xref: /freebsd/contrib/unbound/validator/val_secalgo.c (revision 0677dfd1c4dadb62482e2c72fa4c6720902128a4)
1 /*
2  * validator/val_secalgo.c - validator security algorithm functions.
3  *
4  * Copyright (c) 2012, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * These functions take raw data buffers, formatted for crypto verification,
41  * and do the library calls (for the crypto library in use).
42  */
43 #include "config.h"
44 #include "validator/val_secalgo.h"
45 #include "util/data/packed_rrset.h"
46 #include "util/log.h"
47 #include "ldns/rrdef.h"
48 #include "ldns/keyraw.h"
49 #include "ldns/sbuffer.h"
50 
51 #if !defined(HAVE_SSL) && !defined(HAVE_NSS)
52 #error "Need crypto library to do digital signature cryptography"
53 #endif
54 
55 /* OpenSSL implementation */
56 #ifdef HAVE_SSL
57 #ifdef HAVE_OPENSSL_ERR_H
58 #include <openssl/err.h>
59 #endif
60 
61 #ifdef HAVE_OPENSSL_RAND_H
62 #include <openssl/rand.h>
63 #endif
64 
65 #ifdef HAVE_OPENSSL_CONF_H
66 #include <openssl/conf.h>
67 #endif
68 
69 #ifdef HAVE_OPENSSL_ENGINE_H
70 #include <openssl/engine.h>
71 #endif
72 
73 /**
74  * Return size of DS digest according to its hash algorithm.
75  * @param algo: DS digest algo.
76  * @return size in bytes of digest, or 0 if not supported.
77  */
78 size_t
79 ds_digest_size_supported(int algo)
80 {
81 	switch(algo) {
82 #ifdef HAVE_EVP_SHA1
83 		case LDNS_SHA1:
84 			return SHA_DIGEST_LENGTH;
85 #endif
86 #ifdef HAVE_EVP_SHA256
87 		case LDNS_SHA256:
88 			return SHA256_DIGEST_LENGTH;
89 #endif
90 #ifdef USE_GOST
91 		case LDNS_HASH_GOST:
92 			if(EVP_get_digestbyname("md_gost94"))
93 				return 32;
94 			else	return 0;
95 #endif
96 #ifdef USE_ECDSA
97 		case LDNS_SHA384:
98 			return SHA384_DIGEST_LENGTH;
99 #endif
100 		default: break;
101 	}
102 	return 0;
103 }
104 
105 #ifdef USE_GOST
106 /** Perform GOST hash */
107 static int
108 do_gost94(unsigned char* data, size_t len, unsigned char* dest)
109 {
110 	const EVP_MD* md = EVP_get_digestbyname("md_gost94");
111 	if(!md)
112 		return 0;
113 	return sldns_digest_evp(data, (unsigned int)len, dest, md);
114 }
115 #endif
116 
117 int
118 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
119 	unsigned char* res)
120 {
121 	switch(algo) {
122 #ifdef HAVE_EVP_SHA1
123 		case LDNS_SHA1:
124 			(void)SHA1(buf, len, res);
125 			return 1;
126 #endif
127 #ifdef HAVE_EVP_SHA256
128 		case LDNS_SHA256:
129 			(void)SHA256(buf, len, res);
130 			return 1;
131 #endif
132 #ifdef USE_GOST
133 		case LDNS_HASH_GOST:
134 			if(do_gost94(buf, len, res))
135 				return 1;
136 			break;
137 #endif
138 #ifdef USE_ECDSA
139 		case LDNS_SHA384:
140 			(void)SHA384(buf, len, res);
141 			return 1;
142 #endif
143 		default:
144 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
145 				algo);
146 			break;
147 	}
148 	return 0;
149 }
150 
151 /** return true if DNSKEY algorithm id is supported */
152 int
153 dnskey_algo_id_is_supported(int id)
154 {
155 	switch(id) {
156 	case LDNS_RSAMD5:
157 		/* RFC 6725 deprecates RSAMD5 */
158 		return 0;
159 	case LDNS_DSA:
160 	case LDNS_DSA_NSEC3:
161 	case LDNS_RSASHA1:
162 	case LDNS_RSASHA1_NSEC3:
163 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
164 	case LDNS_RSASHA256:
165 #endif
166 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
167 	case LDNS_RSASHA512:
168 #endif
169 #ifdef USE_ECDSA
170 	case LDNS_ECDSAP256SHA256:
171 	case LDNS_ECDSAP384SHA384:
172 #endif
173 		return 1;
174 #ifdef USE_GOST
175 	case LDNS_ECC_GOST:
176 		/* we support GOST if it can be loaded */
177 		return sldns_key_EVP_load_gost_id();
178 #endif
179 	default:
180 		return 0;
181 	}
182 }
183 
184 /**
185  * Output a libcrypto openssl error to the logfile.
186  * @param str: string to add to it.
187  * @param e: the error to output, error number from ERR_get_error().
188  */
189 static void
190 log_crypto_error(const char* str, unsigned long e)
191 {
192 	char buf[128];
193 	/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
194 	ERR_error_string_n(e, buf, sizeof(buf));
195 	/* buf now contains */
196 	/* error:[error code]:[library name]:[function name]:[reason string] */
197 	log_err("%s crypto %s", str, buf);
198 }
199 
200 /**
201  * Setup DSA key digest in DER encoding ...
202  * @param sig: input is signature output alloced ptr (unless failure).
203  * 	caller must free alloced ptr if this routine returns true.
204  * @param len: input is initial siglen, output is output len.
205  * @return false on failure.
206  */
207 static int
208 setup_dsa_sig(unsigned char** sig, unsigned int* len)
209 {
210 	unsigned char* orig = *sig;
211 	unsigned int origlen = *len;
212 	int newlen;
213 	BIGNUM *R, *S;
214 	DSA_SIG *dsasig;
215 
216 	/* extract the R and S field from the sig buffer */
217 	if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
218 		return 0;
219 	R = BN_new();
220 	if(!R) return 0;
221 	(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
222 	S = BN_new();
223 	if(!S) return 0;
224 	(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
225 	dsasig = DSA_SIG_new();
226 	if(!dsasig) return 0;
227 
228 	dsasig->r = R;
229 	dsasig->s = S;
230 	*sig = NULL;
231 	newlen = i2d_DSA_SIG(dsasig, sig);
232 	if(newlen < 0) {
233 		DSA_SIG_free(dsasig);
234 		free(*sig);
235 		return 0;
236 	}
237 	*len = (unsigned int)newlen;
238 	DSA_SIG_free(dsasig);
239 	return 1;
240 }
241 
242 #ifdef USE_ECDSA
243 /**
244  * Setup the ECDSA signature in its encoding that the library wants.
245  * Converts from plain numbers to ASN formatted.
246  * @param sig: input is signature, output alloced ptr (unless failure).
247  * 	caller must free alloced ptr if this routine returns true.
248  * @param len: input is initial siglen, output is output len.
249  * @return false on failure.
250  */
251 static int
252 setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
253 {
254 	ECDSA_SIG* ecdsa_sig;
255 	int newlen;
256 	int bnsize = (int)((*len)/2);
257 	/* if too short or not even length, fails */
258 	if(*len < 16 || bnsize*2 != (int)*len)
259 		return 0;
260 	/* use the raw data to parse two evenly long BIGNUMs, "r | s". */
261 	ecdsa_sig = ECDSA_SIG_new();
262 	if(!ecdsa_sig) return 0;
263 	ecdsa_sig->r = BN_bin2bn(*sig, bnsize, ecdsa_sig->r);
264 	ecdsa_sig->s = BN_bin2bn(*sig+bnsize, bnsize, ecdsa_sig->s);
265 	if(!ecdsa_sig->r || !ecdsa_sig->s) {
266 		ECDSA_SIG_free(ecdsa_sig);
267 		return 0;
268 	}
269 
270 	/* spool it into ASN format */
271 	*sig = NULL;
272 	newlen = i2d_ECDSA_SIG(ecdsa_sig, sig);
273 	if(newlen <= 0) {
274 		ECDSA_SIG_free(ecdsa_sig);
275 		free(*sig);
276 		return 0;
277 	}
278 	*len = (unsigned int)newlen;
279 	ECDSA_SIG_free(ecdsa_sig);
280 	return 1;
281 }
282 #endif /* USE_ECDSA */
283 
284 /**
285  * Setup key and digest for verification. Adjust sig if necessary.
286  *
287  * @param algo: key algorithm
288  * @param evp_key: EVP PKEY public key to create.
289  * @param digest_type: digest type to use
290  * @param key: key to setup for.
291  * @param keylen: length of key.
292  * @return false on failure.
293  */
294 static int
295 setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
296 	unsigned char* key, size_t keylen)
297 {
298 	DSA* dsa;
299 	RSA* rsa;
300 
301 	switch(algo) {
302 		case LDNS_DSA:
303 		case LDNS_DSA_NSEC3:
304 			*evp_key = EVP_PKEY_new();
305 			if(!*evp_key) {
306 				log_err("verify: malloc failure in crypto");
307 				return 0;
308 			}
309 			dsa = sldns_key_buf2dsa_raw(key, keylen);
310 			if(!dsa) {
311 				verbose(VERB_QUERY, "verify: "
312 					"sldns_key_buf2dsa_raw failed");
313 				return 0;
314 			}
315 			if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
316 				verbose(VERB_QUERY, "verify: "
317 					"EVP_PKEY_assign_DSA failed");
318 				return 0;
319 			}
320 			*digest_type = EVP_dss1();
321 
322 			break;
323 		case LDNS_RSASHA1:
324 		case LDNS_RSASHA1_NSEC3:
325 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
326 		case LDNS_RSASHA256:
327 #endif
328 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
329 		case LDNS_RSASHA512:
330 #endif
331 			*evp_key = EVP_PKEY_new();
332 			if(!*evp_key) {
333 				log_err("verify: malloc failure in crypto");
334 				return 0;
335 			}
336 			rsa = sldns_key_buf2rsa_raw(key, keylen);
337 			if(!rsa) {
338 				verbose(VERB_QUERY, "verify: "
339 					"sldns_key_buf2rsa_raw SHA failed");
340 				return 0;
341 			}
342 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
343 				verbose(VERB_QUERY, "verify: "
344 					"EVP_PKEY_assign_RSA SHA failed");
345 				return 0;
346 			}
347 
348 			/* select SHA version */
349 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
350 			if(algo == LDNS_RSASHA256)
351 				*digest_type = EVP_sha256();
352 			else
353 #endif
354 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
355 				if(algo == LDNS_RSASHA512)
356 				*digest_type = EVP_sha512();
357 			else
358 #endif
359 				*digest_type = EVP_sha1();
360 
361 			break;
362 		case LDNS_RSAMD5:
363 			*evp_key = EVP_PKEY_new();
364 			if(!*evp_key) {
365 				log_err("verify: malloc failure in crypto");
366 				return 0;
367 			}
368 			rsa = sldns_key_buf2rsa_raw(key, keylen);
369 			if(!rsa) {
370 				verbose(VERB_QUERY, "verify: "
371 					"sldns_key_buf2rsa_raw MD5 failed");
372 				return 0;
373 			}
374 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
375 				verbose(VERB_QUERY, "verify: "
376 					"EVP_PKEY_assign_RSA MD5 failed");
377 				return 0;
378 			}
379 			*digest_type = EVP_md5();
380 
381 			break;
382 #ifdef USE_GOST
383 		case LDNS_ECC_GOST:
384 			*evp_key = sldns_gost2pkey_raw(key, keylen);
385 			if(!*evp_key) {
386 				verbose(VERB_QUERY, "verify: "
387 					"sldns_gost2pkey_raw failed");
388 				return 0;
389 			}
390 			*digest_type = EVP_get_digestbyname("md_gost94");
391 			if(!*digest_type) {
392 				verbose(VERB_QUERY, "verify: "
393 					"EVP_getdigest md_gost94 failed");
394 				return 0;
395 			}
396 			break;
397 #endif
398 #ifdef USE_ECDSA
399 		case LDNS_ECDSAP256SHA256:
400 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
401 				LDNS_ECDSAP256SHA256);
402 			if(!*evp_key) {
403 				verbose(VERB_QUERY, "verify: "
404 					"sldns_ecdsa2pkey_raw failed");
405 				return 0;
406 			}
407 #ifdef USE_ECDSA_EVP_WORKAROUND
408 			/* openssl before 1.0.0 fixes RSA with the SHA256
409 			 * hash in EVP.  We create one for ecdsa_sha256 */
410 			{
411 				static int md_ecdsa_256_done = 0;
412 				static EVP_MD md;
413 				if(!md_ecdsa_256_done) {
414 					EVP_MD m = *EVP_sha256();
415 					md_ecdsa_256_done = 1;
416 					m.required_pkey_type[0] = (*evp_key)->type;
417 					m.verify = (void*)ECDSA_verify;
418 					md = m;
419 				}
420 				*digest_type = &md;
421 			}
422 #else
423 			*digest_type = EVP_sha256();
424 #endif
425 			break;
426 		case LDNS_ECDSAP384SHA384:
427 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
428 				LDNS_ECDSAP384SHA384);
429 			if(!*evp_key) {
430 				verbose(VERB_QUERY, "verify: "
431 					"sldns_ecdsa2pkey_raw failed");
432 				return 0;
433 			}
434 #ifdef USE_ECDSA_EVP_WORKAROUND
435 			/* openssl before 1.0.0 fixes RSA with the SHA384
436 			 * hash in EVP.  We create one for ecdsa_sha384 */
437 			{
438 				static int md_ecdsa_384_done = 0;
439 				static EVP_MD md;
440 				if(!md_ecdsa_384_done) {
441 					EVP_MD m = *EVP_sha384();
442 					md_ecdsa_384_done = 1;
443 					m.required_pkey_type[0] = (*evp_key)->type;
444 					m.verify = (void*)ECDSA_verify;
445 					md = m;
446 				}
447 				*digest_type = &md;
448 			}
449 #else
450 			*digest_type = EVP_sha384();
451 #endif
452 			break;
453 #endif /* USE_ECDSA */
454 		default:
455 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
456 				algo);
457 			return 0;
458 	}
459 	return 1;
460 }
461 
462 /**
463  * Check a canonical sig+rrset and signature against a dnskey
464  * @param buf: buffer with data to verify, the first rrsig part and the
465  *	canonicalized rrset.
466  * @param algo: DNSKEY algorithm.
467  * @param sigblock: signature rdata field from RRSIG
468  * @param sigblock_len: length of sigblock data.
469  * @param key: public key data from DNSKEY RR.
470  * @param keylen: length of keydata.
471  * @param reason: bogus reason in more detail.
472  * @return secure if verification succeeded, bogus on crypto failure,
473  *	unchecked on format errors and alloc failures.
474  */
475 enum sec_status
476 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
477 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
478 	char** reason)
479 {
480 	const EVP_MD *digest_type;
481 	EVP_MD_CTX ctx;
482 	int res, dofree = 0;
483 	EVP_PKEY *evp_key = NULL;
484 
485 	if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
486 		verbose(VERB_QUERY, "verify: failed to setup key");
487 		*reason = "use of key for crypto failed";
488 		EVP_PKEY_free(evp_key);
489 		return sec_status_bogus;
490 	}
491 	/* if it is a DSA signature in bind format, convert to DER format */
492 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
493 		sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
494 		if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
495 			verbose(VERB_QUERY, "verify: failed to setup DSA sig");
496 			*reason = "use of key for DSA crypto failed";
497 			EVP_PKEY_free(evp_key);
498 			return sec_status_bogus;
499 		}
500 		dofree = 1;
501 	}
502 #ifdef USE_ECDSA
503 	else if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
504 		/* EVP uses ASN prefix on sig, which is not in the wire data */
505 		if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
506 			verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
507 			*reason = "use of signature for ECDSA crypto failed";
508 			EVP_PKEY_free(evp_key);
509 			return sec_status_bogus;
510 		}
511 		dofree = 1;
512 	}
513 #endif /* USE_ECDSA */
514 
515 	/* do the signature cryptography work */
516 	EVP_MD_CTX_init(&ctx);
517 	if(EVP_VerifyInit(&ctx, digest_type) == 0) {
518 		verbose(VERB_QUERY, "verify: EVP_VerifyInit failed");
519 		EVP_PKEY_free(evp_key);
520 		if(dofree) free(sigblock);
521 		return sec_status_unchecked;
522 	}
523 	if(EVP_VerifyUpdate(&ctx, (unsigned char*)sldns_buffer_begin(buf),
524 		(unsigned int)sldns_buffer_limit(buf)) == 0) {
525 		verbose(VERB_QUERY, "verify: EVP_VerifyUpdate failed");
526 		EVP_PKEY_free(evp_key);
527 		if(dofree) free(sigblock);
528 		return sec_status_unchecked;
529 	}
530 
531 	res = EVP_VerifyFinal(&ctx, sigblock, sigblock_len, evp_key);
532 	if(EVP_MD_CTX_cleanup(&ctx) == 0) {
533 		verbose(VERB_QUERY, "verify: EVP_MD_CTX_cleanup failed");
534 		EVP_PKEY_free(evp_key);
535 		if(dofree) free(sigblock);
536 		return sec_status_unchecked;
537 	}
538 	EVP_PKEY_free(evp_key);
539 
540 	if(dofree)
541 		free(sigblock);
542 
543 	if(res == 1) {
544 		return sec_status_secure;
545 	} else if(res == 0) {
546 		verbose(VERB_QUERY, "verify: signature mismatch");
547 		*reason = "signature crypto failed";
548 		return sec_status_bogus;
549 	}
550 
551 	log_crypto_error("verify:", ERR_get_error());
552 	return sec_status_unchecked;
553 }
554 
555 /**************************************************/
556 #elif defined(HAVE_NSS)
557 /* libnss implementation */
558 /* nss3 */
559 #include "sechash.h"
560 #include "pk11pub.h"
561 #include "keyhi.h"
562 #include "secerr.h"
563 #include "cryptohi.h"
564 /* nspr4 */
565 #include "prerror.h"
566 
567 size_t
568 ds_digest_size_supported(int algo)
569 {
570 	/* uses libNSS */
571 	switch(algo) {
572 		case LDNS_SHA1:
573 			return SHA1_LENGTH;
574 #ifdef USE_SHA2
575 		case LDNS_SHA256:
576 			return SHA256_LENGTH;
577 #endif
578 #ifdef USE_ECDSA
579 		case LDNS_SHA384:
580 			return SHA384_LENGTH;
581 #endif
582 		/* GOST not supported in NSS */
583 		case LDNS_HASH_GOST:
584 		default: break;
585 	}
586 	return 0;
587 }
588 
589 int
590 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
591 	unsigned char* res)
592 {
593 	/* uses libNSS */
594 	switch(algo) {
595 		case LDNS_SHA1:
596 			return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
597 				== SECSuccess;
598 #if defined(USE_SHA2)
599 		case LDNS_SHA256:
600 			return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
601 				== SECSuccess;
602 #endif
603 #ifdef USE_ECDSA
604 		case LDNS_SHA384:
605 			return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
606 				== SECSuccess;
607 #endif
608 		case LDNS_HASH_GOST:
609 		default:
610 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
611 				algo);
612 			break;
613 	}
614 	return 0;
615 }
616 
617 int
618 dnskey_algo_id_is_supported(int id)
619 {
620 	/* uses libNSS */
621 	switch(id) {
622 	case LDNS_RSAMD5:
623 		/* RFC 6725 deprecates RSAMD5 */
624 		return 0;
625 	case LDNS_DSA:
626 	case LDNS_DSA_NSEC3:
627 	case LDNS_RSASHA1:
628 	case LDNS_RSASHA1_NSEC3:
629 #ifdef USE_SHA2
630 	case LDNS_RSASHA256:
631 #endif
632 #ifdef USE_SHA2
633 	case LDNS_RSASHA512:
634 #endif
635 		return 1;
636 #ifdef USE_ECDSA
637 	case LDNS_ECDSAP256SHA256:
638 	case LDNS_ECDSAP384SHA384:
639 		return PK11_TokenExists(CKM_ECDSA);
640 #endif
641 	case LDNS_ECC_GOST:
642 	default:
643 		return 0;
644 	}
645 }
646 
647 /* return a new public key for NSS */
648 static SECKEYPublicKey* nss_key_create(KeyType ktype)
649 {
650 	SECKEYPublicKey* key;
651 	PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
652 	if(!arena) {
653 		log_err("out of memory, PORT_NewArena failed");
654 		return NULL;
655 	}
656 	key = PORT_ArenaZNew(arena, SECKEYPublicKey);
657 	if(!key) {
658 		log_err("out of memory, PORT_ArenaZNew failed");
659 		PORT_FreeArena(arena, PR_FALSE);
660 		return NULL;
661 	}
662 	key->arena = arena;
663 	key->keyType = ktype;
664 	key->pkcs11Slot = NULL;
665 	key->pkcs11ID = CK_INVALID_HANDLE;
666 	return key;
667 }
668 
669 static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
670 {
671 	SECKEYPublicKey* pk;
672 	SECItem pub = {siBuffer, NULL, 0};
673 	SECItem params = {siBuffer, NULL, 0};
674 	static unsigned char param256[] = {
675 		/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
676 		 * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
677 		0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
678 	};
679 	static unsigned char param384[] = {
680 		/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
681 		 * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
682 		0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
683 	};
684 	unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
685 
686 	/* check length, which uncompressed must be 2 bignums */
687 	if(algo == LDNS_ECDSAP256SHA256) {
688 		if(len != 2*256/8) return NULL;
689 		/* ECCurve_X9_62_PRIME_256V1 */
690 	} else if(algo == LDNS_ECDSAP384SHA384) {
691 		if(len != 2*384/8) return NULL;
692 		/* ECCurve_X9_62_PRIME_384R1 */
693 	} else    return NULL;
694 
695 	buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
696 	memmove(buf+1, key, len);
697 	pub.data = buf;
698 	pub.len = len+1;
699 	if(algo == LDNS_ECDSAP256SHA256) {
700 		params.data = param256;
701 		params.len = sizeof(param256);
702 	} else {
703 		params.data = param384;
704 		params.len = sizeof(param384);
705 	}
706 
707 	pk = nss_key_create(ecKey);
708 	if(!pk)
709 		return NULL;
710 	pk->u.ec.size = (len/2)*8;
711 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
712 		SECKEY_DestroyPublicKey(pk);
713 		return NULL;
714 	}
715 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
716 		SECKEY_DestroyPublicKey(pk);
717 		return NULL;
718 	}
719 
720 	return pk;
721 }
722 
723 static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
724 {
725 	SECKEYPublicKey* pk;
726 	uint8_t T;
727 	uint16_t length;
728 	uint16_t offset;
729 	SECItem Q = {siBuffer, NULL, 0};
730 	SECItem P = {siBuffer, NULL, 0};
731 	SECItem G = {siBuffer, NULL, 0};
732 	SECItem Y = {siBuffer, NULL, 0};
733 
734 	if(len == 0)
735 		return NULL;
736 	T = (uint8_t)key[0];
737 	length = (64 + T * 8);
738 	offset = 1;
739 
740 	if (T > 8) {
741 		return NULL;
742 	}
743 	if(len < (size_t)1 + SHA1_LENGTH + 3*length)
744 		return NULL;
745 
746 	Q.data = key+offset;
747 	Q.len = SHA1_LENGTH;
748 	offset += SHA1_LENGTH;
749 
750 	P.data = key+offset;
751 	P.len = length;
752 	offset += length;
753 
754 	G.data = key+offset;
755 	G.len = length;
756 	offset += length;
757 
758 	Y.data = key+offset;
759 	Y.len = length;
760 	offset += length;
761 
762 	pk = nss_key_create(dsaKey);
763 	if(!pk)
764 		return NULL;
765 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
766 		SECKEY_DestroyPublicKey(pk);
767 		return NULL;
768 	}
769 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
770 		SECKEY_DestroyPublicKey(pk);
771 		return NULL;
772 	}
773 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
774 		SECKEY_DestroyPublicKey(pk);
775 		return NULL;
776 	}
777 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
778 		SECKEY_DestroyPublicKey(pk);
779 		return NULL;
780 	}
781 	return pk;
782 }
783 
784 static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
785 {
786 	SECKEYPublicKey* pk;
787 	uint16_t exp;
788 	uint16_t offset;
789 	uint16_t int16;
790 	SECItem modulus = {siBuffer, NULL, 0};
791 	SECItem exponent = {siBuffer, NULL, 0};
792 	if(len == 0)
793 		return NULL;
794 	if(key[0] == 0) {
795 		if(len < 3)
796 			return NULL;
797 		/* the exponent is too large so it's places further */
798 		memmove(&int16, key+1, 2);
799 		exp = ntohs(int16);
800 		offset = 3;
801 	} else {
802 		exp = key[0];
803 		offset = 1;
804 	}
805 
806 	/* key length at least one */
807 	if(len < (size_t)offset + exp + 1)
808 		return NULL;
809 
810 	exponent.data = key+offset;
811 	exponent.len = exp;
812 	offset += exp;
813 	modulus.data = key+offset;
814 	modulus.len = (len - offset);
815 
816 	pk = nss_key_create(rsaKey);
817 	if(!pk)
818 		return NULL;
819 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
820 		SECKEY_DestroyPublicKey(pk);
821 		return NULL;
822 	}
823 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
824 		SECKEY_DestroyPublicKey(pk);
825 		return NULL;
826 	}
827 	return pk;
828 }
829 
830 /**
831  * Setup key and digest for verification. Adjust sig if necessary.
832  *
833  * @param algo: key algorithm
834  * @param evp_key: EVP PKEY public key to create.
835  * @param digest_type: digest type to use
836  * @param key: key to setup for.
837  * @param keylen: length of key.
838  * @param prefix: if returned, the ASN prefix for the hashblob.
839  * @param prefixlen: length of the prefix.
840  * @return false on failure.
841  */
842 static int
843 nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
844 	unsigned char* key, size_t keylen, unsigned char** prefix,
845 	size_t* prefixlen)
846 {
847 	/* uses libNSS */
848 
849 	/* hash prefix for md5, RFC2537 */
850 	static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
851 	0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
852 	/* hash prefix to prepend to hash output, from RFC3110 */
853 	static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
854 		0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
855 	/* from RFC5702 */
856 	static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
857 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
858 	static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
859 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
860 	/* from RFC6234 */
861 	/* for future RSASHA384 ..
862 	static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
863 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
864 	*/
865 
866 	switch(algo) {
867 		case LDNS_DSA:
868 		case LDNS_DSA_NSEC3:
869 			*pubkey = nss_buf2dsa(key, keylen);
870 			if(!*pubkey) {
871 				log_err("verify: malloc failure in crypto");
872 				return 0;
873 			}
874 			*htype = HASH_AlgSHA1;
875 			/* no prefix for DSA verification */
876 			break;
877 		case LDNS_RSASHA1:
878 		case LDNS_RSASHA1_NSEC3:
879 #ifdef USE_SHA2
880 		case LDNS_RSASHA256:
881 #endif
882 #ifdef USE_SHA2
883 		case LDNS_RSASHA512:
884 #endif
885 			*pubkey = nss_buf2rsa(key, keylen);
886 			if(!*pubkey) {
887 				log_err("verify: malloc failure in crypto");
888 				return 0;
889 			}
890 			/* select SHA version */
891 #ifdef USE_SHA2
892 			if(algo == LDNS_RSASHA256) {
893 				*htype = HASH_AlgSHA256;
894 				*prefix = p_sha256;
895 				*prefixlen = sizeof(p_sha256);
896 			} else
897 #endif
898 #ifdef USE_SHA2
899 				if(algo == LDNS_RSASHA512) {
900 				*htype = HASH_AlgSHA512;
901 				*prefix = p_sha512;
902 				*prefixlen = sizeof(p_sha512);
903 			} else
904 #endif
905 			{
906 				*htype = HASH_AlgSHA1;
907 				*prefix = p_sha1;
908 				*prefixlen = sizeof(p_sha1);
909 			}
910 
911 			break;
912 		case LDNS_RSAMD5:
913 			*pubkey = nss_buf2rsa(key, keylen);
914 			if(!*pubkey) {
915 				log_err("verify: malloc failure in crypto");
916 				return 0;
917 			}
918 			*htype = HASH_AlgMD5;
919 			*prefix = p_md5;
920 			*prefixlen = sizeof(p_md5);
921 
922 			break;
923 #ifdef USE_ECDSA
924 		case LDNS_ECDSAP256SHA256:
925 			*pubkey = nss_buf2ecdsa(key, keylen,
926 				LDNS_ECDSAP256SHA256);
927 			if(!*pubkey) {
928 				log_err("verify: malloc failure in crypto");
929 				return 0;
930 			}
931 			*htype = HASH_AlgSHA256;
932 			/* no prefix for DSA verification */
933 			break;
934 		case LDNS_ECDSAP384SHA384:
935 			*pubkey = nss_buf2ecdsa(key, keylen,
936 				LDNS_ECDSAP384SHA384);
937 			if(!*pubkey) {
938 				log_err("verify: malloc failure in crypto");
939 				return 0;
940 			}
941 			*htype = HASH_AlgSHA384;
942 			/* no prefix for DSA verification */
943 			break;
944 #endif /* USE_ECDSA */
945 		case LDNS_ECC_GOST:
946 		default:
947 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
948 				algo);
949 			return 0;
950 	}
951 	return 1;
952 }
953 
954 /**
955  * Check a canonical sig+rrset and signature against a dnskey
956  * @param buf: buffer with data to verify, the first rrsig part and the
957  *	canonicalized rrset.
958  * @param algo: DNSKEY algorithm.
959  * @param sigblock: signature rdata field from RRSIG
960  * @param sigblock_len: length of sigblock data.
961  * @param key: public key data from DNSKEY RR.
962  * @param keylen: length of keydata.
963  * @param reason: bogus reason in more detail.
964  * @return secure if verification succeeded, bogus on crypto failure,
965  *	unchecked on format errors and alloc failures.
966  */
967 enum sec_status
968 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
969 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
970 	char** reason)
971 {
972 	/* uses libNSS */
973 	/* large enough for the different hashes */
974 	unsigned char hash[HASH_LENGTH_MAX];
975 	unsigned char hash2[HASH_LENGTH_MAX*2];
976 	HASH_HashType htype = 0;
977 	SECKEYPublicKey* pubkey = NULL;
978 	SECItem secsig = {siBuffer, sigblock, sigblock_len};
979 	SECItem sechash = {siBuffer, hash, 0};
980 	SECStatus res;
981 	unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
982 	size_t prefixlen = 0;
983 	int err;
984 
985 	if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
986 		&prefix, &prefixlen)) {
987 		verbose(VERB_QUERY, "verify: failed to setup key");
988 		*reason = "use of key for crypto failed";
989 		SECKEY_DestroyPublicKey(pubkey);
990 		return sec_status_bogus;
991 	}
992 
993 	/* need to convert DSA, ECDSA signatures? */
994 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
995 		if(sigblock_len == 1+2*SHA1_LENGTH) {
996 			secsig.data ++;
997 			secsig.len --;
998 		} else {
999 			SECItem* p = DSAU_DecodeDerSig(&secsig);
1000 			if(!p) {
1001 				verbose(VERB_QUERY, "verify: failed DER decode");
1002 				*reason = "signature DER decode failed";
1003 				SECKEY_DestroyPublicKey(pubkey);
1004 				return sec_status_bogus;
1005 			}
1006 			if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1007 				log_err("alloc failure in DER decode");
1008 				SECKEY_DestroyPublicKey(pubkey);
1009 				SECITEM_FreeItem(p, PR_TRUE);
1010 				return sec_status_unchecked;
1011 			}
1012 			SECITEM_FreeItem(p, PR_TRUE);
1013 		}
1014 	}
1015 
1016 	/* do the signature cryptography work */
1017 	/* hash the data */
1018 	sechash.len = HASH_ResultLen(htype);
1019 	if(sechash.len > sizeof(hash)) {
1020 		verbose(VERB_QUERY, "verify: hash too large for buffer");
1021 		SECKEY_DestroyPublicKey(pubkey);
1022 		return sec_status_unchecked;
1023 	}
1024 	if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
1025 		(unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
1026 		verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1027 		SECKEY_DestroyPublicKey(pubkey);
1028 		return sec_status_unchecked;
1029 	}
1030 	if(prefix) {
1031 		int hashlen = sechash.len;
1032 		if(prefixlen+hashlen > sizeof(hash2)) {
1033 			verbose(VERB_QUERY, "verify: hashprefix too large");
1034 			SECKEY_DestroyPublicKey(pubkey);
1035 			return sec_status_unchecked;
1036 		}
1037 		sechash.data = hash2;
1038 		sechash.len = prefixlen+hashlen;
1039 		memcpy(sechash.data, prefix, prefixlen);
1040 		memmove(sechash.data+prefixlen, hash, hashlen);
1041 	}
1042 
1043 	/* verify the signature */
1044 	res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1045 	SECKEY_DestroyPublicKey(pubkey);
1046 
1047 	if(res == SECSuccess) {
1048 		return sec_status_secure;
1049 	}
1050 	err = PORT_GetError();
1051 	if(err != SEC_ERROR_BAD_SIGNATURE) {
1052 		/* failed to verify */
1053 		verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1054 			PORT_ErrorToString(err));
1055 		/* if it is not supported, like ECC is removed, we get,
1056 		 * SEC_ERROR_NO_MODULE */
1057 		if(err == SEC_ERROR_NO_MODULE)
1058 			return sec_status_unchecked;
1059 		/* but other errors are commonly returned
1060 		 * for a bad signature from NSS.  Thus we return bogus,
1061 		 * not unchecked */
1062 		*reason = "signature crypto failed";
1063 		return sec_status_bogus;
1064 	}
1065 	verbose(VERB_QUERY, "verify: signature mismatch: %s",
1066 		PORT_ErrorToString(err));
1067 	*reason = "signature crypto failed";
1068 	return sec_status_bogus;
1069 }
1070 
1071 
1072 #endif /* HAVE_SSL or HAVE_NSS */
1073