xref: /freebsd/contrib/unbound/validator/val_secalgo.c (revision d3de06238379fc0e692927ebf74fcc41860c726f)
1 /*
2  * validator/val_secalgo.c - validator security algorithm functions.
3  *
4  * Copyright (c) 2012, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * These functions take raw data buffers, formatted for crypto verification,
41  * and do the library calls (for the crypto library in use).
42  */
43 #include "config.h"
44 /* packed_rrset on top to define enum types (forced by c99 standard) */
45 #include "util/data/packed_rrset.h"
46 #include "validator/val_secalgo.h"
47 #include "validator/val_nsec3.h"
48 #include "util/log.h"
49 #include "sldns/rrdef.h"
50 #include "sldns/keyraw.h"
51 #include "sldns/sbuffer.h"
52 
53 #if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
54 #error "Need crypto library to do digital signature cryptography"
55 #endif
56 
57 /* OpenSSL implementation */
58 #ifdef HAVE_SSL
59 #ifdef HAVE_OPENSSL_ERR_H
60 #include <openssl/err.h>
61 #endif
62 
63 #ifdef HAVE_OPENSSL_RAND_H
64 #include <openssl/rand.h>
65 #endif
66 
67 #ifdef HAVE_OPENSSL_CONF_H
68 #include <openssl/conf.h>
69 #endif
70 
71 #ifdef HAVE_OPENSSL_ENGINE_H
72 #include <openssl/engine.h>
73 #endif
74 
75 /* return size of digest if supported, or 0 otherwise */
76 size_t
77 nsec3_hash_algo_size_supported(int id)
78 {
79 	switch(id) {
80 	case NSEC3_HASH_SHA1:
81 		return SHA_DIGEST_LENGTH;
82 	default:
83 		return 0;
84 	}
85 }
86 
87 /* perform nsec3 hash. return false on failure */
88 int
89 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
90         unsigned char* res)
91 {
92 	switch(algo) {
93 	case NSEC3_HASH_SHA1:
94 		(void)SHA1(buf, len, res);
95 		return 1;
96 	default:
97 		return 0;
98 	}
99 }
100 
101 void
102 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
103 {
104 	(void)SHA256(buf, len, res);
105 }
106 
107 /**
108  * Return size of DS digest according to its hash algorithm.
109  * @param algo: DS digest algo.
110  * @return size in bytes of digest, or 0 if not supported.
111  */
112 size_t
113 ds_digest_size_supported(int algo)
114 {
115 	switch(algo) {
116 #ifdef HAVE_EVP_SHA1
117 		case LDNS_SHA1:
118 			return SHA_DIGEST_LENGTH;
119 #endif
120 #ifdef HAVE_EVP_SHA256
121 		case LDNS_SHA256:
122 			return SHA256_DIGEST_LENGTH;
123 #endif
124 #ifdef USE_GOST
125 		case LDNS_HASH_GOST:
126 			/* we support GOST if it can be loaded */
127 			(void)sldns_key_EVP_load_gost_id();
128 			if(EVP_get_digestbyname("md_gost94"))
129 				return 32;
130 			else	return 0;
131 #endif
132 #ifdef USE_ECDSA
133 		case LDNS_SHA384:
134 			return SHA384_DIGEST_LENGTH;
135 #endif
136 		default: break;
137 	}
138 	return 0;
139 }
140 
141 #ifdef USE_GOST
142 /** Perform GOST hash */
143 static int
144 do_gost94(unsigned char* data, size_t len, unsigned char* dest)
145 {
146 	const EVP_MD* md = EVP_get_digestbyname("md_gost94");
147 	if(!md)
148 		return 0;
149 	return sldns_digest_evp(data, (unsigned int)len, dest, md);
150 }
151 #endif
152 
153 int
154 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
155 	unsigned char* res)
156 {
157 	switch(algo) {
158 #ifdef HAVE_EVP_SHA1
159 		case LDNS_SHA1:
160 			(void)SHA1(buf, len, res);
161 			return 1;
162 #endif
163 #ifdef HAVE_EVP_SHA256
164 		case LDNS_SHA256:
165 			(void)SHA256(buf, len, res);
166 			return 1;
167 #endif
168 #ifdef USE_GOST
169 		case LDNS_HASH_GOST:
170 			if(do_gost94(buf, len, res))
171 				return 1;
172 			break;
173 #endif
174 #ifdef USE_ECDSA
175 		case LDNS_SHA384:
176 			(void)SHA384(buf, len, res);
177 			return 1;
178 #endif
179 		default:
180 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
181 				algo);
182 			break;
183 	}
184 	return 0;
185 }
186 
187 /** return true if DNSKEY algorithm id is supported */
188 int
189 dnskey_algo_id_is_supported(int id)
190 {
191 	switch(id) {
192 	case LDNS_RSAMD5:
193 		/* RFC 6725 deprecates RSAMD5 */
194 		return 0;
195 #ifdef USE_DSA
196 	case LDNS_DSA:
197 	case LDNS_DSA_NSEC3:
198 #endif
199 	case LDNS_RSASHA1:
200 	case LDNS_RSASHA1_NSEC3:
201 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
202 	case LDNS_RSASHA256:
203 #endif
204 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
205 	case LDNS_RSASHA512:
206 #endif
207 #ifdef USE_ECDSA
208 	case LDNS_ECDSAP256SHA256:
209 	case LDNS_ECDSAP384SHA384:
210 #endif
211 		return 1;
212 #ifdef USE_GOST
213 	case LDNS_ECC_GOST:
214 		/* we support GOST if it can be loaded */
215 		return sldns_key_EVP_load_gost_id();
216 #endif
217 	default:
218 		return 0;
219 	}
220 }
221 
222 /**
223  * Output a libcrypto openssl error to the logfile.
224  * @param str: string to add to it.
225  * @param e: the error to output, error number from ERR_get_error().
226  */
227 static void
228 log_crypto_error(const char* str, unsigned long e)
229 {
230 	char buf[128];
231 	/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
232 	ERR_error_string_n(e, buf, sizeof(buf));
233 	/* buf now contains */
234 	/* error:[error code]:[library name]:[function name]:[reason string] */
235 	log_err("%s crypto %s", str, buf);
236 }
237 
238 #ifdef USE_DSA
239 /**
240  * Setup DSA key digest in DER encoding ...
241  * @param sig: input is signature output alloced ptr (unless failure).
242  * 	caller must free alloced ptr if this routine returns true.
243  * @param len: input is initial siglen, output is output len.
244  * @return false on failure.
245  */
246 static int
247 setup_dsa_sig(unsigned char** sig, unsigned int* len)
248 {
249 	unsigned char* orig = *sig;
250 	unsigned int origlen = *len;
251 	int newlen;
252 	BIGNUM *R, *S;
253 	DSA_SIG *dsasig;
254 
255 	/* extract the R and S field from the sig buffer */
256 	if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
257 		return 0;
258 	R = BN_new();
259 	if(!R) return 0;
260 	(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
261 	S = BN_new();
262 	if(!S) return 0;
263 	(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
264 	dsasig = DSA_SIG_new();
265 	if(!dsasig) return 0;
266 
267 	dsasig->r = R;
268 	dsasig->s = S;
269 	*sig = NULL;
270 	newlen = i2d_DSA_SIG(dsasig, sig);
271 	if(newlen < 0) {
272 		DSA_SIG_free(dsasig);
273 		free(*sig);
274 		return 0;
275 	}
276 	*len = (unsigned int)newlen;
277 	DSA_SIG_free(dsasig);
278 	return 1;
279 }
280 #endif /* USE_DSA */
281 
282 #ifdef USE_ECDSA
283 /**
284  * Setup the ECDSA signature in its encoding that the library wants.
285  * Converts from plain numbers to ASN formatted.
286  * @param sig: input is signature, output alloced ptr (unless failure).
287  * 	caller must free alloced ptr if this routine returns true.
288  * @param len: input is initial siglen, output is output len.
289  * @return false on failure.
290  */
291 static int
292 setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
293 {
294         /* convert from two BIGNUMs in the rdata buffer, to ASN notation.
295 	 * ASN preable:  30440220 <R 32bytefor256> 0220 <S 32bytefor256>
296 	 * the '20' is the length of that field (=bnsize).
297 i	 * the '44' is the total remaining length.
298 	 * if negative, start with leading zero.
299 	 * if starts with 00s, remove them from the number.
300 	 */
301         uint8_t pre[] = {0x30, 0x44, 0x02, 0x20};
302         int pre_len = 4;
303         uint8_t mid[] = {0x02, 0x20};
304         int mid_len = 2;
305         int raw_sig_len, r_high, s_high, r_rem=0, s_rem=0;
306 	int bnsize = (int)((*len)/2);
307         unsigned char* d = *sig;
308 	uint8_t* p;
309 	/* if too short or not even length, fails */
310 	if(*len < 16 || bnsize*2 != (int)*len)
311 		return 0;
312 
313         /* strip leading zeroes from r (but not last one) */
314         while(r_rem < bnsize-1 && d[r_rem] == 0)
315                 r_rem++;
316         /* strip leading zeroes from s (but not last one) */
317         while(s_rem < bnsize-1 && d[bnsize+s_rem] == 0)
318                 s_rem++;
319 
320         r_high = ((d[0+r_rem]&0x80)?1:0);
321         s_high = ((d[bnsize+s_rem]&0x80)?1:0);
322         raw_sig_len = pre_len + r_high + bnsize - r_rem + mid_len +
323                 s_high + bnsize - s_rem;
324 	*sig = (unsigned char*)malloc((size_t)raw_sig_len);
325 	if(!*sig)
326 		return 0;
327 	p = (uint8_t*)*sig;
328 	p[0] = pre[0];
329 	p[1] = (uint8_t)(raw_sig_len-2);
330 	p[2] = pre[2];
331 	p[3] = (uint8_t)(bnsize + r_high - r_rem);
332 	p += 4;
333 	if(r_high) {
334 		*p = 0;
335 		p += 1;
336 	}
337 	memmove(p, d+r_rem, (size_t)bnsize-r_rem);
338 	p += bnsize-r_rem;
339 	memmove(p, mid, (size_t)mid_len-1);
340 	p += mid_len-1;
341 	*p = (uint8_t)(bnsize + s_high - s_rem);
342 	p += 1;
343         if(s_high) {
344 		*p = 0;
345 		p += 1;
346 	}
347 	memmove(p, d+bnsize+s_rem, (size_t)bnsize-s_rem);
348 	*len = (unsigned int)raw_sig_len;
349 	return 1;
350 }
351 #endif /* USE_ECDSA */
352 
353 /**
354  * Setup key and digest for verification. Adjust sig if necessary.
355  *
356  * @param algo: key algorithm
357  * @param evp_key: EVP PKEY public key to create.
358  * @param digest_type: digest type to use
359  * @param key: key to setup for.
360  * @param keylen: length of key.
361  * @return false on failure.
362  */
363 static int
364 setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
365 	unsigned char* key, size_t keylen)
366 {
367 #ifdef USE_DSA
368 	DSA* dsa;
369 #endif
370 	RSA* rsa;
371 
372 	switch(algo) {
373 #ifdef USE_DSA
374 		case LDNS_DSA:
375 		case LDNS_DSA_NSEC3:
376 			*evp_key = EVP_PKEY_new();
377 			if(!*evp_key) {
378 				log_err("verify: malloc failure in crypto");
379 				return 0;
380 			}
381 			dsa = sldns_key_buf2dsa_raw(key, keylen);
382 			if(!dsa) {
383 				verbose(VERB_QUERY, "verify: "
384 					"sldns_key_buf2dsa_raw failed");
385 				return 0;
386 			}
387 			if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
388 				verbose(VERB_QUERY, "verify: "
389 					"EVP_PKEY_assign_DSA failed");
390 				return 0;
391 			}
392 			*digest_type = EVP_dss1();
393 
394 			break;
395 #endif /* USE_DSA */
396 		case LDNS_RSASHA1:
397 		case LDNS_RSASHA1_NSEC3:
398 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
399 		case LDNS_RSASHA256:
400 #endif
401 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
402 		case LDNS_RSASHA512:
403 #endif
404 			*evp_key = EVP_PKEY_new();
405 			if(!*evp_key) {
406 				log_err("verify: malloc failure in crypto");
407 				return 0;
408 			}
409 			rsa = sldns_key_buf2rsa_raw(key, keylen);
410 			if(!rsa) {
411 				verbose(VERB_QUERY, "verify: "
412 					"sldns_key_buf2rsa_raw SHA failed");
413 				return 0;
414 			}
415 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
416 				verbose(VERB_QUERY, "verify: "
417 					"EVP_PKEY_assign_RSA SHA failed");
418 				return 0;
419 			}
420 
421 			/* select SHA version */
422 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
423 			if(algo == LDNS_RSASHA256)
424 				*digest_type = EVP_sha256();
425 			else
426 #endif
427 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
428 				if(algo == LDNS_RSASHA512)
429 				*digest_type = EVP_sha512();
430 			else
431 #endif
432 				*digest_type = EVP_sha1();
433 
434 			break;
435 		case LDNS_RSAMD5:
436 			*evp_key = EVP_PKEY_new();
437 			if(!*evp_key) {
438 				log_err("verify: malloc failure in crypto");
439 				return 0;
440 			}
441 			rsa = sldns_key_buf2rsa_raw(key, keylen);
442 			if(!rsa) {
443 				verbose(VERB_QUERY, "verify: "
444 					"sldns_key_buf2rsa_raw MD5 failed");
445 				return 0;
446 			}
447 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
448 				verbose(VERB_QUERY, "verify: "
449 					"EVP_PKEY_assign_RSA MD5 failed");
450 				return 0;
451 			}
452 			*digest_type = EVP_md5();
453 
454 			break;
455 #ifdef USE_GOST
456 		case LDNS_ECC_GOST:
457 			*evp_key = sldns_gost2pkey_raw(key, keylen);
458 			if(!*evp_key) {
459 				verbose(VERB_QUERY, "verify: "
460 					"sldns_gost2pkey_raw failed");
461 				return 0;
462 			}
463 			*digest_type = EVP_get_digestbyname("md_gost94");
464 			if(!*digest_type) {
465 				verbose(VERB_QUERY, "verify: "
466 					"EVP_getdigest md_gost94 failed");
467 				return 0;
468 			}
469 			break;
470 #endif
471 #ifdef USE_ECDSA
472 		case LDNS_ECDSAP256SHA256:
473 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
474 				LDNS_ECDSAP256SHA256);
475 			if(!*evp_key) {
476 				verbose(VERB_QUERY, "verify: "
477 					"sldns_ecdsa2pkey_raw failed");
478 				return 0;
479 			}
480 #ifdef USE_ECDSA_EVP_WORKAROUND
481 			/* openssl before 1.0.0 fixes RSA with the SHA256
482 			 * hash in EVP.  We create one for ecdsa_sha256 */
483 			{
484 				static int md_ecdsa_256_done = 0;
485 				static EVP_MD md;
486 				if(!md_ecdsa_256_done) {
487 					EVP_MD m = *EVP_sha256();
488 					md_ecdsa_256_done = 1;
489 					m.required_pkey_type[0] = (*evp_key)->type;
490 					m.verify = (void*)ECDSA_verify;
491 					md = m;
492 				}
493 				*digest_type = &md;
494 			}
495 #else
496 			*digest_type = EVP_sha256();
497 #endif
498 			break;
499 		case LDNS_ECDSAP384SHA384:
500 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
501 				LDNS_ECDSAP384SHA384);
502 			if(!*evp_key) {
503 				verbose(VERB_QUERY, "verify: "
504 					"sldns_ecdsa2pkey_raw failed");
505 				return 0;
506 			}
507 #ifdef USE_ECDSA_EVP_WORKAROUND
508 			/* openssl before 1.0.0 fixes RSA with the SHA384
509 			 * hash in EVP.  We create one for ecdsa_sha384 */
510 			{
511 				static int md_ecdsa_384_done = 0;
512 				static EVP_MD md;
513 				if(!md_ecdsa_384_done) {
514 					EVP_MD m = *EVP_sha384();
515 					md_ecdsa_384_done = 1;
516 					m.required_pkey_type[0] = (*evp_key)->type;
517 					m.verify = (void*)ECDSA_verify;
518 					md = m;
519 				}
520 				*digest_type = &md;
521 			}
522 #else
523 			*digest_type = EVP_sha384();
524 #endif
525 			break;
526 #endif /* USE_ECDSA */
527 		default:
528 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
529 				algo);
530 			return 0;
531 	}
532 	return 1;
533 }
534 
535 /**
536  * Check a canonical sig+rrset and signature against a dnskey
537  * @param buf: buffer with data to verify, the first rrsig part and the
538  *	canonicalized rrset.
539  * @param algo: DNSKEY algorithm.
540  * @param sigblock: signature rdata field from RRSIG
541  * @param sigblock_len: length of sigblock data.
542  * @param key: public key data from DNSKEY RR.
543  * @param keylen: length of keydata.
544  * @param reason: bogus reason in more detail.
545  * @return secure if verification succeeded, bogus on crypto failure,
546  *	unchecked on format errors and alloc failures.
547  */
548 enum sec_status
549 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
550 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
551 	char** reason)
552 {
553 	const EVP_MD *digest_type;
554 	EVP_MD_CTX* ctx;
555 	int res, dofree = 0, docrypto_free = 0;
556 	EVP_PKEY *evp_key = NULL;
557 
558 	if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
559 		verbose(VERB_QUERY, "verify: failed to setup key");
560 		*reason = "use of key for crypto failed";
561 		EVP_PKEY_free(evp_key);
562 		return sec_status_bogus;
563 	}
564 #ifdef USE_DSA
565 	/* if it is a DSA signature in bind format, convert to DER format */
566 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
567 		sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
568 		if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
569 			verbose(VERB_QUERY, "verify: failed to setup DSA sig");
570 			*reason = "use of key for DSA crypto failed";
571 			EVP_PKEY_free(evp_key);
572 			return sec_status_bogus;
573 		}
574 		docrypto_free = 1;
575 	}
576 #endif
577 #if defined(USE_ECDSA) && defined(USE_DSA)
578 	else
579 #endif
580 #ifdef USE_ECDSA
581 	if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
582 		/* EVP uses ASN prefix on sig, which is not in the wire data */
583 		if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
584 			verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
585 			*reason = "use of signature for ECDSA crypto failed";
586 			EVP_PKEY_free(evp_key);
587 			return sec_status_bogus;
588 		}
589 		dofree = 1;
590 	}
591 #endif /* USE_ECDSA */
592 
593 	/* do the signature cryptography work */
594 #ifdef HAVE_EVP_MD_CTX_NEW
595 	ctx = EVP_MD_CTX_new();
596 #else
597 	ctx = (EVP_MD_CTX*)malloc(sizeof(*ctx));
598 	if(ctx) EVP_MD_CTX_init(ctx);
599 #endif
600 	if(!ctx) {
601 		log_err("EVP_MD_CTX_new: malloc failure");
602 		EVP_PKEY_free(evp_key);
603 		if(dofree) free(sigblock);
604 		else if(docrypto_free) CRYPTO_free(sigblock);
605 		return sec_status_unchecked;
606 	}
607 	if(EVP_VerifyInit(ctx, digest_type) == 0) {
608 		verbose(VERB_QUERY, "verify: EVP_VerifyInit failed");
609 		EVP_MD_CTX_destroy(ctx);
610 		EVP_PKEY_free(evp_key);
611 		if(dofree) free(sigblock);
612 		else if(docrypto_free) CRYPTO_free(sigblock);
613 		return sec_status_unchecked;
614 	}
615 	if(EVP_VerifyUpdate(ctx, (unsigned char*)sldns_buffer_begin(buf),
616 		(unsigned int)sldns_buffer_limit(buf)) == 0) {
617 		verbose(VERB_QUERY, "verify: EVP_VerifyUpdate failed");
618 		EVP_MD_CTX_destroy(ctx);
619 		EVP_PKEY_free(evp_key);
620 		if(dofree) free(sigblock);
621 		else if(docrypto_free) CRYPTO_free(sigblock);
622 		return sec_status_unchecked;
623 	}
624 
625 	res = EVP_VerifyFinal(ctx, sigblock, sigblock_len, evp_key);
626 #ifdef HAVE_EVP_MD_CTX_NEW
627 	EVP_MD_CTX_destroy(ctx);
628 #else
629 	EVP_MD_CTX_cleanup(ctx);
630 	free(ctx);
631 #endif
632 	EVP_PKEY_free(evp_key);
633 
634 	if(dofree) free(sigblock);
635 	else if(docrypto_free) CRYPTO_free(sigblock);
636 
637 	if(res == 1) {
638 		return sec_status_secure;
639 	} else if(res == 0) {
640 		verbose(VERB_QUERY, "verify: signature mismatch");
641 		*reason = "signature crypto failed";
642 		return sec_status_bogus;
643 	}
644 
645 	log_crypto_error("verify:", ERR_get_error());
646 	return sec_status_unchecked;
647 }
648 
649 /**************************************************/
650 #elif defined(HAVE_NSS)
651 /* libnss implementation */
652 /* nss3 */
653 #include "sechash.h"
654 #include "pk11pub.h"
655 #include "keyhi.h"
656 #include "secerr.h"
657 #include "cryptohi.h"
658 /* nspr4 */
659 #include "prerror.h"
660 
661 /* return size of digest if supported, or 0 otherwise */
662 size_t
663 nsec3_hash_algo_size_supported(int id)
664 {
665 	switch(id) {
666 	case NSEC3_HASH_SHA1:
667 		return SHA1_LENGTH;
668 	default:
669 		return 0;
670 	}
671 }
672 
673 /* perform nsec3 hash. return false on failure */
674 int
675 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
676         unsigned char* res)
677 {
678 	switch(algo) {
679 	case NSEC3_HASH_SHA1:
680 		(void)HASH_HashBuf(HASH_AlgSHA1, res, buf, (unsigned long)len);
681 		return 1;
682 	default:
683 		return 0;
684 	}
685 }
686 
687 void
688 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
689 {
690 	(void)HASH_HashBuf(HASH_AlgSHA256, res, buf, (unsigned long)len);
691 }
692 
693 size_t
694 ds_digest_size_supported(int algo)
695 {
696 	/* uses libNSS */
697 	switch(algo) {
698 		case LDNS_SHA1:
699 			return SHA1_LENGTH;
700 #ifdef USE_SHA2
701 		case LDNS_SHA256:
702 			return SHA256_LENGTH;
703 #endif
704 #ifdef USE_ECDSA
705 		case LDNS_SHA384:
706 			return SHA384_LENGTH;
707 #endif
708 		/* GOST not supported in NSS */
709 		case LDNS_HASH_GOST:
710 		default: break;
711 	}
712 	return 0;
713 }
714 
715 int
716 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
717 	unsigned char* res)
718 {
719 	/* uses libNSS */
720 	switch(algo) {
721 		case LDNS_SHA1:
722 			return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
723 				== SECSuccess;
724 #if defined(USE_SHA2)
725 		case LDNS_SHA256:
726 			return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
727 				== SECSuccess;
728 #endif
729 #ifdef USE_ECDSA
730 		case LDNS_SHA384:
731 			return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
732 				== SECSuccess;
733 #endif
734 		case LDNS_HASH_GOST:
735 		default:
736 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
737 				algo);
738 			break;
739 	}
740 	return 0;
741 }
742 
743 int
744 dnskey_algo_id_is_supported(int id)
745 {
746 	/* uses libNSS */
747 	switch(id) {
748 	case LDNS_RSAMD5:
749 		/* RFC 6725 deprecates RSAMD5 */
750 		return 0;
751 #ifdef USE_DSA
752 	case LDNS_DSA:
753 	case LDNS_DSA_NSEC3:
754 #endif
755 	case LDNS_RSASHA1:
756 	case LDNS_RSASHA1_NSEC3:
757 #ifdef USE_SHA2
758 	case LDNS_RSASHA256:
759 #endif
760 #ifdef USE_SHA2
761 	case LDNS_RSASHA512:
762 #endif
763 		return 1;
764 #ifdef USE_ECDSA
765 	case LDNS_ECDSAP256SHA256:
766 	case LDNS_ECDSAP384SHA384:
767 		return PK11_TokenExists(CKM_ECDSA);
768 #endif
769 	case LDNS_ECC_GOST:
770 	default:
771 		return 0;
772 	}
773 }
774 
775 /* return a new public key for NSS */
776 static SECKEYPublicKey* nss_key_create(KeyType ktype)
777 {
778 	SECKEYPublicKey* key;
779 	PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
780 	if(!arena) {
781 		log_err("out of memory, PORT_NewArena failed");
782 		return NULL;
783 	}
784 	key = PORT_ArenaZNew(arena, SECKEYPublicKey);
785 	if(!key) {
786 		log_err("out of memory, PORT_ArenaZNew failed");
787 		PORT_FreeArena(arena, PR_FALSE);
788 		return NULL;
789 	}
790 	key->arena = arena;
791 	key->keyType = ktype;
792 	key->pkcs11Slot = NULL;
793 	key->pkcs11ID = CK_INVALID_HANDLE;
794 	return key;
795 }
796 
797 static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
798 {
799 	SECKEYPublicKey* pk;
800 	SECItem pub = {siBuffer, NULL, 0};
801 	SECItem params = {siBuffer, NULL, 0};
802 	static unsigned char param256[] = {
803 		/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
804 		 * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
805 		0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
806 	};
807 	static unsigned char param384[] = {
808 		/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
809 		 * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
810 		0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
811 	};
812 	unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
813 
814 	/* check length, which uncompressed must be 2 bignums */
815 	if(algo == LDNS_ECDSAP256SHA256) {
816 		if(len != 2*256/8) return NULL;
817 		/* ECCurve_X9_62_PRIME_256V1 */
818 	} else if(algo == LDNS_ECDSAP384SHA384) {
819 		if(len != 2*384/8) return NULL;
820 		/* ECCurve_X9_62_PRIME_384R1 */
821 	} else    return NULL;
822 
823 	buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
824 	memmove(buf+1, key, len);
825 	pub.data = buf;
826 	pub.len = len+1;
827 	if(algo == LDNS_ECDSAP256SHA256) {
828 		params.data = param256;
829 		params.len = sizeof(param256);
830 	} else {
831 		params.data = param384;
832 		params.len = sizeof(param384);
833 	}
834 
835 	pk = nss_key_create(ecKey);
836 	if(!pk)
837 		return NULL;
838 	pk->u.ec.size = (len/2)*8;
839 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
840 		SECKEY_DestroyPublicKey(pk);
841 		return NULL;
842 	}
843 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
844 		SECKEY_DestroyPublicKey(pk);
845 		return NULL;
846 	}
847 
848 	return pk;
849 }
850 
851 static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
852 {
853 	SECKEYPublicKey* pk;
854 	uint8_t T;
855 	uint16_t length;
856 	uint16_t offset;
857 	SECItem Q = {siBuffer, NULL, 0};
858 	SECItem P = {siBuffer, NULL, 0};
859 	SECItem G = {siBuffer, NULL, 0};
860 	SECItem Y = {siBuffer, NULL, 0};
861 
862 	if(len == 0)
863 		return NULL;
864 	T = (uint8_t)key[0];
865 	length = (64 + T * 8);
866 	offset = 1;
867 
868 	if (T > 8) {
869 		return NULL;
870 	}
871 	if(len < (size_t)1 + SHA1_LENGTH + 3*length)
872 		return NULL;
873 
874 	Q.data = key+offset;
875 	Q.len = SHA1_LENGTH;
876 	offset += SHA1_LENGTH;
877 
878 	P.data = key+offset;
879 	P.len = length;
880 	offset += length;
881 
882 	G.data = key+offset;
883 	G.len = length;
884 	offset += length;
885 
886 	Y.data = key+offset;
887 	Y.len = length;
888 	offset += length;
889 
890 	pk = nss_key_create(dsaKey);
891 	if(!pk)
892 		return NULL;
893 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
894 		SECKEY_DestroyPublicKey(pk);
895 		return NULL;
896 	}
897 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
898 		SECKEY_DestroyPublicKey(pk);
899 		return NULL;
900 	}
901 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
902 		SECKEY_DestroyPublicKey(pk);
903 		return NULL;
904 	}
905 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
906 		SECKEY_DestroyPublicKey(pk);
907 		return NULL;
908 	}
909 	return pk;
910 }
911 
912 static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
913 {
914 	SECKEYPublicKey* pk;
915 	uint16_t exp;
916 	uint16_t offset;
917 	uint16_t int16;
918 	SECItem modulus = {siBuffer, NULL, 0};
919 	SECItem exponent = {siBuffer, NULL, 0};
920 	if(len == 0)
921 		return NULL;
922 	if(key[0] == 0) {
923 		if(len < 3)
924 			return NULL;
925 		/* the exponent is too large so it's places further */
926 		memmove(&int16, key+1, 2);
927 		exp = ntohs(int16);
928 		offset = 3;
929 	} else {
930 		exp = key[0];
931 		offset = 1;
932 	}
933 
934 	/* key length at least one */
935 	if(len < (size_t)offset + exp + 1)
936 		return NULL;
937 
938 	exponent.data = key+offset;
939 	exponent.len = exp;
940 	offset += exp;
941 	modulus.data = key+offset;
942 	modulus.len = (len - offset);
943 
944 	pk = nss_key_create(rsaKey);
945 	if(!pk)
946 		return NULL;
947 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
948 		SECKEY_DestroyPublicKey(pk);
949 		return NULL;
950 	}
951 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
952 		SECKEY_DestroyPublicKey(pk);
953 		return NULL;
954 	}
955 	return pk;
956 }
957 
958 /**
959  * Setup key and digest for verification. Adjust sig if necessary.
960  *
961  * @param algo: key algorithm
962  * @param evp_key: EVP PKEY public key to create.
963  * @param digest_type: digest type to use
964  * @param key: key to setup for.
965  * @param keylen: length of key.
966  * @param prefix: if returned, the ASN prefix for the hashblob.
967  * @param prefixlen: length of the prefix.
968  * @return false on failure.
969  */
970 static int
971 nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
972 	unsigned char* key, size_t keylen, unsigned char** prefix,
973 	size_t* prefixlen)
974 {
975 	/* uses libNSS */
976 
977 	/* hash prefix for md5, RFC2537 */
978 	static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
979 	0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
980 	/* hash prefix to prepend to hash output, from RFC3110 */
981 	static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
982 		0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
983 	/* from RFC5702 */
984 	static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
985 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
986 	static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
987 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
988 	/* from RFC6234 */
989 	/* for future RSASHA384 ..
990 	static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
991 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
992 	*/
993 
994 	switch(algo) {
995 #ifdef USE_DSA
996 		case LDNS_DSA:
997 		case LDNS_DSA_NSEC3:
998 			*pubkey = nss_buf2dsa(key, keylen);
999 			if(!*pubkey) {
1000 				log_err("verify: malloc failure in crypto");
1001 				return 0;
1002 			}
1003 			*htype = HASH_AlgSHA1;
1004 			/* no prefix for DSA verification */
1005 			break;
1006 #endif
1007 		case LDNS_RSASHA1:
1008 		case LDNS_RSASHA1_NSEC3:
1009 #ifdef USE_SHA2
1010 		case LDNS_RSASHA256:
1011 #endif
1012 #ifdef USE_SHA2
1013 		case LDNS_RSASHA512:
1014 #endif
1015 			*pubkey = nss_buf2rsa(key, keylen);
1016 			if(!*pubkey) {
1017 				log_err("verify: malloc failure in crypto");
1018 				return 0;
1019 			}
1020 			/* select SHA version */
1021 #ifdef USE_SHA2
1022 			if(algo == LDNS_RSASHA256) {
1023 				*htype = HASH_AlgSHA256;
1024 				*prefix = p_sha256;
1025 				*prefixlen = sizeof(p_sha256);
1026 			} else
1027 #endif
1028 #ifdef USE_SHA2
1029 				if(algo == LDNS_RSASHA512) {
1030 				*htype = HASH_AlgSHA512;
1031 				*prefix = p_sha512;
1032 				*prefixlen = sizeof(p_sha512);
1033 			} else
1034 #endif
1035 			{
1036 				*htype = HASH_AlgSHA1;
1037 				*prefix = p_sha1;
1038 				*prefixlen = sizeof(p_sha1);
1039 			}
1040 
1041 			break;
1042 		case LDNS_RSAMD5:
1043 			*pubkey = nss_buf2rsa(key, keylen);
1044 			if(!*pubkey) {
1045 				log_err("verify: malloc failure in crypto");
1046 				return 0;
1047 			}
1048 			*htype = HASH_AlgMD5;
1049 			*prefix = p_md5;
1050 			*prefixlen = sizeof(p_md5);
1051 
1052 			break;
1053 #ifdef USE_ECDSA
1054 		case LDNS_ECDSAP256SHA256:
1055 			*pubkey = nss_buf2ecdsa(key, keylen,
1056 				LDNS_ECDSAP256SHA256);
1057 			if(!*pubkey) {
1058 				log_err("verify: malloc failure in crypto");
1059 				return 0;
1060 			}
1061 			*htype = HASH_AlgSHA256;
1062 			/* no prefix for DSA verification */
1063 			break;
1064 		case LDNS_ECDSAP384SHA384:
1065 			*pubkey = nss_buf2ecdsa(key, keylen,
1066 				LDNS_ECDSAP384SHA384);
1067 			if(!*pubkey) {
1068 				log_err("verify: malloc failure in crypto");
1069 				return 0;
1070 			}
1071 			*htype = HASH_AlgSHA384;
1072 			/* no prefix for DSA verification */
1073 			break;
1074 #endif /* USE_ECDSA */
1075 		case LDNS_ECC_GOST:
1076 		default:
1077 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
1078 				algo);
1079 			return 0;
1080 	}
1081 	return 1;
1082 }
1083 
1084 /**
1085  * Check a canonical sig+rrset and signature against a dnskey
1086  * @param buf: buffer with data to verify, the first rrsig part and the
1087  *	canonicalized rrset.
1088  * @param algo: DNSKEY algorithm.
1089  * @param sigblock: signature rdata field from RRSIG
1090  * @param sigblock_len: length of sigblock data.
1091  * @param key: public key data from DNSKEY RR.
1092  * @param keylen: length of keydata.
1093  * @param reason: bogus reason in more detail.
1094  * @return secure if verification succeeded, bogus on crypto failure,
1095  *	unchecked on format errors and alloc failures.
1096  */
1097 enum sec_status
1098 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1099 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1100 	char** reason)
1101 {
1102 	/* uses libNSS */
1103 	/* large enough for the different hashes */
1104 	unsigned char hash[HASH_LENGTH_MAX];
1105 	unsigned char hash2[HASH_LENGTH_MAX*2];
1106 	HASH_HashType htype = 0;
1107 	SECKEYPublicKey* pubkey = NULL;
1108 	SECItem secsig = {siBuffer, sigblock, sigblock_len};
1109 	SECItem sechash = {siBuffer, hash, 0};
1110 	SECStatus res;
1111 	unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
1112 	size_t prefixlen = 0;
1113 	int err;
1114 
1115 	if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
1116 		&prefix, &prefixlen)) {
1117 		verbose(VERB_QUERY, "verify: failed to setup key");
1118 		*reason = "use of key for crypto failed";
1119 		SECKEY_DestroyPublicKey(pubkey);
1120 		return sec_status_bogus;
1121 	}
1122 
1123 #ifdef USE_DSA
1124 	/* need to convert DSA, ECDSA signatures? */
1125 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
1126 		if(sigblock_len == 1+2*SHA1_LENGTH) {
1127 			secsig.data ++;
1128 			secsig.len --;
1129 		} else {
1130 			SECItem* p = DSAU_DecodeDerSig(&secsig);
1131 			if(!p) {
1132 				verbose(VERB_QUERY, "verify: failed DER decode");
1133 				*reason = "signature DER decode failed";
1134 				SECKEY_DestroyPublicKey(pubkey);
1135 				return sec_status_bogus;
1136 			}
1137 			if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1138 				log_err("alloc failure in DER decode");
1139 				SECKEY_DestroyPublicKey(pubkey);
1140 				SECITEM_FreeItem(p, PR_TRUE);
1141 				return sec_status_unchecked;
1142 			}
1143 			SECITEM_FreeItem(p, PR_TRUE);
1144 		}
1145 	}
1146 #endif /* USE_DSA */
1147 
1148 	/* do the signature cryptography work */
1149 	/* hash the data */
1150 	sechash.len = HASH_ResultLen(htype);
1151 	if(sechash.len > sizeof(hash)) {
1152 		verbose(VERB_QUERY, "verify: hash too large for buffer");
1153 		SECKEY_DestroyPublicKey(pubkey);
1154 		return sec_status_unchecked;
1155 	}
1156 	if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
1157 		(unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
1158 		verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1159 		SECKEY_DestroyPublicKey(pubkey);
1160 		return sec_status_unchecked;
1161 	}
1162 	if(prefix) {
1163 		int hashlen = sechash.len;
1164 		if(prefixlen+hashlen > sizeof(hash2)) {
1165 			verbose(VERB_QUERY, "verify: hashprefix too large");
1166 			SECKEY_DestroyPublicKey(pubkey);
1167 			return sec_status_unchecked;
1168 		}
1169 		sechash.data = hash2;
1170 		sechash.len = prefixlen+hashlen;
1171 		memcpy(sechash.data, prefix, prefixlen);
1172 		memmove(sechash.data+prefixlen, hash, hashlen);
1173 	}
1174 
1175 	/* verify the signature */
1176 	res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1177 	SECKEY_DestroyPublicKey(pubkey);
1178 
1179 	if(res == SECSuccess) {
1180 		return sec_status_secure;
1181 	}
1182 	err = PORT_GetError();
1183 	if(err != SEC_ERROR_BAD_SIGNATURE) {
1184 		/* failed to verify */
1185 		verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1186 			PORT_ErrorToString(err));
1187 		/* if it is not supported, like ECC is removed, we get,
1188 		 * SEC_ERROR_NO_MODULE */
1189 		if(err == SEC_ERROR_NO_MODULE)
1190 			return sec_status_unchecked;
1191 		/* but other errors are commonly returned
1192 		 * for a bad signature from NSS.  Thus we return bogus,
1193 		 * not unchecked */
1194 		*reason = "signature crypto failed";
1195 		return sec_status_bogus;
1196 	}
1197 	verbose(VERB_QUERY, "verify: signature mismatch: %s",
1198 		PORT_ErrorToString(err));
1199 	*reason = "signature crypto failed";
1200 	return sec_status_bogus;
1201 }
1202 
1203 #elif defined(HAVE_NETTLE)
1204 
1205 #include "sha.h"
1206 #include "bignum.h"
1207 #include "macros.h"
1208 #include "rsa.h"
1209 #include "dsa.h"
1210 #include "asn1.h"
1211 #ifdef USE_ECDSA
1212 #include "ecdsa.h"
1213 #include "ecc-curve.h"
1214 #endif
1215 
1216 static int
1217 _digest_nettle(int algo, uint8_t* buf, size_t len,
1218 	unsigned char* res)
1219 {
1220 	switch(algo) {
1221 		case SHA1_DIGEST_SIZE:
1222 		{
1223 			struct sha1_ctx ctx;
1224 			sha1_init(&ctx);
1225 			sha1_update(&ctx, len, buf);
1226 			sha1_digest(&ctx, SHA1_DIGEST_SIZE, res);
1227 			return 1;
1228 		}
1229 		case SHA256_DIGEST_SIZE:
1230 		{
1231 			struct sha256_ctx ctx;
1232 			sha256_init(&ctx);
1233 			sha256_update(&ctx, len, buf);
1234 			sha256_digest(&ctx, SHA256_DIGEST_SIZE, res);
1235 			return 1;
1236 		}
1237 		case SHA384_DIGEST_SIZE:
1238 		{
1239 			struct sha384_ctx ctx;
1240 			sha384_init(&ctx);
1241 			sha384_update(&ctx, len, buf);
1242 			sha384_digest(&ctx, SHA384_DIGEST_SIZE, res);
1243 			return 1;
1244 		}
1245 		case SHA512_DIGEST_SIZE:
1246 		{
1247 			struct sha512_ctx ctx;
1248 			sha512_init(&ctx);
1249 			sha512_update(&ctx, len, buf);
1250 			sha512_digest(&ctx, SHA512_DIGEST_SIZE, res);
1251 			return 1;
1252 		}
1253 		default:
1254 			break;
1255 	}
1256 	return 0;
1257 }
1258 
1259 /* return size of digest if supported, or 0 otherwise */
1260 size_t
1261 nsec3_hash_algo_size_supported(int id)
1262 {
1263 	switch(id) {
1264 	case NSEC3_HASH_SHA1:
1265 		return SHA1_DIGEST_SIZE;
1266 	default:
1267 		return 0;
1268 	}
1269 }
1270 
1271 /* perform nsec3 hash. return false on failure */
1272 int
1273 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
1274         unsigned char* res)
1275 {
1276 	switch(algo) {
1277 	case NSEC3_HASH_SHA1:
1278 		return _digest_nettle(SHA1_DIGEST_SIZE, (uint8_t*)buf, len,
1279 			res);
1280 	default:
1281 		return 0;
1282 	}
1283 }
1284 
1285 void
1286 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
1287 {
1288 	_digest_nettle(SHA256_DIGEST_SIZE, (uint8_t*)buf, len, res);
1289 }
1290 
1291 /**
1292  * Return size of DS digest according to its hash algorithm.
1293  * @param algo: DS digest algo.
1294  * @return size in bytes of digest, or 0 if not supported.
1295  */
1296 size_t
1297 ds_digest_size_supported(int algo)
1298 {
1299 	switch(algo) {
1300 		case LDNS_SHA1:
1301 			return SHA1_DIGEST_SIZE;
1302 #ifdef USE_SHA2
1303 		case LDNS_SHA256:
1304 			return SHA256_DIGEST_SIZE;
1305 #endif
1306 #ifdef USE_ECDSA
1307 		case LDNS_SHA384:
1308 			return SHA384_DIGEST_SIZE;
1309 #endif
1310 		/* GOST not supported */
1311 		case LDNS_HASH_GOST:
1312 		default:
1313 			break;
1314 	}
1315 	return 0;
1316 }
1317 
1318 int
1319 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
1320 	unsigned char* res)
1321 {
1322 	switch(algo) {
1323 		case LDNS_SHA1:
1324 			return _digest_nettle(SHA1_DIGEST_SIZE, buf, len, res);
1325 #if defined(USE_SHA2)
1326 		case LDNS_SHA256:
1327 			return _digest_nettle(SHA256_DIGEST_SIZE, buf, len, res);
1328 #endif
1329 #ifdef USE_ECDSA
1330 		case LDNS_SHA384:
1331 			return _digest_nettle(SHA384_DIGEST_SIZE, buf, len, res);
1332 
1333 #endif
1334 		case LDNS_HASH_GOST:
1335 		default:
1336 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
1337 				algo);
1338 			break;
1339 	}
1340 	return 0;
1341 }
1342 
1343 int
1344 dnskey_algo_id_is_supported(int id)
1345 {
1346 	/* uses libnettle */
1347 	switch(id) {
1348 #ifdef USE_DSA
1349 	case LDNS_DSA:
1350 	case LDNS_DSA_NSEC3:
1351 #endif
1352 	case LDNS_RSASHA1:
1353 	case LDNS_RSASHA1_NSEC3:
1354 #ifdef USE_SHA2
1355 	case LDNS_RSASHA256:
1356 	case LDNS_RSASHA512:
1357 #endif
1358 #ifdef USE_ECDSA
1359 	case LDNS_ECDSAP256SHA256:
1360 	case LDNS_ECDSAP384SHA384:
1361 #endif
1362 		return 1;
1363 	case LDNS_RSAMD5: /* RFC 6725 deprecates RSAMD5 */
1364 	case LDNS_ECC_GOST:
1365 	default:
1366 		return 0;
1367 	}
1368 }
1369 
1370 static char *
1371 _verify_nettle_dsa(sldns_buffer* buf, unsigned char* sigblock,
1372 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1373 {
1374 	uint8_t digest[SHA1_DIGEST_SIZE];
1375 	uint8_t key_t;
1376 	int res = 0;
1377 	size_t offset;
1378 	struct dsa_public_key pubkey;
1379 	struct dsa_signature signature;
1380 	unsigned int expected_len;
1381 
1382 	/* Extract DSA signature from the record */
1383 	nettle_dsa_signature_init(&signature);
1384 	/* Signature length: 41 bytes - RFC 2536 sec. 3 */
1385 	if(sigblock_len == 41) {
1386 		if(key[0] != sigblock[0])
1387 			return "invalid T value in DSA signature or pubkey";
1388 		nettle_mpz_set_str_256_u(signature.r, 20, sigblock+1);
1389 		nettle_mpz_set_str_256_u(signature.s, 20, sigblock+1+20);
1390 	} else {
1391 		/* DER encoded, decode the ASN1 notated R and S bignums */
1392 		/* SEQUENCE { r INTEGER, s INTEGER } */
1393 		struct asn1_der_iterator i, seq;
1394 		if(asn1_der_iterator_first(&i, sigblock_len,
1395 			(uint8_t*)sigblock) != ASN1_ITERATOR_CONSTRUCTED
1396 			|| i.type != ASN1_SEQUENCE)
1397 			return "malformed DER encoded DSA signature";
1398 		/* decode this element of i using the seq iterator */
1399 		if(asn1_der_decode_constructed(&i, &seq) !=
1400 			ASN1_ITERATOR_PRIMITIVE || seq.type != ASN1_INTEGER)
1401 			return "malformed DER encoded DSA signature";
1402 		if(!asn1_der_get_bignum(&seq, signature.r, 20*8))
1403 			return "malformed DER encoded DSA signature";
1404 		if(asn1_der_iterator_next(&seq) != ASN1_ITERATOR_PRIMITIVE
1405 			|| seq.type != ASN1_INTEGER)
1406 			return "malformed DER encoded DSA signature";
1407 		if(!asn1_der_get_bignum(&seq, signature.s, 20*8))
1408 			return "malformed DER encoded DSA signature";
1409 		if(asn1_der_iterator_next(&i) != ASN1_ITERATOR_END)
1410 			return "malformed DER encoded DSA signature";
1411 	}
1412 
1413 	/* Validate T values constraints - RFC 2536 sec. 2 & sec. 3 */
1414 	key_t = key[0];
1415 	if (key_t > 8) {
1416 		return "invalid T value in DSA pubkey";
1417 	}
1418 
1419 	/* Pubkey minimum length: 21 bytes - RFC 2536 sec. 2 */
1420 	if (keylen < 21) {
1421 		return "DSA pubkey too short";
1422 	}
1423 
1424 	expected_len =   1 +		/* T */
1425 		        20 +		/* Q */
1426 		       (64 + key_t*8) +	/* P */
1427 		       (64 + key_t*8) +	/* G */
1428 		       (64 + key_t*8);	/* Y */
1429 	if (keylen != expected_len ) {
1430 		return "invalid DSA pubkey length";
1431 	}
1432 
1433 	/* Extract DSA pubkey from the record */
1434 	nettle_dsa_public_key_init(&pubkey);
1435 	offset = 1;
1436 	nettle_mpz_set_str_256_u(pubkey.q, 20, key+offset);
1437 	offset += 20;
1438 	nettle_mpz_set_str_256_u(pubkey.p, (64 + key_t*8), key+offset);
1439 	offset += (64 + key_t*8);
1440 	nettle_mpz_set_str_256_u(pubkey.g, (64 + key_t*8), key+offset);
1441 	offset += (64 + key_t*8);
1442 	nettle_mpz_set_str_256_u(pubkey.y, (64 + key_t*8), key+offset);
1443 
1444 	/* Digest content of "buf" and verify its DSA signature in "sigblock"*/
1445 	res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1446 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1447 	res &= dsa_sha1_verify_digest(&pubkey, digest, &signature);
1448 
1449 	/* Clear and return */
1450 	nettle_dsa_signature_clear(&signature);
1451 	nettle_dsa_public_key_clear(&pubkey);
1452 	if (!res)
1453 		return "DSA signature verification failed";
1454 	else
1455 		return NULL;
1456 }
1457 
1458 static char *
1459 _verify_nettle_rsa(sldns_buffer* buf, unsigned int digest_size, char* sigblock,
1460 	unsigned int sigblock_len, uint8_t* key, unsigned int keylen)
1461 {
1462 	uint16_t exp_len = 0;
1463 	size_t exp_offset = 0, mod_offset = 0;
1464 	struct rsa_public_key pubkey;
1465 	mpz_t signature;
1466 	int res = 0;
1467 
1468 	/* RSA pubkey parsing as per RFC 3110 sec. 2 */
1469 	if( keylen <= 1) {
1470 		return "null RSA key";
1471 	}
1472 	if (key[0] != 0) {
1473 		/* 1-byte length */
1474 		exp_len = key[0];
1475 		exp_offset = 1;
1476 	} else {
1477 		/* 1-byte NUL + 2-bytes exponent length */
1478 		if (keylen < 3) {
1479 			return "incorrect RSA key length";
1480 		}
1481 		exp_len = READ_UINT16(key+1);
1482 		if (exp_len == 0)
1483 			return "null RSA exponent length";
1484 		exp_offset = 3;
1485 	}
1486 	/* Check that we are not over-running input length */
1487 	if (keylen < exp_offset + exp_len + 1) {
1488 		return "RSA key content shorter than expected";
1489 	}
1490 	mod_offset = exp_offset + exp_len;
1491 	nettle_rsa_public_key_init(&pubkey);
1492 	pubkey.size = keylen - mod_offset;
1493 	nettle_mpz_set_str_256_u(pubkey.e, exp_len, &key[exp_offset]);
1494 	nettle_mpz_set_str_256_u(pubkey.n, pubkey.size, &key[mod_offset]);
1495 
1496 	/* Digest content of "buf" and verify its RSA signature in "sigblock"*/
1497 	nettle_mpz_init_set_str_256_u(signature, sigblock_len, (uint8_t*)sigblock);
1498 	switch (digest_size) {
1499 		case SHA1_DIGEST_SIZE:
1500 		{
1501 			uint8_t digest[SHA1_DIGEST_SIZE];
1502 			res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1503 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1504 			res &= rsa_sha1_verify_digest(&pubkey, digest, signature);
1505 			break;
1506 		}
1507 		case SHA256_DIGEST_SIZE:
1508 		{
1509 			uint8_t digest[SHA256_DIGEST_SIZE];
1510 			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1511 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1512 			res &= rsa_sha256_verify_digest(&pubkey, digest, signature);
1513 			break;
1514 		}
1515 		case SHA512_DIGEST_SIZE:
1516 		{
1517 			uint8_t digest[SHA512_DIGEST_SIZE];
1518 			res = _digest_nettle(SHA512_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1519 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1520 			res &= rsa_sha512_verify_digest(&pubkey, digest, signature);
1521 			break;
1522 		}
1523 		default:
1524 			break;
1525 	}
1526 
1527 	/* Clear and return */
1528 	nettle_rsa_public_key_clear(&pubkey);
1529 	mpz_clear(signature);
1530 	if (!res) {
1531 		return "RSA signature verification failed";
1532 	} else {
1533 		return NULL;
1534 	}
1535 }
1536 
1537 #ifdef USE_ECDSA
1538 static char *
1539 _verify_nettle_ecdsa(sldns_buffer* buf, unsigned int digest_size, unsigned char* sigblock,
1540 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1541 {
1542 	int res = 0;
1543 	struct ecc_point pubkey;
1544 	struct dsa_signature signature;
1545 
1546 	/* Always matched strength, as per RFC 6605 sec. 1 */
1547 	if (sigblock_len != 2*digest_size || keylen != 2*digest_size) {
1548 		return "wrong ECDSA signature length";
1549 	}
1550 
1551 	/* Parse ECDSA signature as per RFC 6605 sec. 4 */
1552 	nettle_dsa_signature_init(&signature);
1553 	switch (digest_size) {
1554 		case SHA256_DIGEST_SIZE:
1555 		{
1556 			uint8_t digest[SHA256_DIGEST_SIZE];
1557 			mpz_t x, y;
1558 			nettle_ecc_point_init(&pubkey, &nettle_secp_256r1);
1559 			nettle_mpz_init_set_str_256_u(x, SHA256_DIGEST_SIZE, key);
1560 			nettle_mpz_init_set_str_256_u(y, SHA256_DIGEST_SIZE, key+SHA256_DIGEST_SIZE);
1561 			nettle_mpz_set_str_256_u(signature.r, SHA256_DIGEST_SIZE, sigblock);
1562 			nettle_mpz_set_str_256_u(signature.s, SHA256_DIGEST_SIZE, sigblock+SHA256_DIGEST_SIZE);
1563 			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1564 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1565 			res &= nettle_ecc_point_set(&pubkey, x, y);
1566 			res &= nettle_ecdsa_verify (&pubkey, SHA256_DIGEST_SIZE, digest, &signature);
1567 			mpz_clear(x);
1568 			mpz_clear(y);
1569 			break;
1570 		}
1571 		case SHA384_DIGEST_SIZE:
1572 		{
1573 			uint8_t digest[SHA384_DIGEST_SIZE];
1574 			mpz_t x, y;
1575 			nettle_ecc_point_init(&pubkey, &nettle_secp_384r1);
1576 			nettle_mpz_init_set_str_256_u(x, SHA384_DIGEST_SIZE, key);
1577 			nettle_mpz_init_set_str_256_u(y, SHA384_DIGEST_SIZE, key+SHA384_DIGEST_SIZE);
1578 			nettle_mpz_set_str_256_u(signature.r, SHA384_DIGEST_SIZE, sigblock);
1579 			nettle_mpz_set_str_256_u(signature.s, SHA384_DIGEST_SIZE, sigblock+SHA384_DIGEST_SIZE);
1580 			res = _digest_nettle(SHA384_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1581 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1582 			res &= nettle_ecc_point_set(&pubkey, x, y);
1583 			res &= nettle_ecdsa_verify (&pubkey, SHA384_DIGEST_SIZE, digest, &signature);
1584 			mpz_clear(x);
1585 			mpz_clear(y);
1586 			nettle_ecc_point_clear(&pubkey);
1587 			break;
1588 		}
1589 		default:
1590 			return "unknown ECDSA algorithm";
1591 	}
1592 
1593 	/* Clear and return */
1594 	nettle_dsa_signature_clear(&signature);
1595 	if (!res)
1596 		return "ECDSA signature verification failed";
1597 	else
1598 		return NULL;
1599 }
1600 #endif
1601 
1602 /**
1603  * Check a canonical sig+rrset and signature against a dnskey
1604  * @param buf: buffer with data to verify, the first rrsig part and the
1605  *	canonicalized rrset.
1606  * @param algo: DNSKEY algorithm.
1607  * @param sigblock: signature rdata field from RRSIG
1608  * @param sigblock_len: length of sigblock data.
1609  * @param key: public key data from DNSKEY RR.
1610  * @param keylen: length of keydata.
1611  * @param reason: bogus reason in more detail.
1612  * @return secure if verification succeeded, bogus on crypto failure,
1613  *	unchecked on format errors and alloc failures.
1614  */
1615 enum sec_status
1616 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1617 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1618 	char** reason)
1619 {
1620 	unsigned int digest_size = 0;
1621 
1622 	if (sigblock_len == 0 || keylen == 0) {
1623 		*reason = "null signature";
1624 		return sec_status_bogus;
1625 	}
1626 
1627 	switch(algo) {
1628 #ifdef USE_DSA
1629 	case LDNS_DSA:
1630 	case LDNS_DSA_NSEC3:
1631 		*reason = _verify_nettle_dsa(buf, sigblock, sigblock_len, key, keylen);
1632 		if (*reason != NULL)
1633 			return sec_status_bogus;
1634 		else
1635 			return sec_status_secure;
1636 #endif /* USE_DSA */
1637 
1638 	case LDNS_RSASHA1:
1639 	case LDNS_RSASHA1_NSEC3:
1640 		digest_size = (digest_size ? digest_size : SHA1_DIGEST_SIZE);
1641 #ifdef USE_SHA2
1642 	case LDNS_RSASHA256:
1643 		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1644 	case LDNS_RSASHA512:
1645 		digest_size = (digest_size ? digest_size : SHA512_DIGEST_SIZE);
1646 
1647 #endif
1648 		*reason = _verify_nettle_rsa(buf, digest_size, (char*)sigblock,
1649 						sigblock_len, key, keylen);
1650 		if (*reason != NULL)
1651 			return sec_status_bogus;
1652 		else
1653 			return sec_status_secure;
1654 
1655 #ifdef USE_ECDSA
1656 	case LDNS_ECDSAP256SHA256:
1657 		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1658 	case LDNS_ECDSAP384SHA384:
1659 		digest_size = (digest_size ? digest_size : SHA384_DIGEST_SIZE);
1660 		*reason = _verify_nettle_ecdsa(buf, digest_size, sigblock,
1661 						sigblock_len, key, keylen);
1662 		if (*reason != NULL)
1663 			return sec_status_bogus;
1664 		else
1665 			return sec_status_secure;
1666 #endif
1667 	case LDNS_RSAMD5:
1668 	case LDNS_ECC_GOST:
1669 	default:
1670 		*reason = "unable to verify signature, unknown algorithm";
1671 		return sec_status_bogus;
1672 	}
1673 }
1674 
1675 #endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
1676