is returned in here (must be correctly sized). 286 * @return false on error. 287 */ 288 static int 289 ds_create_dnskey_digest(struct module_env* env, 290 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 291 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx, 292 uint8_t* digest) 293 { 294 sldns_buffer* b = env->scratch_buffer; 295 uint8_t* dnskey_rdata; 296 size_t dnskey_len; 297 rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len); 298 299 /* create digest source material in buffer 300 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA); 301 * DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */ 302 sldns_buffer_clear(b); 303 sldns_buffer_write(b, dnskey_rrset->rk.dname, 304 dnskey_rrset->rk.dname_len); 305 query_dname_tolower(sldns_buffer_begin(b)); 306 sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/ 307 sldns_buffer_flip(b); 308 309 return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx), 310 (unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b), 311 (unsigned char*)digest); 312 } 313 314 int ds_digest_match_dnskey(struct module_env* env, 315 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx, 316 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx) 317 { 318 uint8_t* ds; /* DS digest */ 319 size_t dslen; 320 uint8_t* digest; /* generated digest */ 321 size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx); 322 323 if(digestlen == 0) { 324 verbose(VERB_QUERY, "DS fail: not supported, or DS RR " 325 "format error"); 326 return 0; /* not supported, or DS RR format error */ 327 } 328 #ifndef USE_SHA1 329 if(fake_sha1 && ds_get_digest_algo(ds_rrset, ds_idx)==LDNS_SHA1) 330 return 1; 331 #endif 332 333 /* check digest length in DS with length from hash function */ 334 ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen); 335 if(!ds || dslen != digestlen) { 336 verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not " 337 "match each other"); 338 return 0; /* DS algorithm and digest do not match */ 339 } 340 341 digest = regional_alloc(env->scratch, digestlen); 342 if(!digest) { 343 verbose(VERB_QUERY, "DS fail: out of memory"); 344 return 0; /* mem error */ 345 } 346 if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset, 347 ds_idx, digest)) { 348 verbose(VERB_QUERY, "DS fail: could not calc key digest"); 349 return 0; /* digest algo failed */ 350 } 351 if(memcmp(digest, ds, dslen) != 0) { 352 verbose(VERB_QUERY, "DS fail: digest is different"); 353 return 0; /* digest different */ 354 } 355 return 1; 356 } 357 358 int 359 ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 360 size_t ds_idx) 361 { 362 return (ds_digest_size_algo(ds_rrset, ds_idx) != 0); 363 } 364 365 int 366 ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset, 367 size_t ds_idx) 368 { 369 return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx)); 370 } 371 372 uint16_t 373 dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx) 374 { 375 uint8_t* data; 376 size_t len; 377 rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len); 378 /* do not pass rdatalen to ldns */ 379 return sldns_calc_keytag_raw(data+2, len-2); 380 } 381 382 int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset, 383 size_t dnskey_idx) 384 { 385 return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset, 386 dnskey_idx)); 387 } 388 389 void algo_needs_init_dnskey_add(struct algo_needs* n, 390 struct ub_packed_rrset_key* dnskey, uint8_t* sigalg) 391 { 392 uint8_t algo; 393 size_t i, total = n->num; 394 size_t num = rrset_get_count(dnskey); 395 396 for(i=0; i<num; i++) { 397 algo = (uint8_t)dnskey_get_algo(dnskey, i); 398 if(!dnskey_algo_id_is_supported((int)algo)) 399 continue; 400 if(n->needs[algo] == 0) { 401 n->needs[algo] = 1; 402 sigalg[total] = algo; 403 total++; 404 } 405 } 406 sigalg[total] = 0; 407 n->num = total; 408 } 409 410 void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg) 411 { 412 uint8_t algo; 413 size_t total = 0; 414 415 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 416 while( (algo=*sigalg++) != 0) { 417 log_assert(dnskey_algo_id_is_supported((int)algo)); 418 log_assert(n->needs[algo] == 0); 419 n->needs[algo] = 1; 420 total++; 421 } 422 n->num = total; 423 } 424 425 void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds, 426 int fav_ds_algo, uint8_t* sigalg) 427 { 428 uint8_t algo; 429 size_t i, total = 0; 430 size_t num = rrset_get_count(ds); 431 432 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX); 433 for(i=0; i<num; i++) { 434 if(ds_get_digest_algo(ds, i) != fav_ds_algo) 435 continue; 436 algo = (uint8_t)ds_get_key_algo(ds, i); 437 if(!dnskey_algo_id_is_supported((int)algo)) 438 continue; 439 log_assert(algo != 0); /* we do not support 0 and is EOS */ 440 if(n->needs[algo] == 0) { 441 n->needs[algo] = 1; 442 sigalg[total] = algo; 443 total++; 444 } 445 } 446 sigalg[total] = 0; 447 n->num = total; 448 } 449 450 int algo_needs_set_secure(struct algo_needs* n, uint8_t algo) 451 { 452 if(n->needs[algo]) { 453 n->needs[algo] = 0; 454 n->num --; 455 if(n->num == 0) /* done! */ 456 return 1; 457 } 458 return 0; 459 } 460 461 void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo) 462 { 463 if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */ 464 } 465 466 size_t algo_needs_num_missing(struct algo_needs* n) 467 { 468 return n->num; 469 } 470 471 int algo_needs_missing(struct algo_needs* n) 472 { 473 int i; 474 /* first check if a needed algo was bogus - report that */ 475 for(i=0; i<ALGO_NEEDS_MAX; i++) 476 if(n->needs[i] == 2) 477 return 0; 478 /* now check which algo is missing */ 479 for(i=0; i<ALGO_NEEDS_MAX; i++) 480 if(n->needs[i] == 1) 481 return i; 482 return 0; 483 } 484 485 enum sec_status 486 dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve, 487 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 488 uint8_t* sigalg, char** reason, sldns_pkt_section section, 489 struct module_qstate* qstate) 490 { 491 enum sec_status sec; 492 size_t i, num; 493 rbtree_type* sortree = NULL; 494 /* make sure that for all DNSKEY algorithms there are valid sigs */ 495 struct algo_needs needs; 496 int alg; 497 498 num = rrset_get_sigcount(rrset); 499 if(num == 0) { 500 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 501 "signatures"); 502 *reason = "no signatures"; 503 return sec_status_bogus; 504 } 505 506 if(sigalg) { 507 algo_needs_init_list(&needs, sigalg); 508 if(algo_needs_num_missing(&needs) == 0) { 509 verbose(VERB_QUERY, "zone has no known algorithms"); 510 *reason = "zone has no known algorithms"; 511 return sec_status_insecure; 512 } 513 } 514 for(i=0; i<num; i++) { 515 sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset, 516 dnskey, i, &sortree, reason, section, qstate); 517 /* see which algorithm has been fixed up */ 518 if(sec == sec_status_secure) { 519 if(!sigalg) 520 return sec; /* done! */ 521 else if(algo_needs_set_secure(&needs, 522 (uint8_t)rrset_get_sig_algo(rrset, i))) 523 return sec; /* done! */ 524 } else if(sigalg && sec == sec_status_bogus) { 525 algo_needs_set_bogus(&needs, 526 (uint8_t)rrset_get_sig_algo(rrset, i)); 527 } 528 } 529 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) { 530 verbose(VERB_ALGO, "rrset failed to verify: " 531 "no valid signatures for %d algorithms", 532 (int)algo_needs_num_missing(&needs)); 533 algo_needs_reason(env, alg, reason, "no signatures"); 534 } else { 535 verbose(VERB_ALGO, "rrset failed to verify: " 536 "no valid signatures"); 537 } 538 return sec_status_bogus; 539 } 540 541 void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s) 542 { 543 char buf[256]; 544 sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg); 545 if(t&&t->name) 546 snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name); 547 else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s, 548 (unsigned)alg); 549 *reason = regional_strdup(env->scratch, buf); 550 if(!*reason) 551 *reason = s; 552 } 553 554 enum sec_status 555 dnskey_verify_rrset(struct module_env* env, struct val_env* ve, 556 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 557 size_t dnskey_idx, char** reason, sldns_pkt_section section, 558 struct module_qstate* qstate) 559 { 560 enum sec_status sec; 561 size_t i, num, numchecked = 0; 562 rbtree_type* sortree = NULL; 563 int buf_canon = 0; 564 uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx); 565 int algo = dnskey_get_algo(dnskey, dnskey_idx); 566 567 num = rrset_get_sigcount(rrset); 568 if(num == 0) { 569 verbose(VERB_QUERY, "rrset failed to verify due to a lack of " 570 "signatures"); 571 *reason = "no signatures"; 572 return sec_status_bogus; 573 } 574 for(i=0; i<num; i++) { 575 /* see if sig matches keytag and algo */ 576 if(algo != rrset_get_sig_algo(rrset, i) || 577 tag != rrset_get_sig_keytag(rrset, i)) 578 continue; 579 buf_canon = 0; 580 sec = dnskey_verify_rrset_sig(env->scratch, 581 env->scratch_buffer, ve, *env->now, rrset, 582 dnskey, dnskey_idx, i, &sortree, &buf_canon, reason, 583 section, qstate); 584 if(sec == sec_status_secure) 585 return sec; 586 numchecked ++; 587 } 588 verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus"); 589 if(!numchecked) *reason = "signature missing"; 590 return sec_status_bogus; 591 } 592 593 enum sec_status 594 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve, 595 time_t now, struct ub_packed_rrset_key* rrset, 596 struct ub_packed_rrset_key* dnskey, size_t sig_idx, 597 struct rbtree_type** sortree, char** reason, sldns_pkt_section section, 598 struct module_qstate* qstate) 599 { 600 /* find matching keys and check them */ 601 enum sec_status sec = sec_status_bogus; 602 uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx); 603 int algo = rrset_get_sig_algo(rrset, sig_idx); 604 size_t i, num = rrset_get_count(dnskey); 605 size_t numchecked = 0; 606 int buf_canon = 0; 607 verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo); 608 if(!dnskey_algo_id_is_supported(algo)) { 609 verbose(VERB_QUERY, "verify sig: unknown algorithm"); 610 return sec_status_insecure; 611 } 612 613 for(i=0; i<num; i++) { 614 /* see if key matches keytag and algo */ 615 if(algo != dnskey_get_algo(dnskey, i) || 616 tag != dnskey_calc_keytag(dnskey, i)) 617 continue; 618 numchecked ++; 619 620 /* see if key verifies */ 621 sec = dnskey_verify_rrset_sig(env->scratch, 622 env->scratch_buffer, ve, now, rrset, dnskey, i, 623 sig_idx, sortree, &buf_canon, reason, section, qstate); 624 if(sec == sec_status_secure) 625 return sec; 626 } 627 if(numchecked == 0) { 628 *reason = "signatures from unknown keys"; 629 verbose(VERB_QUERY, "verify: could not find appropriate key"); 630 return sec_status_bogus; 631 } 632 return sec_status_bogus; 633 } 634 635 /** 636 * RR entries in a canonical sorted tree of RRs 637 */ 638 struct canon_rr { 639 /** rbtree node, key is this structure */ 640 rbnode_type node; 641 /** rrset the RR is in */ 642 struct ub_packed_rrset_key* rrset; 643 /** which RR in the rrset */ 644 size_t rr_idx; 645 }; 646 647 /** 648 * Compare two RR for canonical order, in a field-style sweep. 649 * @param d: rrset data 650 * @param desc: ldns wireformat descriptor. 651 * @param i: first RR to compare 652 * @param j: first RR to compare 653 * @return comparison code. 654 */ 655 static int 656 canonical_compare_byfield(struct packed_rrset_data* d, 657 const sldns_rr_descriptor* desc, size_t i, size_t j) 658 { 659 /* sweep across rdata, keep track of some state: 660 * which rr field, and bytes left in field. 661 * current position in rdata, length left. 662 * are we in a dname, length left in a label. 663 */ 664 int wfi = -1; /* current wireformat rdata field (rdf) */ 665 int wfj = -1; 666 uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */ 667 uint8_t* dj = d->rr_data[j]+2; 668 size_t ilen = d->rr_len[i]-2; /* length left in rdata */ 669 size_t jlen = d->rr_len[j]-2; 670 int dname_i = 0; /* true if these bytes are part of a name */ 671 int dname_j = 0; 672 size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/ 673 size_t lablen_j = 0; /* otherwise remaining length of rdf or label */ 674 int dname_num_i = (int)desc->_dname_count; /* decreased at root label */ 675 int dname_num_j = (int)desc->_dname_count; 676 677 /* loop while there are rdata bytes available for both rrs, 678 * and still some lowercasing needs to be done; either the dnames 679 * have not been reached yet, or they are currently being processed */ 680 while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) { 681 /* compare these two bytes */ 682 /* lowercase if in a dname and not a label length byte */ 683 if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 684 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj) 685 ) { 686 if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di) 687 < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)) 688 return -1; 689 return 1; 690 } 691 ilen--; 692 jlen--; 693 /* bytes are equal */ 694 695 /* advance field i */ 696 /* lablen 0 means that this byte is the first byte of the 697 * next rdata field; inspect this rdata field and setup 698 * to process the rest of this rdata field. 699 * The reason to first read the byte, then setup the rdf, 700 * is that we are then sure the byte is available and short 701 * rdata is handled gracefully (even if it is a formerr). */ 702 if(lablen_i == 0) { 703 if(dname_i) { 704 /* scan this dname label */ 705 /* capture length to lowercase */ 706 lablen_i = (size_t)*di; 707 if(lablen_i == 0) { 708 /* end root label */ 709 dname_i = 0; 710 dname_num_i--; 711 /* if dname num is 0, then the 712 * remainder is binary only */ 713 if(dname_num_i == 0) 714 lablen_i = ilen; 715 } 716 } else { 717 /* scan this rdata field */ 718 wfi++; 719 if(desc->_wireformat[wfi] 720 == LDNS_RDF_TYPE_DNAME) { 721 dname_i = 1; 722 lablen_i = (size_t)*di; 723 if(lablen_i == 0) { 724 dname_i = 0; 725 dname_num_i--; 726 if(dname_num_i == 0) 727 lablen_i = ilen; 728 } 729 } else if(desc->_wireformat[wfi] 730 == LDNS_RDF_TYPE_STR) 731 lablen_i = (size_t)*di; 732 else lablen_i = get_rdf_size( 733 desc->_wireformat[wfi]) - 1; 734 } 735 } else lablen_i--; 736 737 /* advance field j; same as for i */ 738 if(lablen_j == 0) { 739 if(dname_j) { 740 lablen_j = (size_t)*dj; 741 if(lablen_j == 0) { 742 dname_j = 0; 743 dname_num_j--; 744 if(dname_num_j == 0) 745 lablen_j = jlen; 746 } 747 } else { 748 wfj++; 749 if(desc->_wireformat[wfj] 750 == LDNS_RDF_TYPE_DNAME) { 751 dname_j = 1; 752 lablen_j = (size_t)*dj; 753 if(lablen_j == 0) { 754 dname_j = 0; 755 dname_num_j--; 756 if(dname_num_j == 0) 757 lablen_j = jlen; 758 } 759 } else if(desc->_wireformat[wfj] 760 == LDNS_RDF_TYPE_STR) 761 lablen_j = (size_t)*dj; 762 else lablen_j = get_rdf_size( 763 desc->_wireformat[wfj]) - 1; 764 } 765 } else lablen_j--; 766 di++; 767 dj++; 768 } 769 /* end of the loop; because we advanced byte by byte; now we have 770 * that the rdata has ended, or that there is a binary remainder */ 771 /* shortest first */ 772 if(ilen == 0 && jlen == 0) 773 return 0; 774 if(ilen == 0) 775 return -1; 776 if(jlen == 0) 777 return 1; 778 /* binary remainder, capture comparison in wfi variable */ 779 if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0) 780 return wfi; 781 if(ilen < jlen) 782 return -1; 783 if(jlen < ilen) 784 return 1; 785 return 0; 786 } 787 788 /** 789 * Compare two RRs in the same RRset and determine their relative 790 * canonical order. 791 * @param rrset: the rrset in which to perform compares. 792 * @param i: first RR to compare 793 * @param j: first RR to compare 794 * @return 0 if RR i== RR j, -1 if <, +1 if >. 795 */ 796 static int 797 canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j) 798 { 799 struct packed_rrset_data* d = (struct packed_rrset_data*) 800 rrset->entry.data; 801 const sldns_rr_descriptor* desc; 802 uint16_t type = ntohs(rrset->rk.type); 803 size_t minlen; 804 int c; 805 806 if(i==j) 807 return 0; 808 809 switch(type) { 810 /* These RR types have only a name as RDATA. 811 * This name has to be canonicalized.*/ 812 case LDNS_RR_TYPE_NS: 813 case LDNS_RR_TYPE_MD: 814 case LDNS_RR_TYPE_MF: 815 case LDNS_RR_TYPE_CNAME: 816 case LDNS_RR_TYPE_MB: 817 case LDNS_RR_TYPE_MG: 818 case LDNS_RR_TYPE_MR: 819 case LDNS_RR_TYPE_PTR: 820 case LDNS_RR_TYPE_DNAME: 821 /* the wireread function has already checked these 822 * dname's for correctness, and this double checks */ 823 if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) || 824 !dname_valid(d->rr_data[j]+2, d->rr_len[j]-2)) 825 return 0; 826 return query_dname_compare(d->rr_data[i]+2, 827 d->rr_data[j]+2); 828 829 /* These RR types have STR and fixed size rdata fields 830 * before one or more name fields that need canonicalizing, 831 * and after that a byte-for byte remainder can be compared. 832 */ 833 /* type starts with the name; remainder is binary compared */ 834 case LDNS_RR_TYPE_NXT: 835 /* use rdata field formats */ 836 case LDNS_RR_TYPE_MINFO: 837 case LDNS_RR_TYPE_RP: 838 case LDNS_RR_TYPE_SOA: 839 case LDNS_RR_TYPE_RT: 840 case LDNS_RR_TYPE_AFSDB: 841 case LDNS_RR_TYPE_KX: 842 case LDNS_RR_TYPE_MX: 843 case LDNS_RR_TYPE_SIG: 844 /* RRSIG signer name has to be downcased */ 845 case LDNS_RR_TYPE_RRSIG: 846 case LDNS_RR_TYPE_PX: 847 case LDNS_RR_TYPE_NAPTR: 848 case LDNS_RR_TYPE_SRV: 849 desc = sldns_rr_descript(type); 850 log_assert(desc); 851 /* this holds for the types that need canonicalizing */ 852 log_assert(desc->_minimum == desc->_maximum); 853 return canonical_compare_byfield(d, desc, i, j); 854 855 case LDNS_RR_TYPE_HINFO: /* no longer downcased */ 856 case LDNS_RR_TYPE_NSEC: 857 default: 858 /* For unknown RR types, or types not listed above, 859 * no canonicalization is needed, do binary compare */ 860 /* byte for byte compare, equal means shortest first*/ 861 minlen = d->rr_len[i]-2; 862 if(minlen > d->rr_len[j]-2) 863 minlen = d->rr_len[j]-2; 864 c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen); 865 if(c!=0) 866 return c; 867 /* rdata equal, shortest is first */ 868 if(d->rr_len[i] < d->rr_len[j]) 869 return -1; 870 if(d->rr_len[i] > d->rr_len[j]) 871 return 1; 872 /* rdata equal, length equal */ 873 break; 874 } 875 return 0; 876 } 877 878 int 879 canonical_tree_compare(const void* k1, const void* k2) 880 { 881 struct canon_rr* r1 = (struct canon_rr*)k1; 882 struct canon_rr* r2 = (struct canon_rr*)k2; 883 log_assert(r1->rrset == r2->rrset); 884 return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx); 885 } 886 887 /** 888 * Sort RRs for rrset in canonical order. 889 * Does not actually canonicalize the RR rdatas. 890 * Does not touch rrsigs. 891 * @param rrset: to sort. 892 * @param d: rrset data. 893 * @param sortree: tree to sort into. 894 * @param rrs: rr storage. 895 */ 896 static void 897 canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d, 898 rbtree_type* sortree, struct canon_rr* rrs) 899 { 900 size_t i; 901 /* insert into rbtree to sort and detect duplicates */ 902 for(i=0; i<d->count; i++) { 903 rrs[i].node.key = &rrs[i]; 904 rrs[i].rrset = rrset; 905 rrs[i].rr_idx = i; 906 if(!rbtree_insert(sortree, &rrs[i].node)) { 907 /* this was a duplicate */ 908 } 909 } 910 } 911 912 /** 913 * Insert canonical owner name into buffer. 914 * @param buf: buffer to insert into at current position. 915 * @param k: rrset with its owner name. 916 * @param sig: signature with signer name and label count. 917 * must be length checked, at least 18 bytes long. 918 * @param can_owner: position in buffer returned for future use. 919 * @param can_owner_len: length of canonical owner name. 920 */ 921 static void 922 insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k, 923 uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len) 924 { 925 int rrsig_labels = (int)sig[3]; 926 int fqdn_labels = dname_signame_label_count(k->rk.dname); 927 *can_owner = sldns_buffer_current(buf); 928 if(rrsig_labels == fqdn_labels) { 929 /* no change */ 930 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); 931 query_dname_tolower(*can_owner); 932 *can_owner_len = k->rk.dname_len; 933 return; 934 } 935 log_assert(rrsig_labels < fqdn_labels); 936 /* *. | fqdn(rightmost rrsig_labels) */ 937 if(rrsig_labels < fqdn_labels) { 938 int i; 939 uint8_t* nm = k->rk.dname; 940 size_t len = k->rk.dname_len; 941 /* so skip fqdn_labels-rrsig_labels */ 942 for(i=0; i<fqdn_labels-rrsig_labels; i++) { 943 dname_remove_label(&nm, &len); 944 } 945 *can_owner_len = len+2; 946 sldns_buffer_write(buf, (uint8_t*)"\001*", 2); 947 sldns_buffer_write(buf, nm, len); 948 query_dname_tolower(*can_owner); 949 } 950 } 951 952 /** 953 * Canonicalize Rdata in buffer. 954 * @param buf: buffer at position just after the rdata. 955 * @param rrset: rrset with type. 956 * @param len: length of the rdata (including rdatalen uint16). 957 */ 958 static void 959 canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset, 960 size_t len) 961 { 962 uint8_t* datstart = sldns_buffer_current(buf)-len+2; 963 switch(ntohs(rrset->rk.type)) { 964 case LDNS_RR_TYPE_NXT: 965 case LDNS_RR_TYPE_NS: 966 case LDNS_RR_TYPE_MD: 967 case LDNS_RR_TYPE_MF: 968 case LDNS_RR_TYPE_CNAME: 969 case LDNS_RR_TYPE_MB: 970 case LDNS_RR_TYPE_MG: 971 case LDNS_RR_TYPE_MR: 972 case LDNS_RR_TYPE_PTR: 973 case LDNS_RR_TYPE_DNAME: 974 /* type only has a single argument, the name */ 975 query_dname_tolower(datstart); 976 return; 977 case LDNS_RR_TYPE_MINFO: 978 case LDNS_RR_TYPE_RP: 979 case LDNS_RR_TYPE_SOA: 980 /* two names after another */ 981 query_dname_tolower(datstart); 982 query_dname_tolower(datstart + 983 dname_valid(datstart, len-2)); 984 return; 985 case LDNS_RR_TYPE_RT: 986 case LDNS_RR_TYPE_AFSDB: 987 case LDNS_RR_TYPE_KX: 988 case LDNS_RR_TYPE_MX: 989 /* skip fixed part */ 990 if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */ 991 return; 992 datstart += 2; 993 query_dname_tolower(datstart); 994 return; 995 case LDNS_RR_TYPE_SIG: 996 /* downcase the RRSIG, compat with BIND (kept it from SIG) */ 997 case LDNS_RR_TYPE_RRSIG: 998 /* skip fixed part */ 999 if(len < 2+18+1) 1000 return; 1001 datstart += 18; 1002 query_dname_tolower(datstart); 1003 return; 1004 case LDNS_RR_TYPE_PX: 1005 /* skip, then two names after another */ 1006 if(len < 2+2+1) 1007 return; 1008 datstart += 2; 1009 query_dname_tolower(datstart); 1010 query_dname_tolower(datstart + 1011 dname_valid(datstart, len-2-2)); 1012 return; 1013 case LDNS_RR_TYPE_NAPTR: 1014 if(len < 2+4) 1015 return; 1016 len -= 2+4; 1017 datstart += 4; 1018 if(len < (size_t)datstart[0]+1) /* skip text field */ 1019 return; 1020 len -= (size_t)datstart[0]+1; 1021 datstart += (size_t)datstart[0]+1; 1022 if(len < (size_t)datstart[0]+1) /* skip text field */ 1023 return; 1024 len -= (size_t)datstart[0]+1; 1025 datstart += (size_t)datstart[0]+1; 1026 if(len < (size_t)datstart[0]+1) /* skip text field */ 1027 return; 1028 len -= (size_t)datstart[0]+1; 1029 datstart += (size_t)datstart[0]+1; 1030 if(len < 1) /* check name is at least 1 byte*/ 1031 return; 1032 query_dname_tolower(datstart); 1033 return; 1034 case LDNS_RR_TYPE_SRV: 1035 /* skip fixed part */ 1036 if(len < 2+6+1) 1037 return; 1038 datstart += 6; 1039 query_dname_tolower(datstart); 1040 return; 1041 1042 /* do not canonicalize NSEC rdata name, compat with 1043 * from bind 9.4 signer, where it does not do so */ 1044 case LDNS_RR_TYPE_NSEC: /* type starts with the name */ 1045 case LDNS_RR_TYPE_HINFO: /* not downcased */ 1046 /* A6 not supported */ 1047 default: 1048 /* nothing to do for unknown types */ 1049 return; 1050 } 1051 } 1052 1053 int rrset_canonical_equal(struct regional* region, 1054 struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) 1055 { 1056 struct rbtree_type sortree1, sortree2; 1057 struct canon_rr *rrs1, *rrs2, *p1, *p2; 1058 struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data; 1059 struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data; 1060 struct ub_packed_rrset_key fk; 1061 struct packed_rrset_data fd; 1062 size_t flen[2]; 1063 uint8_t* fdata[2]; 1064 1065 /* basic compare */ 1066 if(k1->rk.dname_len != k2->rk.dname_len || 1067 k1->rk.flags != k2->rk.flags || 1068 k1->rk.type != k2->rk.type || 1069 k1->rk.rrset_class != k2->rk.rrset_class || 1070 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) 1071 return 0; 1072 if(d1->ttl != d2->ttl || 1073 d1->count != d2->count || 1074 d1->rrsig_count != d2->rrsig_count || 1075 d1->trust != d2->trust || 1076 d1->security != d2->security) 1077 return 0; 1078 1079 /* init */ 1080 memset(&fk, 0, sizeof(fk)); 1081 memset(&fd, 0, sizeof(fd)); 1082 fk.entry.data = &fd; 1083 fd.count = 2; 1084 fd.rr_len = flen; 1085 fd.rr_data = fdata; 1086 rbtree_init(&sortree1, &canonical_tree_compare); 1087 rbtree_init(&sortree2, &canonical_tree_compare); 1088 if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX) 1089 return 1; /* protection against integer overflow */ 1090 rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count); 1091 rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count); 1092 if(!rrs1 || !rrs2) return 1; /* alloc failure */ 1093 1094 /* sort */ 1095 canonical_sort(k1, d1, &sortree1, rrs1); 1096 canonical_sort(k2, d2, &sortree2, rrs2); 1097 1098 /* compare canonical-sorted RRs for canonical-equality */ 1099 if(sortree1.count != sortree2.count) 1100 return 0; 1101 p1 = (struct canon_rr*)rbtree_first(&sortree1); 1102 p2 = (struct canon_rr*)rbtree_first(&sortree2); 1103 while(p1 != (struct canon_rr*)RBTREE_NULL && 1104 p2 != (struct canon_rr*)RBTREE_NULL) { 1105 flen[0] = d1->rr_len[p1->rr_idx]; 1106 flen[1] = d2->rr_len[p2->rr_idx]; 1107 fdata[0] = d1->rr_data[p1->rr_idx]; 1108 fdata[1] = d2->rr_data[p2->rr_idx]; 1109 1110 if(canonical_compare(&fk, 0, 1) != 0) 1111 return 0; 1112 p1 = (struct canon_rr*)rbtree_next(&p1->node); 1113 p2 = (struct canon_rr*)rbtree_next(&p2->node); 1114 } 1115 return 1; 1116 } 1117 1118 /** 1119 * Create canonical form of rrset in the scratch buffer. 1120 * @param region: temporary region. 1121 * @param buf: the buffer to use. 1122 * @param k: the rrset to insert. 1123 * @param sig: RRSIG rdata to include. 1124 * @param siglen: RRSIG rdata len excluding signature field, but inclusive 1125 * signer name length. 1126 * @param sortree: if NULL is passed a new sorted rrset tree is built. 1127 * Otherwise it is reused. 1128 * @param section: section of packet where this rrset comes from. 1129 * @param qstate: qstate with region. 1130 * @return false on alloc error. 1131 */ 1132 static int 1133 rrset_canonical(struct regional* region, sldns_buffer* buf, 1134 struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen, 1135 struct rbtree_type** sortree, sldns_pkt_section section, 1136 struct module_qstate* qstate) 1137 { 1138 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1139 uint8_t* can_owner = NULL; 1140 size_t can_owner_len = 0; 1141 struct canon_rr* walk; 1142 struct canon_rr* rrs; 1143 1144 if(!*sortree) { 1145 *sortree = (struct rbtree_type*)regional_alloc(region, 1146 sizeof(rbtree_type)); 1147 if(!*sortree) 1148 return 0; 1149 if(d->count > RR_COUNT_MAX) 1150 return 0; /* integer overflow protection */ 1151 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count); 1152 if(!rrs) { 1153 *sortree = NULL; 1154 return 0; 1155 } 1156 rbtree_init(*sortree, &canonical_tree_compare); 1157 canonical_sort(k, d, *sortree, rrs); 1158 } 1159 1160 sldns_buffer_clear(buf); 1161 sldns_buffer_write(buf, sig, siglen); 1162 /* canonicalize signer name */ 1163 query_dname_tolower(sldns_buffer_begin(buf)+18); 1164 RBTREE_FOR(walk, struct canon_rr*, (*sortree)) { 1165 /* see if there is enough space left in the buffer */ 1166 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4 1167 + d->rr_len[walk->rr_idx]) { 1168 log_err("verify: failed to canonicalize, " 1169 "rrset too big"); 1170 return 0; 1171 } 1172 /* determine canonical owner name */ 1173 if(can_owner) 1174 sldns_buffer_write(buf, can_owner, can_owner_len); 1175 else insert_can_owner(buf, k, sig, &can_owner, 1176 &can_owner_len); 1177 sldns_buffer_write(buf, &k->rk.type, 2); 1178 sldns_buffer_write(buf, &k->rk.rrset_class, 2); 1179 sldns_buffer_write(buf, sig+4, 4); 1180 sldns_buffer_write(buf, d->rr_data[walk->rr_idx], 1181 d->rr_len[walk->rr_idx]); 1182 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]); 1183 } 1184 sldns_buffer_flip(buf); 1185 1186 /* Replace RR owner with canonical owner for NSEC records in authority 1187 * section, to prevent that a wildcard synthesized NSEC can be used in 1188 * the non-existence proves. */ 1189 if(ntohs(k->rk.type) == LDNS_RR_TYPE_NSEC && 1190 section == LDNS_SECTION_AUTHORITY) { 1191 k->rk.dname = regional_alloc_init(qstate->region, can_owner, 1192 can_owner_len); 1193 if(!k->rk.dname) 1194 return 0; 1195 k->rk.dname_len = can_owner_len; 1196 } 1197 1198 1199 return 1; 1200 } 1201 1202 /** pretty print rrsig error with dates */ 1203 static void 1204 sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now) 1205 { 1206 struct tm tm; 1207 char expi_buf[16]; 1208 char incep_buf[16]; 1209 char now_buf[16]; 1210 time_t te, ti, tn; 1211 1212 if(verbosity < VERB_QUERY) 1213 return; 1214 te = (time_t)expi; 1215 ti = (time_t)incep; 1216 tn = (time_t)now; 1217 memset(&tm, 0, sizeof(tm)); 1218 if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm) 1219 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm) 1220 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) { 1221 log_info("%s expi=%s incep=%s now=%s", str, expi_buf, 1222 incep_buf, now_buf); 1223 } else 1224 log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi, 1225 (unsigned)incep, (unsigned)now); 1226 } 1227 1228 /** RFC 1918 comparison, uses unsigned integers, and tries to avoid 1229 * compiler optimization (eg. by avoiding a-b<0 comparisons), 1230 * this routine matches compare_serial(), for SOA serial number checks */ 1231 static int 1232 compare_1918(uint32_t a, uint32_t b) 1233 { 1234 /* for 32 bit values */ 1235 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1236 1237 if (a == b) { 1238 return 0; 1239 } else if ((a < b && b - a < cutoff) || (a > b && a - b > cutoff)) { 1240 return -1; 1241 } else { 1242 return 1; 1243 } 1244 } 1245 1246 /** if we know that b is larger than a, return the difference between them, 1247 * that is the distance between them. in RFC1918 arith */ 1248 static uint32_t 1249 subtract_1918(uint32_t a, uint32_t b) 1250 { 1251 /* for 32 bit values */ 1252 const uint32_t cutoff = ((uint32_t) 1 << (32 - 1)); 1253 1254 if(a == b) 1255 return 0; 1256 if(a < b && b - a < cutoff) { 1257 return b-a; 1258 } 1259 if(a > b && a - b > cutoff) { 1260 return ((uint32_t)0xffffffff) - (a-b-1); 1261 } 1262 /* wrong case, b smaller than a */ 1263 return 0; 1264 } 1265 1266 /** check rrsig dates */ 1267 static int 1268 check_dates(struct val_env* ve, uint32_t unow, 1269 uint8_t* expi_p, uint8_t* incep_p, char** reason) 1270 { 1271 /* read out the dates */ 1272 uint32_t expi, incep, now; 1273 memmove(&expi, expi_p, sizeof(expi)); 1274 memmove(&incep, incep_p, sizeof(incep)); 1275 expi = ntohl(expi); 1276 incep = ntohl(incep); 1277 1278 /* get current date */ 1279 if(ve->date_override) { 1280 if(ve->date_override == -1) { 1281 verbose(VERB_ALGO, "date override: ignore date"); 1282 return 1; 1283 } 1284 now = ve->date_override; 1285 verbose(VERB_ALGO, "date override option %d", (int)now); 1286 } else now = unow; 1287 1288 /* check them */ 1289 if(compare_1918(incep, expi) > 0) { 1290 sigdate_error("verify: inception after expiration, " 1291 "signature bad", expi, incep, now); 1292 *reason = "signature inception after expiration"; 1293 return 0; 1294 } 1295 if(compare_1918(incep, now) > 0) { 1296 /* within skew ? (calc here to avoid calculation normally) */ 1297 uint32_t skew = subtract_1918(incep, expi)/10; 1298 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1299 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1300 if(subtract_1918(now, incep) > skew) { 1301 sigdate_error("verify: signature bad, current time is" 1302 " before inception date", expi, incep, now); 1303 *reason = "signature before inception date"; 1304 return 0; 1305 } 1306 sigdate_error("verify warning suspicious signature inception " 1307 " or bad local clock", expi, incep, now); 1308 } 1309 if(compare_1918(now, expi) > 0) { 1310 uint32_t skew = subtract_1918(incep, expi)/10; 1311 if(skew < (uint32_t)ve->skew_min) skew = ve->skew_min; 1312 if(skew > (uint32_t)ve->skew_max) skew = ve->skew_max; 1313 if(subtract_1918(expi, now) > skew) { 1314 sigdate_error("verify: signature expired", expi, 1315 incep, now); 1316 *reason = "signature expired"; 1317 return 0; 1318 } 1319 sigdate_error("verify warning suspicious signature expiration " 1320 " or bad local clock", expi, incep, now); 1321 } 1322 return 1; 1323 } 1324 1325 /** adjust rrset TTL for verified rrset, compare to original TTL and expi */ 1326 static void 1327 adjust_ttl(struct val_env* ve, uint32_t unow, 1328 struct ub_packed_rrset_key* rrset, uint8_t* orig_p, 1329 uint8_t* expi_p, uint8_t* incep_p) 1330 { 1331 struct packed_rrset_data* d = 1332 (struct packed_rrset_data*)rrset->entry.data; 1333 /* read out the dates */ 1334 int32_t origttl, expittl, expi, incep, now; 1335 memmove(&origttl, orig_p, sizeof(origttl)); 1336 memmove(&expi, expi_p, sizeof(expi)); 1337 memmove(&incep, incep_p, sizeof(incep)); 1338 expi = ntohl(expi); 1339 incep = ntohl(incep); 1340 origttl = ntohl(origttl); 1341 1342 /* get current date */ 1343 if(ve->date_override) { 1344 now = ve->date_override; 1345 } else now = (int32_t)unow; 1346 expittl = expi - now; 1347 1348 /* so now: 1349 * d->ttl: rrset ttl read from message or cache. May be reduced 1350 * origttl: original TTL from signature, authoritative TTL max. 1351 * MIN_TTL: minimum TTL from config. 1352 * expittl: TTL until the signature expires. 1353 * 1354 * Use the smallest of these, but don't let origttl set the TTL 1355 * below the minimum. 1356 */ 1357 if(MIN_TTL > (time_t)origttl && d->ttl > MIN_TTL) { 1358 verbose(VERB_QUERY, "rrset TTL larger than original and minimum" 1359 " TTL, adjusting TTL downwards to minimum ttl"); 1360 d->ttl = MIN_TTL; 1361 } 1362 else if(MIN_TTL <= origttl && d->ttl > (time_t)origttl) { 1363 verbose(VERB_QUERY, "rrset TTL larger than original TTL, " 1364 "adjusting TTL downwards to original ttl"); 1365 d->ttl = origttl; 1366 } 1367 1368 if(expittl > 0 && d->ttl > (time_t)expittl) { 1369 verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl," 1370 " adjusting TTL downwards"); 1371 d->ttl = expittl; 1372 } 1373 } 1374 1375 enum sec_status 1376 dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf, 1377 struct val_env* ve, time_t now, 1378 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey, 1379 size_t dnskey_idx, size_t sig_idx, 1380 struct rbtree_type** sortree, int* buf_canon, char** reason, 1381 sldns_pkt_section section, struct module_qstate* qstate) 1382 { 1383 enum sec_status sec; 1384 uint8_t* sig; /* RRSIG rdata */ 1385 size_t siglen; 1386 size_t rrnum = rrset_get_count(rrset); 1387 uint8_t* signer; /* rrsig signer name */ 1388 size_t signer_len; 1389 unsigned char* sigblock; /* signature rdata field */ 1390 unsigned int sigblock_len; 1391 uint16_t ktag; /* DNSKEY key tag */ 1392 unsigned char* key; /* public key rdata field */ 1393 unsigned int keylen; 1394 rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen); 1395 /* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */ 1396 if(siglen < 2+20) { 1397 verbose(VERB_QUERY, "verify: signature too short"); 1398 *reason = "signature too short"; 1399 return sec_status_bogus; 1400 } 1401 1402 if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) { 1403 verbose(VERB_QUERY, "verify: dnskey without ZSK flag"); 1404 *reason = "dnskey without ZSK flag"; 1405 return sec_status_bogus; 1406 } 1407 1408 if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) { 1409 /* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */ 1410 verbose(VERB_QUERY, "verify: dnskey has wrong key protocol"); 1411 *reason = "dnskey has wrong protocolnumber"; 1412 return sec_status_bogus; 1413 } 1414 1415 /* verify as many fields in rrsig as possible */ 1416 signer = sig+2+18; 1417 signer_len = dname_valid(signer, siglen-2-18); 1418 if(!signer_len) { 1419 verbose(VERB_QUERY, "verify: malformed signer name"); 1420 *reason = "signer name malformed"; 1421 return sec_status_bogus; /* signer name invalid */ 1422 } 1423 if(!dname_subdomain_c(rrset->rk.dname, signer)) { 1424 verbose(VERB_QUERY, "verify: signer name is off-tree"); 1425 *reason = "signer name off-tree"; 1426 return sec_status_bogus; /* signer name offtree */ 1427 } 1428 sigblock = (unsigned char*)signer+signer_len; 1429 if(siglen < 2+18+signer_len+1) { 1430 verbose(VERB_QUERY, "verify: too short, no signature data"); 1431 *reason = "signature too short, no signature data"; 1432 return sec_status_bogus; /* sig rdf is < 1 byte */ 1433 } 1434 sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len); 1435 1436 /* verify key dname == sig signer name */ 1437 if(query_dname_compare(signer, dnskey->rk.dname) != 0) { 1438 verbose(VERB_QUERY, "verify: wrong key for rrsig"); 1439 log_nametypeclass(VERB_QUERY, "RRSIG signername is", 1440 signer, 0, 0); 1441 log_nametypeclass(VERB_QUERY, "the key name is", 1442 dnskey->rk.dname, 0, 0); 1443 *reason = "signer name mismatches key name"; 1444 return sec_status_bogus; 1445 } 1446 1447 /* verify covered type */ 1448 /* memcmp works because type is in network format for rrset */ 1449 if(memcmp(sig+2, &rrset->rk.type, 2) != 0) { 1450 verbose(VERB_QUERY, "verify: wrong type covered"); 1451 *reason = "signature covers wrong type"; 1452 return sec_status_bogus; 1453 } 1454 /* verify keytag and sig algo (possibly again) */ 1455 if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) { 1456 verbose(VERB_QUERY, "verify: wrong algorithm"); 1457 *reason = "signature has wrong algorithm"; 1458 return sec_status_bogus; 1459 } 1460 ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx)); 1461 if(memcmp(sig+2+16, &ktag, 2) != 0) { 1462 verbose(VERB_QUERY, "verify: wrong keytag"); 1463 *reason = "signature has wrong keytag"; 1464 return sec_status_bogus; 1465 } 1466 1467 /* verify labels is in a valid range */ 1468 if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) { 1469 verbose(VERB_QUERY, "verify: labelcount out of range"); 1470 *reason = "signature labelcount out of range"; 1471 return sec_status_bogus; 1472 } 1473 1474 /* original ttl, always ok */ 1475 1476 if(!*buf_canon) { 1477 /* create rrset canonical format in buffer, ready for 1478 * signature */ 1479 if(!rrset_canonical(region, buf, rrset, sig+2, 1480 18 + signer_len, sortree, section, qstate)) { 1481 log_err("verify: failed due to alloc error"); 1482 return sec_status_unchecked; 1483 } 1484 *buf_canon = 1; 1485 } 1486 1487 /* check that dnskey is available */ 1488 dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen); 1489 if(!key) { 1490 verbose(VERB_QUERY, "verify: short DNSKEY RR"); 1491 return sec_status_unchecked; 1492 } 1493 1494 /* verify */ 1495 sec = verify_canonrrset(buf, (int)sig[2+2], 1496 sigblock, sigblock_len, key, keylen, reason); 1497 1498 if(sec == sec_status_secure) { 1499 /* check if TTL is too high - reduce if so */ 1500 adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12); 1501 1502 /* verify inception, expiration dates 1503 * Do this last so that if you ignore expired-sigs the 1504 * rest is sure to be OK. */ 1505 if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) { 1506 return sec_status_bogus; 1507 } 1508 } 1509 1510 return sec; 1511 } 1512