xref: /freebsd/contrib/unbound/validator/val_secalgo.c (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*
2  * validator/val_secalgo.c - validator security algorithm functions.
3  *
4  * Copyright (c) 2012, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * These functions take raw data buffers, formatted for crypto verification,
41  * and do the library calls (for the crypto library in use).
42  */
43 #include "config.h"
44 #include <ldns/ldns.h>
45 #include "validator/val_secalgo.h"
46 #include "util/data/packed_rrset.h"
47 #include "util/log.h"
48 
49 #if !defined(HAVE_SSL) && !defined(HAVE_NSS)
50 #error "Need crypto library to do digital signature cryptography"
51 #endif
52 
53 /* OpenSSL implementation */
54 #ifdef HAVE_SSL
55 #ifdef HAVE_OPENSSL_ERR_H
56 #include <openssl/err.h>
57 #endif
58 
59 #ifdef HAVE_OPENSSL_RAND_H
60 #include <openssl/rand.h>
61 #endif
62 
63 #ifdef HAVE_OPENSSL_CONF_H
64 #include <openssl/conf.h>
65 #endif
66 
67 #ifdef HAVE_OPENSSL_ENGINE_H
68 #include <openssl/engine.h>
69 #endif
70 
71 /**
72  * Return size of DS digest according to its hash algorithm.
73  * @param algo: DS digest algo.
74  * @return size in bytes of digest, or 0 if not supported.
75  */
76 size_t
77 ds_digest_size_supported(int algo)
78 {
79 	switch(algo) {
80 #ifdef HAVE_EVP_SHA1
81 		case LDNS_SHA1:
82 			return SHA_DIGEST_LENGTH;
83 #endif
84 #ifdef HAVE_EVP_SHA256
85 		case LDNS_SHA256:
86 			return SHA256_DIGEST_LENGTH;
87 #endif
88 #ifdef USE_GOST
89 		case LDNS_HASH_GOST:
90 			if(EVP_get_digestbyname("md_gost94"))
91 				return 32;
92 			else	return 0;
93 #endif
94 #ifdef USE_ECDSA
95 		case LDNS_SHA384:
96 			return SHA384_DIGEST_LENGTH;
97 #endif
98 		default: break;
99 	}
100 	return 0;
101 }
102 
103 #ifdef USE_GOST
104 /** Perform GOST hash */
105 static int
106 do_gost94(unsigned char* data, size_t len, unsigned char* dest)
107 {
108 	const EVP_MD* md = EVP_get_digestbyname("md_gost94");
109 	if(!md)
110 		return 0;
111 	return ldns_digest_evp(data, (unsigned int)len, dest, md);
112 }
113 #endif
114 
115 int
116 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
117 	unsigned char* res)
118 {
119 	switch(algo) {
120 #ifdef HAVE_EVP_SHA1
121 		case LDNS_SHA1:
122 			(void)SHA1(buf, len, res);
123 			return 1;
124 #endif
125 #ifdef HAVE_EVP_SHA256
126 		case LDNS_SHA256:
127 			(void)SHA256(buf, len, res);
128 			return 1;
129 #endif
130 #ifdef USE_GOST
131 		case LDNS_HASH_GOST:
132 			if(do_gost94(buf, len, res))
133 				return 1;
134 			break;
135 #endif
136 #ifdef USE_ECDSA
137 		case LDNS_SHA384:
138 			(void)SHA384(buf, len, res);
139 			return 1;
140 #endif
141 		default:
142 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
143 				algo);
144 			break;
145 	}
146 	return 0;
147 }
148 
149 /** return true if DNSKEY algorithm id is supported */
150 int
151 dnskey_algo_id_is_supported(int id)
152 {
153 	switch(id) {
154 	case LDNS_RSAMD5:
155 		/* RFC 6725 deprecates RSAMD5 */
156 		return 0;
157 	case LDNS_DSA:
158 	case LDNS_DSA_NSEC3:
159 	case LDNS_RSASHA1:
160 	case LDNS_RSASHA1_NSEC3:
161 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
162 	case LDNS_RSASHA256:
163 #endif
164 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
165 	case LDNS_RSASHA512:
166 #endif
167 #ifdef USE_ECDSA
168 	case LDNS_ECDSAP256SHA256:
169 	case LDNS_ECDSAP384SHA384:
170 #endif
171 		return 1;
172 #ifdef USE_GOST
173 	case LDNS_ECC_GOST:
174 		/* we support GOST if it can be loaded */
175 		return ldns_key_EVP_load_gost_id();
176 #endif
177 	default:
178 		return 0;
179 	}
180 }
181 
182 /**
183  * Output a libcrypto openssl error to the logfile.
184  * @param str: string to add to it.
185  * @param e: the error to output, error number from ERR_get_error().
186  */
187 static void
188 log_crypto_error(const char* str, unsigned long e)
189 {
190 	char buf[128];
191 	/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
192 	ERR_error_string_n(e, buf, sizeof(buf));
193 	/* buf now contains */
194 	/* error:[error code]:[library name]:[function name]:[reason string] */
195 	log_err("%s crypto %s", str, buf);
196 }
197 
198 /**
199  * Setup DSA key digest in DER encoding ...
200  * @param sig: input is signature output alloced ptr (unless failure).
201  * 	caller must free alloced ptr if this routine returns true.
202  * @param len: input is initial siglen, output is output len.
203  * @return false on failure.
204  */
205 static int
206 setup_dsa_sig(unsigned char** sig, unsigned int* len)
207 {
208 	unsigned char* orig = *sig;
209 	unsigned int origlen = *len;
210 	int newlen;
211 	BIGNUM *R, *S;
212 	DSA_SIG *dsasig;
213 
214 	/* extract the R and S field from the sig buffer */
215 	if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
216 		return 0;
217 	R = BN_new();
218 	if(!R) return 0;
219 	(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
220 	S = BN_new();
221 	if(!S) return 0;
222 	(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
223 	dsasig = DSA_SIG_new();
224 	if(!dsasig) return 0;
225 
226 	dsasig->r = R;
227 	dsasig->s = S;
228 	*sig = NULL;
229 	newlen = i2d_DSA_SIG(dsasig, sig);
230 	if(newlen < 0) {
231 		DSA_SIG_free(dsasig);
232 		free(*sig);
233 		return 0;
234 	}
235 	*len = (unsigned int)newlen;
236 	DSA_SIG_free(dsasig);
237 	return 1;
238 }
239 
240 #ifdef USE_ECDSA
241 /**
242  * Setup the ECDSA signature in its encoding that the library wants.
243  * Converts from plain numbers to ASN formatted.
244  * @param sig: input is signature, output alloced ptr (unless failure).
245  * 	caller must free alloced ptr if this routine returns true.
246  * @param len: input is initial siglen, output is output len.
247  * @return false on failure.
248  */
249 static int
250 setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
251 {
252 	ECDSA_SIG* ecdsa_sig;
253 	int newlen;
254 	int bnsize = (int)((*len)/2);
255 	/* if too short or not even length, fails */
256 	if(*len < 16 || bnsize*2 != (int)*len)
257 		return 0;
258 	/* use the raw data to parse two evenly long BIGNUMs, "r | s". */
259 	ecdsa_sig = ECDSA_SIG_new();
260 	if(!ecdsa_sig) return 0;
261 	ecdsa_sig->r = BN_bin2bn(*sig, bnsize, ecdsa_sig->r);
262 	ecdsa_sig->s = BN_bin2bn(*sig+bnsize, bnsize, ecdsa_sig->s);
263 	if(!ecdsa_sig->r || !ecdsa_sig->s) {
264 		ECDSA_SIG_free(ecdsa_sig);
265 		return 0;
266 	}
267 
268 	/* spool it into ASN format */
269 	*sig = NULL;
270 	newlen = i2d_ECDSA_SIG(ecdsa_sig, sig);
271 	if(newlen <= 0) {
272 		ECDSA_SIG_free(ecdsa_sig);
273 		free(*sig);
274 		return 0;
275 	}
276 	*len = (unsigned int)newlen;
277 	ECDSA_SIG_free(ecdsa_sig);
278 	return 1;
279 }
280 #endif /* USE_ECDSA */
281 
282 /**
283  * Setup key and digest for verification. Adjust sig if necessary.
284  *
285  * @param algo: key algorithm
286  * @param evp_key: EVP PKEY public key to create.
287  * @param digest_type: digest type to use
288  * @param key: key to setup for.
289  * @param keylen: length of key.
290  * @return false on failure.
291  */
292 static int
293 setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
294 	unsigned char* key, size_t keylen)
295 {
296 	DSA* dsa;
297 	RSA* rsa;
298 
299 	switch(algo) {
300 		case LDNS_DSA:
301 		case LDNS_DSA_NSEC3:
302 			*evp_key = EVP_PKEY_new();
303 			if(!*evp_key) {
304 				log_err("verify: malloc failure in crypto");
305 				return 0;
306 			}
307 			dsa = ldns_key_buf2dsa_raw(key, keylen);
308 			if(!dsa) {
309 				verbose(VERB_QUERY, "verify: "
310 					"ldns_key_buf2dsa_raw failed");
311 				return 0;
312 			}
313 			if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
314 				verbose(VERB_QUERY, "verify: "
315 					"EVP_PKEY_assign_DSA failed");
316 				return 0;
317 			}
318 			*digest_type = EVP_dss1();
319 
320 			break;
321 		case LDNS_RSASHA1:
322 		case LDNS_RSASHA1_NSEC3:
323 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
324 		case LDNS_RSASHA256:
325 #endif
326 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
327 		case LDNS_RSASHA512:
328 #endif
329 			*evp_key = EVP_PKEY_new();
330 			if(!*evp_key) {
331 				log_err("verify: malloc failure in crypto");
332 				return 0;
333 			}
334 			rsa = ldns_key_buf2rsa_raw(key, keylen);
335 			if(!rsa) {
336 				verbose(VERB_QUERY, "verify: "
337 					"ldns_key_buf2rsa_raw SHA failed");
338 				return 0;
339 			}
340 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
341 				verbose(VERB_QUERY, "verify: "
342 					"EVP_PKEY_assign_RSA SHA failed");
343 				return 0;
344 			}
345 
346 			/* select SHA version */
347 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
348 			if(algo == LDNS_RSASHA256)
349 				*digest_type = EVP_sha256();
350 			else
351 #endif
352 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
353 				if(algo == LDNS_RSASHA512)
354 				*digest_type = EVP_sha512();
355 			else
356 #endif
357 				*digest_type = EVP_sha1();
358 
359 			break;
360 		case LDNS_RSAMD5:
361 			*evp_key = EVP_PKEY_new();
362 			if(!*evp_key) {
363 				log_err("verify: malloc failure in crypto");
364 				return 0;
365 			}
366 			rsa = ldns_key_buf2rsa_raw(key, keylen);
367 			if(!rsa) {
368 				verbose(VERB_QUERY, "verify: "
369 					"ldns_key_buf2rsa_raw MD5 failed");
370 				return 0;
371 			}
372 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
373 				verbose(VERB_QUERY, "verify: "
374 					"EVP_PKEY_assign_RSA MD5 failed");
375 				return 0;
376 			}
377 			*digest_type = EVP_md5();
378 
379 			break;
380 #ifdef USE_GOST
381 		case LDNS_ECC_GOST:
382 			*evp_key = ldns_gost2pkey_raw(key, keylen);
383 			if(!*evp_key) {
384 				verbose(VERB_QUERY, "verify: "
385 					"ldns_gost2pkey_raw failed");
386 				return 0;
387 			}
388 			*digest_type = EVP_get_digestbyname("md_gost94");
389 			if(!*digest_type) {
390 				verbose(VERB_QUERY, "verify: "
391 					"EVP_getdigest md_gost94 failed");
392 				return 0;
393 			}
394 			break;
395 #endif
396 #ifdef USE_ECDSA
397 		case LDNS_ECDSAP256SHA256:
398 			*evp_key = ldns_ecdsa2pkey_raw(key, keylen,
399 				LDNS_ECDSAP256SHA256);
400 			if(!*evp_key) {
401 				verbose(VERB_QUERY, "verify: "
402 					"ldns_ecdsa2pkey_raw failed");
403 				return 0;
404 			}
405 #ifdef USE_ECDSA_EVP_WORKAROUND
406 			/* openssl before 1.0.0 fixes RSA with the SHA256
407 			 * hash in EVP.  We create one for ecdsa_sha256 */
408 			{
409 				static int md_ecdsa_256_done = 0;
410 				static EVP_MD md;
411 				if(!md_ecdsa_256_done) {
412 					EVP_MD m = *EVP_sha256();
413 					md_ecdsa_256_done = 1;
414 					m.required_pkey_type[0] = (*evp_key)->type;
415 					m.verify = (void*)ECDSA_verify;
416 					md = m;
417 				}
418 				*digest_type = &md;
419 			}
420 #else
421 			*digest_type = EVP_sha256();
422 #endif
423 			break;
424 		case LDNS_ECDSAP384SHA384:
425 			*evp_key = ldns_ecdsa2pkey_raw(key, keylen,
426 				LDNS_ECDSAP384SHA384);
427 			if(!*evp_key) {
428 				verbose(VERB_QUERY, "verify: "
429 					"ldns_ecdsa2pkey_raw failed");
430 				return 0;
431 			}
432 #ifdef USE_ECDSA_EVP_WORKAROUND
433 			/* openssl before 1.0.0 fixes RSA with the SHA384
434 			 * hash in EVP.  We create one for ecdsa_sha384 */
435 			{
436 				static int md_ecdsa_384_done = 0;
437 				static EVP_MD md;
438 				if(!md_ecdsa_384_done) {
439 					EVP_MD m = *EVP_sha384();
440 					md_ecdsa_384_done = 1;
441 					m.required_pkey_type[0] = (*evp_key)->type;
442 					m.verify = (void*)ECDSA_verify;
443 					md = m;
444 				}
445 				*digest_type = &md;
446 			}
447 #else
448 			*digest_type = EVP_sha384();
449 #endif
450 			break;
451 #endif /* USE_ECDSA */
452 		default:
453 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
454 				algo);
455 			return 0;
456 	}
457 	return 1;
458 }
459 
460 /**
461  * Check a canonical sig+rrset and signature against a dnskey
462  * @param buf: buffer with data to verify, the first rrsig part and the
463  *	canonicalized rrset.
464  * @param algo: DNSKEY algorithm.
465  * @param sigblock: signature rdata field from RRSIG
466  * @param sigblock_len: length of sigblock data.
467  * @param key: public key data from DNSKEY RR.
468  * @param keylen: length of keydata.
469  * @param reason: bogus reason in more detail.
470  * @return secure if verification succeeded, bogus on crypto failure,
471  *	unchecked on format errors and alloc failures.
472  */
473 enum sec_status
474 verify_canonrrset(ldns_buffer* buf, int algo, unsigned char* sigblock,
475 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
476 	char** reason)
477 {
478 	const EVP_MD *digest_type;
479 	EVP_MD_CTX ctx;
480 	int res, dofree = 0;
481 	EVP_PKEY *evp_key = NULL;
482 
483 	if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
484 		verbose(VERB_QUERY, "verify: failed to setup key");
485 		*reason = "use of key for crypto failed";
486 		EVP_PKEY_free(evp_key);
487 		return sec_status_bogus;
488 	}
489 	/* if it is a DSA signature in bind format, convert to DER format */
490 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
491 		sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
492 		if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
493 			verbose(VERB_QUERY, "verify: failed to setup DSA sig");
494 			*reason = "use of key for DSA crypto failed";
495 			EVP_PKEY_free(evp_key);
496 			return sec_status_bogus;
497 		}
498 		dofree = 1;
499 	}
500 #ifdef USE_ECDSA
501 	else if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
502 		/* EVP uses ASN prefix on sig, which is not in the wire data */
503 		if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
504 			verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
505 			*reason = "use of signature for ECDSA crypto failed";
506 			EVP_PKEY_free(evp_key);
507 			return sec_status_bogus;
508 		}
509 		dofree = 1;
510 	}
511 #endif /* USE_ECDSA */
512 
513 	/* do the signature cryptography work */
514 	EVP_MD_CTX_init(&ctx);
515 	if(EVP_VerifyInit(&ctx, digest_type) == 0) {
516 		verbose(VERB_QUERY, "verify: EVP_VerifyInit failed");
517 		EVP_PKEY_free(evp_key);
518 		if(dofree) free(sigblock);
519 		return sec_status_unchecked;
520 	}
521 	if(EVP_VerifyUpdate(&ctx, (unsigned char*)ldns_buffer_begin(buf),
522 		(unsigned int)ldns_buffer_limit(buf)) == 0) {
523 		verbose(VERB_QUERY, "verify: EVP_VerifyUpdate failed");
524 		EVP_PKEY_free(evp_key);
525 		if(dofree) free(sigblock);
526 		return sec_status_unchecked;
527 	}
528 
529 	res = EVP_VerifyFinal(&ctx, sigblock, sigblock_len, evp_key);
530 	if(EVP_MD_CTX_cleanup(&ctx) == 0) {
531 		verbose(VERB_QUERY, "verify: EVP_MD_CTX_cleanup failed");
532 		EVP_PKEY_free(evp_key);
533 		if(dofree) free(sigblock);
534 		return sec_status_unchecked;
535 	}
536 	EVP_PKEY_free(evp_key);
537 
538 	if(dofree)
539 		free(sigblock);
540 
541 	if(res == 1) {
542 		return sec_status_secure;
543 	} else if(res == 0) {
544 		verbose(VERB_QUERY, "verify: signature mismatch");
545 		*reason = "signature crypto failed";
546 		return sec_status_bogus;
547 	}
548 
549 	log_crypto_error("verify:", ERR_get_error());
550 	return sec_status_unchecked;
551 }
552 
553 /**************************************************/
554 #elif defined(HAVE_NSS)
555 /* libnss implementation */
556 /* nss3 */
557 #include "sechash.h"
558 #include "pk11pub.h"
559 #include "keyhi.h"
560 #include "secerr.h"
561 #include "cryptohi.h"
562 /* nspr4 */
563 #include "prerror.h"
564 
565 size_t
566 ds_digest_size_supported(int algo)
567 {
568 	/* uses libNSS */
569 	switch(algo) {
570 		case LDNS_SHA1:
571 			return SHA1_LENGTH;
572 #ifdef USE_SHA2
573 		case LDNS_SHA256:
574 			return SHA256_LENGTH;
575 #endif
576 #ifdef USE_ECDSA
577 		case LDNS_SHA384:
578 			return SHA384_LENGTH;
579 #endif
580 		/* GOST not supported in NSS */
581 		case LDNS_HASH_GOST:
582 		default: break;
583 	}
584 	return 0;
585 }
586 
587 int
588 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
589 	unsigned char* res)
590 {
591 	/* uses libNSS */
592 	switch(algo) {
593 		case LDNS_SHA1:
594 			return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
595 				== SECSuccess;
596 #if defined(USE_SHA2)
597 		case LDNS_SHA256:
598 			return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
599 				== SECSuccess;
600 #endif
601 #ifdef USE_ECDSA
602 		case LDNS_SHA384:
603 			return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
604 				== SECSuccess;
605 #endif
606 		case LDNS_HASH_GOST:
607 		default:
608 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
609 				algo);
610 			break;
611 	}
612 	return 0;
613 }
614 
615 int
616 dnskey_algo_id_is_supported(int id)
617 {
618 	/* uses libNSS */
619 	switch(id) {
620 	case LDNS_RSAMD5:
621 		/* RFC 6725 deprecates RSAMD5 */
622 		return 0;
623 	case LDNS_DSA:
624 	case LDNS_DSA_NSEC3:
625 	case LDNS_RSASHA1:
626 	case LDNS_RSASHA1_NSEC3:
627 #ifdef USE_SHA2
628 	case LDNS_RSASHA256:
629 #endif
630 #ifdef USE_SHA2
631 	case LDNS_RSASHA512:
632 #endif
633 		return 1;
634 #ifdef USE_ECDSA
635 	case LDNS_ECDSAP256SHA256:
636 	case LDNS_ECDSAP384SHA384:
637 		return PK11_TokenExists(CKM_ECDSA);
638 #endif
639 	case LDNS_ECC_GOST:
640 	default:
641 		return 0;
642 	}
643 }
644 
645 /* return a new public key for NSS */
646 static SECKEYPublicKey* nss_key_create(KeyType ktype)
647 {
648 	SECKEYPublicKey* key;
649 	PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
650 	if(!arena) {
651 		log_err("out of memory, PORT_NewArena failed");
652 		return NULL;
653 	}
654 	key = PORT_ArenaZNew(arena, SECKEYPublicKey);
655 	if(!key) {
656 		log_err("out of memory, PORT_ArenaZNew failed");
657 		PORT_FreeArena(arena, PR_FALSE);
658 		return NULL;
659 	}
660 	key->arena = arena;
661 	key->keyType = ktype;
662 	key->pkcs11Slot = NULL;
663 	key->pkcs11ID = CK_INVALID_HANDLE;
664 	return key;
665 }
666 
667 static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
668 {
669 	SECKEYPublicKey* pk;
670 	SECItem pub = {siBuffer, NULL, 0};
671 	SECItem params = {siBuffer, NULL, 0};
672 	unsigned char param256[] = {
673 		/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
674 		 * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
675 		0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
676 	};
677 	unsigned char param384[] = {
678 		/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
679 		 * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
680 		0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
681 	};
682 	unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
683 
684 	/* check length, which uncompressed must be 2 bignums */
685 	if(algo == LDNS_ECDSAP256SHA256) {
686 		if(len != 2*256/8) return NULL;
687 		/* ECCurve_X9_62_PRIME_256V1 */
688 	} else if(algo == LDNS_ECDSAP384SHA384) {
689 		if(len != 2*384/8) return NULL;
690 		/* ECCurve_X9_62_PRIME_384R1 */
691 	} else    return NULL;
692 
693 	buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
694 	memmove(buf+1, key, len);
695 	pub.data = buf;
696 	pub.len = len+1;
697 	if(algo == LDNS_ECDSAP256SHA256) {
698 		params.data = param256;
699 		params.len = sizeof(param256);
700 	} else {
701 		params.data = param384;
702 		params.len = sizeof(param384);
703 	}
704 
705 	pk = nss_key_create(ecKey);
706 	if(!pk)
707 		return NULL;
708 	pk->u.ec.size = (len/2)*8;
709 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
710 		SECKEY_DestroyPublicKey(pk);
711 		return NULL;
712 	}
713 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
714 		SECKEY_DestroyPublicKey(pk);
715 		return NULL;
716 	}
717 
718 	return pk;
719 }
720 
721 static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
722 {
723 	SECKEYPublicKey* pk;
724 	uint8_t T;
725 	uint16_t length;
726 	uint16_t offset;
727 	SECItem Q = {siBuffer, NULL, 0};
728 	SECItem P = {siBuffer, NULL, 0};
729 	SECItem G = {siBuffer, NULL, 0};
730 	SECItem Y = {siBuffer, NULL, 0};
731 
732 	if(len == 0)
733 		return NULL;
734 	T = (uint8_t)key[0];
735 	length = (64 + T * 8);
736 	offset = 1;
737 
738 	if (T > 8) {
739 		return NULL;
740 	}
741 	if(len < (size_t)1 + SHA1_LENGTH + 3*length)
742 		return NULL;
743 
744 	Q.data = key+offset;
745 	Q.len = SHA1_LENGTH;
746 	offset += SHA1_LENGTH;
747 
748 	P.data = key+offset;
749 	P.len = length;
750 	offset += length;
751 
752 	G.data = key+offset;
753 	G.len = length;
754 	offset += length;
755 
756 	Y.data = key+offset;
757 	Y.len = length;
758 	offset += length;
759 
760 	pk = nss_key_create(dsaKey);
761 	if(!pk)
762 		return NULL;
763 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
764 		SECKEY_DestroyPublicKey(pk);
765 		return NULL;
766 	}
767 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
768 		SECKEY_DestroyPublicKey(pk);
769 		return NULL;
770 	}
771 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
772 		SECKEY_DestroyPublicKey(pk);
773 		return NULL;
774 	}
775 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
776 		SECKEY_DestroyPublicKey(pk);
777 		return NULL;
778 	}
779 	return pk;
780 }
781 
782 static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
783 {
784 	SECKEYPublicKey* pk;
785 	uint16_t exp;
786 	uint16_t offset;
787 	uint16_t int16;
788 	SECItem modulus = {siBuffer, NULL, 0};
789 	SECItem exponent = {siBuffer, NULL, 0};
790 	if(len == 0)
791 		return NULL;
792 	if(key[0] == 0) {
793 		if(len < 3)
794 			return NULL;
795 		/* the exponent is too large so it's places further */
796 		memmove(&int16, key+1, 2);
797 		exp = ntohs(int16);
798 		offset = 3;
799 	} else {
800 		exp = key[0];
801 		offset = 1;
802 	}
803 
804 	/* key length at least one */
805 	if(len < (size_t)offset + exp + 1)
806 		return NULL;
807 
808 	exponent.data = key+offset;
809 	exponent.len = exp;
810 	offset += exp;
811 	modulus.data = key+offset;
812 	modulus.len = (len - offset);
813 
814 	pk = nss_key_create(rsaKey);
815 	if(!pk)
816 		return NULL;
817 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
818 		SECKEY_DestroyPublicKey(pk);
819 		return NULL;
820 	}
821 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
822 		SECKEY_DestroyPublicKey(pk);
823 		return NULL;
824 	}
825 	return pk;
826 }
827 
828 /**
829  * Setup key and digest for verification. Adjust sig if necessary.
830  *
831  * @param algo: key algorithm
832  * @param evp_key: EVP PKEY public key to create.
833  * @param digest_type: digest type to use
834  * @param key: key to setup for.
835  * @param keylen: length of key.
836  * @param prefix: if returned, the ASN prefix for the hashblob.
837  * @param prefixlen: length of the prefix.
838  * @return false on failure.
839  */
840 static int
841 nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
842 	unsigned char* key, size_t keylen, unsigned char** prefix,
843 	size_t* prefixlen)
844 {
845 	/* uses libNSS */
846 
847 	/* hash prefix for md5, RFC2537 */
848 	unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
849 	0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
850 	/* hash prefix to prepend to hash output, from RFC3110 */
851 	unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
852 		0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
853 	/* from RFC5702 */
854 	unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
855 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
856 	unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
857 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
858 	/* from RFC6234 */
859 	/* for future RSASHA384 ..
860 	unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
861 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
862 	*/
863 
864 	switch(algo) {
865 		case LDNS_DSA:
866 		case LDNS_DSA_NSEC3:
867 			*pubkey = nss_buf2dsa(key, keylen);
868 			if(!*pubkey) {
869 				log_err("verify: malloc failure in crypto");
870 				return 0;
871 			}
872 			*htype = HASH_AlgSHA1;
873 			/* no prefix for DSA verification */
874 			break;
875 		case LDNS_RSASHA1:
876 		case LDNS_RSASHA1_NSEC3:
877 #ifdef USE_SHA2
878 		case LDNS_RSASHA256:
879 #endif
880 #ifdef USE_SHA2
881 		case LDNS_RSASHA512:
882 #endif
883 			*pubkey = nss_buf2rsa(key, keylen);
884 			if(!*pubkey) {
885 				log_err("verify: malloc failure in crypto");
886 				return 0;
887 			}
888 			/* select SHA version */
889 #ifdef USE_SHA2
890 			if(algo == LDNS_RSASHA256) {
891 				*htype = HASH_AlgSHA256;
892 				*prefix = p_sha256;
893 				*prefixlen = sizeof(p_sha256);
894 			} else
895 #endif
896 #ifdef USE_SHA2
897 				if(algo == LDNS_RSASHA512) {
898 				*htype = HASH_AlgSHA512;
899 				*prefix = p_sha512;
900 				*prefixlen = sizeof(p_sha512);
901 			} else
902 #endif
903 			{
904 				*htype = HASH_AlgSHA1;
905 				*prefix = p_sha1;
906 				*prefixlen = sizeof(p_sha1);
907 			}
908 
909 			break;
910 		case LDNS_RSAMD5:
911 			*pubkey = nss_buf2rsa(key, keylen);
912 			if(!*pubkey) {
913 				log_err("verify: malloc failure in crypto");
914 				return 0;
915 			}
916 			*htype = HASH_AlgMD5;
917 			*prefix = p_md5;
918 			*prefixlen = sizeof(p_md5);
919 
920 			break;
921 #ifdef USE_ECDSA
922 		case LDNS_ECDSAP256SHA256:
923 			*pubkey = nss_buf2ecdsa(key, keylen,
924 				LDNS_ECDSAP256SHA256);
925 			if(!*pubkey) {
926 				log_err("verify: malloc failure in crypto");
927 				return 0;
928 			}
929 			*htype = HASH_AlgSHA256;
930 			/* no prefix for DSA verification */
931 			break;
932 		case LDNS_ECDSAP384SHA384:
933 			*pubkey = nss_buf2ecdsa(key, keylen,
934 				LDNS_ECDSAP384SHA384);
935 			if(!*pubkey) {
936 				log_err("verify: malloc failure in crypto");
937 				return 0;
938 			}
939 			*htype = HASH_AlgSHA384;
940 			/* no prefix for DSA verification */
941 			break;
942 #endif /* USE_ECDSA */
943 		case LDNS_ECC_GOST:
944 		default:
945 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
946 				algo);
947 			return 0;
948 	}
949 	return 1;
950 }
951 
952 /**
953  * Check a canonical sig+rrset and signature against a dnskey
954  * @param buf: buffer with data to verify, the first rrsig part and the
955  *	canonicalized rrset.
956  * @param algo: DNSKEY algorithm.
957  * @param sigblock: signature rdata field from RRSIG
958  * @param sigblock_len: length of sigblock data.
959  * @param key: public key data from DNSKEY RR.
960  * @param keylen: length of keydata.
961  * @param reason: bogus reason in more detail.
962  * @return secure if verification succeeded, bogus on crypto failure,
963  *	unchecked on format errors and alloc failures.
964  */
965 enum sec_status
966 verify_canonrrset(ldns_buffer* buf, int algo, unsigned char* sigblock,
967 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
968 	char** reason)
969 {
970 	/* uses libNSS */
971 	/* large enough for the different hashes */
972 	unsigned char hash[HASH_LENGTH_MAX];
973 	unsigned char hash2[HASH_LENGTH_MAX*2];
974 	HASH_HashType htype = 0;
975 	SECKEYPublicKey* pubkey = NULL;
976 	SECItem secsig = {siBuffer, sigblock, sigblock_len};
977 	SECItem sechash = {siBuffer, hash, 0};
978 	SECStatus res;
979 	unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
980 	size_t prefixlen = 0;
981 	int err;
982 
983 	if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
984 		&prefix, &prefixlen)) {
985 		verbose(VERB_QUERY, "verify: failed to setup key");
986 		*reason = "use of key for crypto failed";
987 		SECKEY_DestroyPublicKey(pubkey);
988 		return sec_status_bogus;
989 	}
990 
991 	/* need to convert DSA, ECDSA signatures? */
992 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
993 		if(sigblock_len == 1+2*SHA1_LENGTH) {
994 			secsig.data ++;
995 			secsig.len --;
996 		} else {
997 			SECItem* p = DSAU_DecodeDerSig(&secsig);
998 			if(!p) {
999 				verbose(VERB_QUERY, "verify: failed DER decode");
1000 				*reason = "signature DER decode failed";
1001 				SECKEY_DestroyPublicKey(pubkey);
1002 				return sec_status_bogus;
1003 			}
1004 			if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1005 				log_err("alloc failure in DER decode");
1006 				SECKEY_DestroyPublicKey(pubkey);
1007 				SECITEM_FreeItem(p, PR_TRUE);
1008 				return sec_status_unchecked;
1009 			}
1010 			SECITEM_FreeItem(p, PR_TRUE);
1011 		}
1012 	}
1013 
1014 	/* do the signature cryptography work */
1015 	/* hash the data */
1016 	sechash.len = HASH_ResultLen(htype);
1017 	if(sechash.len > sizeof(hash)) {
1018 		verbose(VERB_QUERY, "verify: hash too large for buffer");
1019 		SECKEY_DestroyPublicKey(pubkey);
1020 		return sec_status_unchecked;
1021 	}
1022 	if(HASH_HashBuf(htype, hash, (unsigned char*)ldns_buffer_begin(buf),
1023 		(unsigned int)ldns_buffer_limit(buf)) != SECSuccess) {
1024 		verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1025 		SECKEY_DestroyPublicKey(pubkey);
1026 		return sec_status_unchecked;
1027 	}
1028 	if(prefix) {
1029 		int hashlen = sechash.len;
1030 		if(prefixlen+hashlen > sizeof(hash2)) {
1031 			verbose(VERB_QUERY, "verify: hashprefix too large");
1032 			SECKEY_DestroyPublicKey(pubkey);
1033 			return sec_status_unchecked;
1034 		}
1035 		sechash.data = hash2;
1036 		sechash.len = prefixlen+hashlen;
1037 		memcpy(sechash.data, prefix, prefixlen);
1038 		memmove(sechash.data+prefixlen, hash, hashlen);
1039 	}
1040 
1041 	/* verify the signature */
1042 	res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1043 	SECKEY_DestroyPublicKey(pubkey);
1044 
1045 	if(res == SECSuccess) {
1046 		return sec_status_secure;
1047 	}
1048 	err = PORT_GetError();
1049 	if(err != SEC_ERROR_BAD_SIGNATURE) {
1050 		/* failed to verify */
1051 		verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1052 			PORT_ErrorToString(err));
1053 		/* if it is not supported, like ECC is removed, we get,
1054 		 * SEC_ERROR_NO_MODULE */
1055 		if(err == SEC_ERROR_NO_MODULE)
1056 			return sec_status_unchecked;
1057 		/* but other errors are commonly returned
1058 		 * for a bad signature from NSS.  Thus we return bogus,
1059 		 * not unchecked */
1060 		*reason = "signature crypto failed";
1061 		return sec_status_bogus;
1062 	}
1063 	verbose(VERB_QUERY, "verify: signature mismatch: %s",
1064 		PORT_ErrorToString(err));
1065 	*reason = "signature crypto failed";
1066 	return sec_status_bogus;
1067 }
1068 
1069 
1070 #endif /* HAVE_SSL or HAVE_NSS */
1071