1 /* 2 * validator/val_nsec3.c - validator NSEC3 denial of existence functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with NSEC3 checking, the different NSEC3 proofs 41 * for denial of existence, and proofs for presence of types. 42 */ 43 #include "config.h" 44 #include <ctype.h> 45 #include "validator/val_nsec3.h" 46 #include "validator/val_secalgo.h" 47 #include "validator/validator.h" 48 #include "validator/val_kentry.h" 49 #include "services/cache/rrset.h" 50 #include "util/regional.h" 51 #include "util/rbtree.h" 52 #include "util/module.h" 53 #include "util/net_help.h" 54 #include "util/data/packed_rrset.h" 55 #include "util/data/dname.h" 56 #include "util/data/msgreply.h" 57 /* we include nsec.h for the bitmap_has_type function */ 58 #include "validator/val_nsec.h" 59 #include "sldns/sbuffer.h" 60 61 /** 62 * This function we get from ldns-compat or from base system 63 * it returns the number of data bytes stored at the target, or <0 on error. 64 */ 65 int sldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength, 66 char *target, size_t targsize); 67 /** 68 * This function we get from ldns-compat or from base system 69 * it returns the number of data bytes stored at the target, or <0 on error. 70 */ 71 int sldns_b32_pton_extended_hex(char const *src, size_t hashed_owner_str_len, 72 uint8_t *target, size_t targsize); 73 74 /** 75 * Closest encloser (ce) proof results 76 * Contains the ce and the next-closer (nc) proof. 77 */ 78 struct ce_response { 79 /** the closest encloser name */ 80 uint8_t* ce; 81 /** length of ce */ 82 size_t ce_len; 83 /** NSEC3 record that proved ce. rrset */ 84 struct ub_packed_rrset_key* ce_rrset; 85 /** NSEC3 record that proved ce. rr number */ 86 int ce_rr; 87 /** NSEC3 record that proved nc. rrset */ 88 struct ub_packed_rrset_key* nc_rrset; 89 /** NSEC3 record that proved nc. rr*/ 90 int nc_rr; 91 }; 92 93 /** 94 * Filter conditions for NSEC3 proof 95 * Used to iterate over the applicable NSEC3 RRs. 96 */ 97 struct nsec3_filter { 98 /** Zone name, only NSEC3 records for this zone are considered */ 99 uint8_t* zone; 100 /** length of the zonename */ 101 size_t zone_len; 102 /** the list of NSEC3s to filter; array */ 103 struct ub_packed_rrset_key** list; 104 /** number of rrsets in list */ 105 size_t num; 106 /** class of records for the NSEC3, only this class applies */ 107 uint16_t fclass; 108 }; 109 110 /** return number of rrs in an rrset */ 111 static size_t 112 rrset_get_count(struct ub_packed_rrset_key* rrset) 113 { 114 struct packed_rrset_data* d = (struct packed_rrset_data*) 115 rrset->entry.data; 116 if(!d) return 0; 117 return d->count; 118 } 119 120 /** return if nsec3 RR has unknown flags */ 121 static int 122 nsec3_unknown_flags(struct ub_packed_rrset_key* rrset, int r) 123 { 124 struct packed_rrset_data* d = (struct packed_rrset_data*) 125 rrset->entry.data; 126 log_assert(d && r < (int)d->count); 127 if(d->rr_len[r] < 2+2) 128 return 0; /* malformed */ 129 return (int)(d->rr_data[r][2+1] & NSEC3_UNKNOWN_FLAGS); 130 } 131 132 int 133 nsec3_has_optout(struct ub_packed_rrset_key* rrset, int r) 134 { 135 struct packed_rrset_data* d = (struct packed_rrset_data*) 136 rrset->entry.data; 137 log_assert(d && r < (int)d->count); 138 if(d->rr_len[r] < 2+2) 139 return 0; /* malformed */ 140 return (int)(d->rr_data[r][2+1] & NSEC3_OPTOUT); 141 } 142 143 /** return nsec3 RR algorithm */ 144 static int 145 nsec3_get_algo(struct ub_packed_rrset_key* rrset, int r) 146 { 147 struct packed_rrset_data* d = (struct packed_rrset_data*) 148 rrset->entry.data; 149 log_assert(d && r < (int)d->count); 150 if(d->rr_len[r] < 2+1) 151 return 0; /* malformed */ 152 return (int)(d->rr_data[r][2+0]); 153 } 154 155 /** return if nsec3 RR has known algorithm */ 156 static int 157 nsec3_known_algo(struct ub_packed_rrset_key* rrset, int r) 158 { 159 struct packed_rrset_data* d = (struct packed_rrset_data*) 160 rrset->entry.data; 161 log_assert(d && r < (int)d->count); 162 if(d->rr_len[r] < 2+1) 163 return 0; /* malformed */ 164 switch(d->rr_data[r][2+0]) { 165 case NSEC3_HASH_SHA1: 166 return 1; 167 } 168 return 0; 169 } 170 171 /** return nsec3 RR iteration count */ 172 static size_t 173 nsec3_get_iter(struct ub_packed_rrset_key* rrset, int r) 174 { 175 uint16_t i; 176 struct packed_rrset_data* d = (struct packed_rrset_data*) 177 rrset->entry.data; 178 log_assert(d && r < (int)d->count); 179 if(d->rr_len[r] < 2+4) 180 return 0; /* malformed */ 181 memmove(&i, d->rr_data[r]+2+2, sizeof(i)); 182 i = ntohs(i); 183 return (size_t)i; 184 } 185 186 /** return nsec3 RR salt */ 187 static int 188 nsec3_get_salt(struct ub_packed_rrset_key* rrset, int r, 189 uint8_t** salt, size_t* saltlen) 190 { 191 struct packed_rrset_data* d = (struct packed_rrset_data*) 192 rrset->entry.data; 193 log_assert(d && r < (int)d->count); 194 if(d->rr_len[r] < 2+5) { 195 *salt = 0; 196 *saltlen = 0; 197 return 0; /* malformed */ 198 } 199 *saltlen = (size_t)d->rr_data[r][2+4]; 200 if(d->rr_len[r] < 2+5+(size_t)*saltlen) { 201 *salt = 0; 202 *saltlen = 0; 203 return 0; /* malformed */ 204 } 205 *salt = d->rr_data[r]+2+5; 206 return 1; 207 } 208 209 int nsec3_get_params(struct ub_packed_rrset_key* rrset, int r, 210 int* algo, size_t* iter, uint8_t** salt, size_t* saltlen) 211 { 212 if(!nsec3_known_algo(rrset, r) || nsec3_unknown_flags(rrset, r)) 213 return 0; 214 if(!nsec3_get_salt(rrset, r, salt, saltlen)) 215 return 0; 216 *algo = nsec3_get_algo(rrset, r); 217 *iter = nsec3_get_iter(rrset, r); 218 return 1; 219 } 220 221 int 222 nsec3_get_nextowner(struct ub_packed_rrset_key* rrset, int r, 223 uint8_t** next, size_t* nextlen) 224 { 225 size_t saltlen; 226 struct packed_rrset_data* d = (struct packed_rrset_data*) 227 rrset->entry.data; 228 log_assert(d && r < (int)d->count); 229 if(d->rr_len[r] < 2+5) { 230 *next = 0; 231 *nextlen = 0; 232 return 0; /* malformed */ 233 } 234 saltlen = (size_t)d->rr_data[r][2+4]; 235 if(d->rr_len[r] < 2+5+saltlen+1) { 236 *next = 0; 237 *nextlen = 0; 238 return 0; /* malformed */ 239 } 240 *nextlen = (size_t)d->rr_data[r][2+5+saltlen]; 241 if(d->rr_len[r] < 2+5+saltlen+1+*nextlen) { 242 *next = 0; 243 *nextlen = 0; 244 return 0; /* malformed */ 245 } 246 *next = d->rr_data[r]+2+5+saltlen+1; 247 return 1; 248 } 249 250 size_t nsec3_hash_to_b32(uint8_t* hash, size_t hashlen, uint8_t* zone, 251 size_t zonelen, uint8_t* buf, size_t max) 252 { 253 /* write b32 of name, leave one for length */ 254 int ret; 255 if(max < hashlen*2+1) /* quick approx of b32, as if hexb16 */ 256 return 0; 257 ret = sldns_b32_ntop_extended_hex(hash, hashlen, (char*)buf+1, max-1); 258 if(ret < 1) 259 return 0; 260 buf[0] = (uint8_t)ret; /* length of b32 label */ 261 ret++; 262 if(max - ret < zonelen) 263 return 0; 264 memmove(buf+ret, zone, zonelen); 265 return zonelen+(size_t)ret; 266 } 267 268 size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r, 269 uint8_t* buf, size_t max) 270 { 271 uint8_t* nm, *zone; 272 size_t nmlen, zonelen; 273 if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen)) 274 return 0; 275 /* append zone name; the owner name must be <b32>.zone */ 276 zone = rrset->rk.dname; 277 zonelen = rrset->rk.dname_len; 278 dname_remove_label(&zone, &zonelen); 279 return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max); 280 } 281 282 int 283 nsec3_has_type(struct ub_packed_rrset_key* rrset, int r, uint16_t type) 284 { 285 uint8_t* bitmap; 286 size_t bitlen, skiplen; 287 struct packed_rrset_data* d = (struct packed_rrset_data*) 288 rrset->entry.data; 289 log_assert(d && r < (int)d->count); 290 skiplen = 2+4; 291 /* skip salt */ 292 if(d->rr_len[r] < skiplen+1) 293 return 0; /* malformed, too short */ 294 skiplen += 1+(size_t)d->rr_data[r][skiplen]; 295 /* skip next hashed owner */ 296 if(d->rr_len[r] < skiplen+1) 297 return 0; /* malformed, too short */ 298 skiplen += 1+(size_t)d->rr_data[r][skiplen]; 299 if(d->rr_len[r] < skiplen) 300 return 0; /* malformed, too short */ 301 bitlen = d->rr_len[r] - skiplen; 302 bitmap = d->rr_data[r]+skiplen; 303 return nsecbitmap_has_type_rdata(bitmap, bitlen, type); 304 } 305 306 /** 307 * Iterate through NSEC3 list, per RR 308 * This routine gives the next RR in the list (or sets rrset null). 309 * Usage: 310 * 311 * size_t rrsetnum; 312 * int rrnum; 313 * struct ub_packed_rrset_key* rrset; 314 * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset; 315 * rrset=filter_next(filter, &rrsetnum, &rrnum)) 316 * do_stuff; 317 * 318 * Also filters out 319 * o unknown flag NSEC3s 320 * o unknown algorithm NSEC3s. 321 * @param filter: nsec3 filter structure. 322 * @param rrsetnum: in/out rrset number to look at. 323 * @param rrnum: in/out rr number in rrset to look at. 324 * @returns ptr to the next rrset (or NULL at end). 325 */ 326 static struct ub_packed_rrset_key* 327 filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum) 328 { 329 size_t i; 330 int r; 331 uint8_t* nm; 332 size_t nmlen; 333 if(!filter->zone) /* empty list */ 334 return NULL; 335 for(i=*rrsetnum; i<filter->num; i++) { 336 /* see if RRset qualifies */ 337 if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 || 338 ntohs(filter->list[i]->rk.rrset_class) != 339 filter->fclass) 340 continue; 341 /* check RRset zone */ 342 nm = filter->list[i]->rk.dname; 343 nmlen = filter->list[i]->rk.dname_len; 344 dname_remove_label(&nm, &nmlen); 345 if(query_dname_compare(nm, filter->zone) != 0) 346 continue; 347 if(i == *rrsetnum) 348 r = (*rrnum) + 1; /* continue at next RR */ 349 else r = 0; /* new RRset start at first RR */ 350 for(; r < (int)rrset_get_count(filter->list[i]); r++) { 351 /* skip unknown flags, algo */ 352 if(nsec3_unknown_flags(filter->list[i], r) || 353 !nsec3_known_algo(filter->list[i], r)) 354 continue; 355 /* this one is a good target */ 356 *rrsetnum = i; 357 *rrnum = r; 358 return filter->list[i]; 359 } 360 } 361 return NULL; 362 } 363 364 /** 365 * Start iterating over NSEC3 records. 366 * @param filter: the filter structure, must have been filter_init-ed. 367 * @param rrsetnum: can be undefined on call, initialised. 368 * @param rrnum: can be undefined on call, initialised. 369 * @return first rrset of an NSEC3, together with rrnum this points to 370 * the first RR to examine. Is NULL on empty list. 371 */ 372 static struct ub_packed_rrset_key* 373 filter_first(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum) 374 { 375 *rrsetnum = 0; 376 *rrnum = -1; 377 return filter_next(filter, rrsetnum, rrnum); 378 } 379 380 /** see if at least one RR is known (flags, algo) */ 381 static int 382 nsec3_rrset_has_known(struct ub_packed_rrset_key* s) 383 { 384 int r; 385 for(r=0; r < (int)rrset_get_count(s); r++) { 386 if(!nsec3_unknown_flags(s, r) && nsec3_known_algo(s, r)) 387 return 1; 388 } 389 return 0; 390 } 391 392 /** 393 * Initialize the filter structure. 394 * Finds the zone by looking at available NSEC3 records and best match. 395 * (skips the unknown flag and unknown algo NSEC3s). 396 * 397 * @param filter: nsec3 filter structure. 398 * @param list: list of rrsets, an array of them. 399 * @param num: number of rrsets in list. 400 * @param qinfo: 401 * query name to match a zone for. 402 * query type (if DS a higher zone must be chosen) 403 * qclass, to filter NSEC3s with. 404 */ 405 static void 406 filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list, 407 size_t num, struct query_info* qinfo) 408 { 409 size_t i; 410 uint8_t* nm; 411 size_t nmlen; 412 filter->zone = NULL; 413 filter->zone_len = 0; 414 filter->list = list; 415 filter->num = num; 416 filter->fclass = qinfo->qclass; 417 for(i=0; i<num; i++) { 418 /* ignore other stuff in the list */ 419 if(ntohs(list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 || 420 ntohs(list[i]->rk.rrset_class) != qinfo->qclass) 421 continue; 422 /* skip unknown flags, algo */ 423 if(!nsec3_rrset_has_known(list[i])) 424 continue; 425 426 /* since NSEC3s are base32.zonename, we can find the zone 427 * name by stripping off the first label of the record */ 428 nm = list[i]->rk.dname; 429 nmlen = list[i]->rk.dname_len; 430 dname_remove_label(&nm, &nmlen); 431 /* if we find a domain that can prove about the qname, 432 * and if this domain is closer to the qname */ 433 if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone || 434 dname_subdomain_c(nm, filter->zone))) { 435 /* for a type DS do not accept a zone equal to qname*/ 436 if(qinfo->qtype == LDNS_RR_TYPE_DS && 437 query_dname_compare(qinfo->qname, nm) == 0 && 438 !dname_is_root(qinfo->qname)) 439 continue; 440 filter->zone = nm; 441 filter->zone_len = nmlen; 442 } 443 } 444 } 445 446 /** 447 * Find max iteration count using config settings and key size 448 * @param ve: validator environment with iteration count config settings. 449 * @param bits: key size 450 * @return max iteration count 451 */ 452 static size_t 453 get_max_iter(struct val_env* ve, size_t bits) 454 { 455 int i; 456 log_assert(ve->nsec3_keyiter_count > 0); 457 /* round up to nearest config keysize, linear search, keep it small */ 458 for(i=0; i<ve->nsec3_keyiter_count; i++) { 459 if(bits <= ve->nsec3_keysize[i]) 460 return ve->nsec3_maxiter[i]; 461 } 462 /* else, use value for biggest key */ 463 return ve->nsec3_maxiter[ve->nsec3_keyiter_count-1]; 464 } 465 466 /** 467 * Determine if any of the NSEC3 rrs iteration count is too high, from key. 468 * @param ve: validator environment with iteration count config settings. 469 * @param filter: what NSEC3s to loop over. 470 * @param kkey: key entry used for verification; used for iteration counts. 471 * @return 1 if some nsec3s are above the max iteration count. 472 */ 473 static int 474 nsec3_iteration_count_high(struct val_env* ve, struct nsec3_filter* filter, 475 struct key_entry_key* kkey) 476 { 477 size_t rrsetnum; 478 int rrnum; 479 struct ub_packed_rrset_key* rrset; 480 /* first determine the max number of iterations */ 481 size_t bits = key_entry_keysize(kkey); 482 size_t max_iter = get_max_iter(ve, bits); 483 verbose(VERB_ALGO, "nsec3: keysize %d bits, max iterations %d", 484 (int)bits, (int)max_iter); 485 486 for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset; 487 rrset=filter_next(filter, &rrsetnum, &rrnum)) { 488 if(nsec3_get_iter(rrset, rrnum) > max_iter) 489 return 1; 490 } 491 return 0; 492 } 493 494 /* nsec3_cache_compare for rbtree */ 495 int 496 nsec3_hash_cmp(const void* c1, const void* c2) 497 { 498 struct nsec3_cached_hash* h1 = (struct nsec3_cached_hash*)c1; 499 struct nsec3_cached_hash* h2 = (struct nsec3_cached_hash*)c2; 500 uint8_t* s1, *s2; 501 size_t s1len, s2len; 502 int c = query_dname_compare(h1->dname, h2->dname); 503 if(c != 0) 504 return c; 505 /* compare parameters */ 506 /* if both malformed, its equal, robustness */ 507 if(nsec3_get_algo(h1->nsec3, h1->rr) != 508 nsec3_get_algo(h2->nsec3, h2->rr)) { 509 if(nsec3_get_algo(h1->nsec3, h1->rr) < 510 nsec3_get_algo(h2->nsec3, h2->rr)) 511 return -1; 512 return 1; 513 } 514 if(nsec3_get_iter(h1->nsec3, h1->rr) != 515 nsec3_get_iter(h2->nsec3, h2->rr)) { 516 if(nsec3_get_iter(h1->nsec3, h1->rr) < 517 nsec3_get_iter(h2->nsec3, h2->rr)) 518 return -1; 519 return 1; 520 } 521 (void)nsec3_get_salt(h1->nsec3, h1->rr, &s1, &s1len); 522 (void)nsec3_get_salt(h2->nsec3, h2->rr, &s2, &s2len); 523 if(s1len != s2len) { 524 if(s1len < s2len) 525 return -1; 526 return 1; 527 } 528 return memcmp(s1, s2, s1len); 529 } 530 531 size_t 532 nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo, 533 size_t iter, uint8_t* salt, size_t saltlen, uint8_t* res, size_t max) 534 { 535 size_t i, hash_len; 536 /* prepare buffer for first iteration */ 537 sldns_buffer_clear(buf); 538 sldns_buffer_write(buf, nm, nmlen); 539 query_dname_tolower(sldns_buffer_begin(buf)); 540 sldns_buffer_write(buf, salt, saltlen); 541 sldns_buffer_flip(buf); 542 hash_len = nsec3_hash_algo_size_supported(algo); 543 if(hash_len == 0) { 544 log_err("nsec3 hash of unknown algo %d", algo); 545 return 0; 546 } 547 if(hash_len > max) 548 return 0; 549 if(!secalgo_nsec3_hash(algo, (unsigned char*)sldns_buffer_begin(buf), 550 sldns_buffer_limit(buf), (unsigned char*)res)) 551 return 0; 552 for(i=0; i<iter; i++) { 553 sldns_buffer_clear(buf); 554 sldns_buffer_write(buf, res, hash_len); 555 sldns_buffer_write(buf, salt, saltlen); 556 sldns_buffer_flip(buf); 557 if(!secalgo_nsec3_hash(algo, 558 (unsigned char*)sldns_buffer_begin(buf), 559 sldns_buffer_limit(buf), (unsigned char*)res)) 560 return 0; 561 } 562 return hash_len; 563 } 564 565 /** perform hash of name */ 566 static int 567 nsec3_calc_hash(struct regional* region, sldns_buffer* buf, 568 struct nsec3_cached_hash* c) 569 { 570 int algo = nsec3_get_algo(c->nsec3, c->rr); 571 size_t iter = nsec3_get_iter(c->nsec3, c->rr); 572 uint8_t* salt; 573 size_t saltlen, i; 574 if(!nsec3_get_salt(c->nsec3, c->rr, &salt, &saltlen)) 575 return -1; 576 /* prepare buffer for first iteration */ 577 sldns_buffer_clear(buf); 578 sldns_buffer_write(buf, c->dname, c->dname_len); 579 query_dname_tolower(sldns_buffer_begin(buf)); 580 sldns_buffer_write(buf, salt, saltlen); 581 sldns_buffer_flip(buf); 582 c->hash_len = nsec3_hash_algo_size_supported(algo); 583 if(c->hash_len == 0) { 584 log_err("nsec3 hash of unknown algo %d", algo); 585 return -1; 586 } 587 c->hash = (uint8_t*)regional_alloc(region, c->hash_len); 588 if(!c->hash) 589 return 0; 590 (void)secalgo_nsec3_hash(algo, (unsigned char*)sldns_buffer_begin(buf), 591 sldns_buffer_limit(buf), (unsigned char*)c->hash); 592 for(i=0; i<iter; i++) { 593 sldns_buffer_clear(buf); 594 sldns_buffer_write(buf, c->hash, c->hash_len); 595 sldns_buffer_write(buf, salt, saltlen); 596 sldns_buffer_flip(buf); 597 (void)secalgo_nsec3_hash(algo, 598 (unsigned char*)sldns_buffer_begin(buf), 599 sldns_buffer_limit(buf), (unsigned char*)c->hash); 600 } 601 return 1; 602 } 603 604 /** perform b32 encoding of hash */ 605 static int 606 nsec3_calc_b32(struct regional* region, sldns_buffer* buf, 607 struct nsec3_cached_hash* c) 608 { 609 int r; 610 sldns_buffer_clear(buf); 611 r = sldns_b32_ntop_extended_hex(c->hash, c->hash_len, 612 (char*)sldns_buffer_begin(buf), sldns_buffer_limit(buf)); 613 if(r < 1) { 614 log_err("b32_ntop_extended_hex: error in encoding: %d", r); 615 return 0; 616 } 617 c->b32_len = (size_t)r; 618 c->b32 = regional_alloc_init(region, sldns_buffer_begin(buf), 619 c->b32_len); 620 if(!c->b32) 621 return 0; 622 return 1; 623 } 624 625 int 626 nsec3_hash_name(rbtree_t* table, struct regional* region, sldns_buffer* buf, 627 struct ub_packed_rrset_key* nsec3, int rr, uint8_t* dname, 628 size_t dname_len, struct nsec3_cached_hash** hash) 629 { 630 struct nsec3_cached_hash* c; 631 struct nsec3_cached_hash looki; 632 #ifdef UNBOUND_DEBUG 633 rbnode_t* n; 634 #endif 635 int r; 636 looki.node.key = &looki; 637 looki.nsec3 = nsec3; 638 looki.rr = rr; 639 looki.dname = dname; 640 looki.dname_len = dname_len; 641 /* lookup first in cache */ 642 c = (struct nsec3_cached_hash*)rbtree_search(table, &looki); 643 if(c) { 644 *hash = c; 645 return 1; 646 } 647 /* create a new entry */ 648 c = (struct nsec3_cached_hash*)regional_alloc(region, sizeof(*c)); 649 if(!c) return 0; 650 c->node.key = c; 651 c->nsec3 = nsec3; 652 c->rr = rr; 653 c->dname = dname; 654 c->dname_len = dname_len; 655 r = nsec3_calc_hash(region, buf, c); 656 if(r != 1) 657 return r; 658 r = nsec3_calc_b32(region, buf, c); 659 if(r != 1) 660 return r; 661 #ifdef UNBOUND_DEBUG 662 n = 663 #else 664 (void) 665 #endif 666 rbtree_insert(table, &c->node); 667 log_assert(n); /* cannot be duplicate, just did lookup */ 668 *hash = c; 669 return 1; 670 } 671 672 /** 673 * compare a label lowercased 674 */ 675 static int 676 label_compare_lower(uint8_t* lab1, uint8_t* lab2, size_t lablen) 677 { 678 size_t i; 679 for(i=0; i<lablen; i++) { 680 if(tolower((unsigned char)*lab1) != tolower((unsigned char)*lab2)) { 681 if(tolower((unsigned char)*lab1) < tolower((unsigned char)*lab2)) 682 return -1; 683 return 1; 684 } 685 lab1++; 686 lab2++; 687 } 688 return 0; 689 } 690 691 /** 692 * Compare a hashed name with the owner name of an NSEC3 RRset. 693 * @param flt: filter with zone name. 694 * @param hash: the hashed name. 695 * @param s: rrset with owner name. 696 * @return true if matches exactly, false if not. 697 */ 698 static int 699 nsec3_hash_matches_owner(struct nsec3_filter* flt, 700 struct nsec3_cached_hash* hash, struct ub_packed_rrset_key* s) 701 { 702 uint8_t* nm = s->rk.dname; 703 /* compare, does hash of name based on params in this NSEC3 704 * match the owner name of this NSEC3? 705 * name must be: <hashlength>base32 . zone name 706 * so; first label must not be root label (not zero length), 707 * and match the b32 encoded hash length, 708 * and the label content match the b32 encoded hash 709 * and the rest must be the zone name. 710 */ 711 if(hash->b32_len != 0 && (size_t)nm[0] == hash->b32_len && 712 label_compare_lower(nm+1, hash->b32, hash->b32_len) == 0 && 713 query_dname_compare(nm+(size_t)nm[0]+1, flt->zone) == 0) { 714 return 1; 715 } 716 return 0; 717 } 718 719 /** 720 * Find matching NSEC3 721 * Find the NSEC3Record that matches a hash of a name. 722 * @param env: module environment with temporary region and buffer. 723 * @param flt: the NSEC3 RR filter, contains zone name and RRs. 724 * @param ct: cached hashes table. 725 * @param nm: name to look for. 726 * @param nmlen: length of name. 727 * @param rrset: nsec3 that matches is returned here. 728 * @param rr: rr number in nsec3 rrset that matches. 729 * @return true if a matching NSEC3 is found, false if not. 730 */ 731 static int 732 find_matching_nsec3(struct module_env* env, struct nsec3_filter* flt, 733 rbtree_t* ct, uint8_t* nm, size_t nmlen, 734 struct ub_packed_rrset_key** rrset, int* rr) 735 { 736 size_t i_rs; 737 int i_rr; 738 struct ub_packed_rrset_key* s; 739 struct nsec3_cached_hash* hash; 740 int r; 741 742 /* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */ 743 for(s=filter_first(flt, &i_rs, &i_rr); s; 744 s=filter_next(flt, &i_rs, &i_rr)) { 745 /* get name hashed for this NSEC3 RR */ 746 r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer, 747 s, i_rr, nm, nmlen, &hash); 748 if(r == 0) { 749 log_err("nsec3: malloc failure"); 750 break; /* alloc failure */ 751 } else if(r < 0) 752 continue; /* malformed NSEC3 */ 753 else if(nsec3_hash_matches_owner(flt, hash, s)) { 754 *rrset = s; /* rrset with this name */ 755 *rr = i_rr; /* matches hash with these parameters */ 756 return 1; 757 } 758 } 759 *rrset = NULL; 760 *rr = 0; 761 return 0; 762 } 763 764 int 765 nsec3_covers(uint8_t* zone, struct nsec3_cached_hash* hash, 766 struct ub_packed_rrset_key* rrset, int rr, sldns_buffer* buf) 767 { 768 uint8_t* next, *owner; 769 size_t nextlen; 770 int len; 771 if(!nsec3_get_nextowner(rrset, rr, &next, &nextlen)) 772 return 0; /* malformed RR proves nothing */ 773 774 /* check the owner name is a hashed value . apex 775 * base32 encoded values must have equal length. 776 * hash_value and next hash value must have equal length. */ 777 if(nextlen != hash->hash_len || hash->hash_len==0||hash->b32_len==0|| 778 (size_t)*rrset->rk.dname != hash->b32_len || 779 query_dname_compare(rrset->rk.dname+1+ 780 (size_t)*rrset->rk.dname, zone) != 0) 781 return 0; /* bad lengths or owner name */ 782 783 /* This is the "normal case: owner < next and owner < hash < next */ 784 if(label_compare_lower(rrset->rk.dname+1, hash->b32, 785 hash->b32_len) < 0 && 786 memcmp(hash->hash, next, nextlen) < 0) 787 return 1; 788 789 /* convert owner name from text to binary */ 790 sldns_buffer_clear(buf); 791 owner = sldns_buffer_begin(buf); 792 len = sldns_b32_pton_extended_hex((char*)rrset->rk.dname+1, 793 hash->b32_len, owner, sldns_buffer_limit(buf)); 794 if(len<1) 795 return 0; /* bad owner name in some way */ 796 if((size_t)len != hash->hash_len || (size_t)len != nextlen) 797 return 0; /* wrong length */ 798 799 /* this is the end of zone case: next <= owner && 800 * (hash > owner || hash < next) 801 * this also covers the only-apex case of next==owner. 802 */ 803 if(memcmp(next, owner, nextlen) <= 0 && 804 ( memcmp(hash->hash, owner, nextlen) > 0 || 805 memcmp(hash->hash, next, nextlen) < 0)) { 806 return 1; 807 } 808 return 0; 809 } 810 811 /** 812 * findCoveringNSEC3 813 * Given a name, find a covering NSEC3 from among a list of NSEC3s. 814 * 815 * @param env: module environment with temporary region and buffer. 816 * @param flt: the NSEC3 RR filter, contains zone name and RRs. 817 * @param ct: cached hashes table. 818 * @param nm: name to check if covered. 819 * @param nmlen: length of name. 820 * @param rrset: covering NSEC3 rrset is returned here. 821 * @param rr: rr of cover is returned here. 822 * @return true if a covering NSEC3 is found, false if not. 823 */ 824 static int 825 find_covering_nsec3(struct module_env* env, struct nsec3_filter* flt, 826 rbtree_t* ct, uint8_t* nm, size_t nmlen, 827 struct ub_packed_rrset_key** rrset, int* rr) 828 { 829 size_t i_rs; 830 int i_rr; 831 struct ub_packed_rrset_key* s; 832 struct nsec3_cached_hash* hash; 833 int r; 834 835 /* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */ 836 for(s=filter_first(flt, &i_rs, &i_rr); s; 837 s=filter_next(flt, &i_rs, &i_rr)) { 838 /* get name hashed for this NSEC3 RR */ 839 r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer, 840 s, i_rr, nm, nmlen, &hash); 841 if(r == 0) { 842 log_err("nsec3: malloc failure"); 843 break; /* alloc failure */ 844 } else if(r < 0) 845 continue; /* malformed NSEC3 */ 846 else if(nsec3_covers(flt->zone, hash, s, i_rr, 847 env->scratch_buffer)) { 848 *rrset = s; /* rrset with this name */ 849 *rr = i_rr; /* covers hash with these parameters */ 850 return 1; 851 } 852 } 853 *rrset = NULL; 854 *rr = 0; 855 return 0; 856 } 857 858 /** 859 * findClosestEncloser 860 * Given a name and a list of NSEC3s, find the candidate closest encloser. 861 * This will be the first ancestor of 'name' (including itself) to have a 862 * matching NSEC3 RR. 863 * @param env: module environment with temporary region and buffer. 864 * @param flt: the NSEC3 RR filter, contains zone name and RRs. 865 * @param ct: cached hashes table. 866 * @param qinfo: query that is verified for. 867 * @param ce: closest encloser information is returned in here. 868 * @return true if a closest encloser candidate is found, false if not. 869 */ 870 static int 871 nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt, 872 rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce) 873 { 874 uint8_t* nm = qinfo->qname; 875 size_t nmlen = qinfo->qname_len; 876 877 /* This scans from longest name to shortest, so the first match 878 * we find is the only viable candidate. */ 879 880 /* (David:) FIXME: modify so that the NSEC3 matching the zone apex need 881 * not be present. (Mark Andrews idea). 882 * (Wouter:) But make sure you check for DNAME bit in zone apex, 883 * if the NSEC3 you find is the only NSEC3 in the zone, then this 884 * may be the case. */ 885 886 while(dname_subdomain_c(nm, flt->zone)) { 887 if(find_matching_nsec3(env, flt, ct, nm, nmlen, 888 &ce->ce_rrset, &ce->ce_rr)) { 889 ce->ce = nm; 890 ce->ce_len = nmlen; 891 return 1; 892 } 893 dname_remove_label(&nm, &nmlen); 894 } 895 return 0; 896 } 897 898 /** 899 * Given a qname and its proven closest encloser, calculate the "next 900 * closest" name. Basically, this is the name that is one label longer than 901 * the closest encloser that is still a subdomain of qname. 902 * 903 * @param qname: query name. 904 * @param qnamelen: length of qname. 905 * @param ce: closest encloser 906 * @param nm: result name. 907 * @param nmlen: length of nm. 908 */ 909 static void 910 next_closer(uint8_t* qname, size_t qnamelen, uint8_t* ce, 911 uint8_t** nm, size_t* nmlen) 912 { 913 int strip = dname_count_labels(qname) - dname_count_labels(ce) -1; 914 *nm = qname; 915 *nmlen = qnamelen; 916 if(strip>0) 917 dname_remove_labels(nm, nmlen, strip); 918 } 919 920 /** 921 * proveClosestEncloser 922 * Given a List of nsec3 RRs, find and prove the closest encloser to qname. 923 * @param env: module environment with temporary region and buffer. 924 * @param flt: the NSEC3 RR filter, contains zone name and RRs. 925 * @param ct: cached hashes table. 926 * @param qinfo: query that is verified for. 927 * @param prove_does_not_exist: If true, then if the closest encloser 928 * turns out to be qname, then null is returned. 929 * If set true, and the return value is true, then you can be 930 * certain that the ce.nc_rrset and ce.nc_rr are set properly. 931 * @param ce: closest encloser information is returned in here. 932 * @return bogus if no closest encloser could be proven. 933 * secure if a closest encloser could be proven, ce is set. 934 * insecure if the closest-encloser candidate turns out to prove 935 * that an insecure delegation exists above the qname. 936 */ 937 static enum sec_status 938 nsec3_prove_closest_encloser(struct module_env* env, struct nsec3_filter* flt, 939 rbtree_t* ct, struct query_info* qinfo, int prove_does_not_exist, 940 struct ce_response* ce) 941 { 942 uint8_t* nc; 943 size_t nc_len; 944 /* robust: clean out ce, in case it gets abused later */ 945 memset(ce, 0, sizeof(*ce)); 946 947 if(!nsec3_find_closest_encloser(env, flt, ct, qinfo, ce)) { 948 verbose(VERB_ALGO, "nsec3 proveClosestEncloser: could " 949 "not find a candidate for the closest encloser."); 950 return sec_status_bogus; 951 } 952 log_nametypeclass(VERB_ALGO, "ce candidate", ce->ce, 0, 0); 953 954 if(query_dname_compare(ce->ce, qinfo->qname) == 0) { 955 if(prove_does_not_exist) { 956 verbose(VERB_ALGO, "nsec3 proveClosestEncloser: " 957 "proved that qname existed, bad"); 958 return sec_status_bogus; 959 } 960 /* otherwise, we need to nothing else to prove that qname 961 * is its own closest encloser. */ 962 return sec_status_secure; 963 } 964 965 /* If the closest encloser is actually a delegation, then the 966 * response should have been a referral. If it is a DNAME, then 967 * it should have been a DNAME response. */ 968 if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_NS) && 969 !nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_SOA)) { 970 if(!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DS)) { 971 verbose(VERB_ALGO, "nsec3 proveClosestEncloser: " 972 "closest encloser is insecure delegation"); 973 return sec_status_insecure; 974 } 975 verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest " 976 "encloser was a delegation, bad"); 977 return sec_status_bogus; 978 } 979 if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DNAME)) { 980 verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest " 981 "encloser was a DNAME, bad"); 982 return sec_status_bogus; 983 } 984 985 /* Otherwise, we need to show that the next closer name is covered. */ 986 next_closer(qinfo->qname, qinfo->qname_len, ce->ce, &nc, &nc_len); 987 if(!find_covering_nsec3(env, flt, ct, nc, nc_len, 988 &ce->nc_rrset, &ce->nc_rr)) { 989 verbose(VERB_ALGO, "nsec3: Could not find proof that the " 990 "candidate encloser was the closest encloser"); 991 return sec_status_bogus; 992 } 993 return sec_status_secure; 994 } 995 996 /** allocate a wildcard for the closest encloser */ 997 static uint8_t* 998 nsec3_ce_wildcard(struct regional* region, uint8_t* ce, size_t celen, 999 size_t* len) 1000 { 1001 uint8_t* nm; 1002 if(celen > LDNS_MAX_DOMAINLEN - 2) 1003 return 0; /* too long */ 1004 nm = (uint8_t*)regional_alloc(region, celen+2); 1005 if(!nm) { 1006 log_err("nsec3 wildcard: out of memory"); 1007 return 0; /* alloc failure */ 1008 } 1009 nm[0] = 1; 1010 nm[1] = (uint8_t)'*'; /* wildcard label */ 1011 memmove(nm+2, ce, celen); 1012 *len = celen+2; 1013 return nm; 1014 } 1015 1016 /** Do the name error proof */ 1017 static enum sec_status 1018 nsec3_do_prove_nameerror(struct module_env* env, struct nsec3_filter* flt, 1019 rbtree_t* ct, struct query_info* qinfo) 1020 { 1021 struct ce_response ce; 1022 uint8_t* wc; 1023 size_t wclen; 1024 struct ub_packed_rrset_key* wc_rrset; 1025 int wc_rr; 1026 enum sec_status sec; 1027 1028 /* First locate and prove the closest encloser to qname. We will 1029 * use the variant that fails if the closest encloser turns out 1030 * to be qname. */ 1031 sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce); 1032 if(sec != sec_status_secure) { 1033 if(sec == sec_status_bogus) 1034 verbose(VERB_ALGO, "nsec3 nameerror proof: failed " 1035 "to prove a closest encloser"); 1036 else verbose(VERB_ALGO, "nsec3 nameerror proof: closest " 1037 "nsec3 is an insecure delegation"); 1038 return sec; 1039 } 1040 log_nametypeclass(VERB_ALGO, "nsec3 namerror: proven ce=", ce.ce,0,0); 1041 1042 /* At this point, we know that qname does not exist. Now we need 1043 * to prove that the wildcard does not exist. */ 1044 log_assert(ce.ce); 1045 wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen); 1046 if(!wc || !find_covering_nsec3(env, flt, ct, wc, wclen, 1047 &wc_rrset, &wc_rr)) { 1048 verbose(VERB_ALGO, "nsec3 nameerror proof: could not prove " 1049 "that the applicable wildcard did not exist."); 1050 return sec_status_bogus; 1051 } 1052 1053 if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { 1054 verbose(VERB_ALGO, "nsec3 nameerror proof: nc has optout"); 1055 return sec_status_insecure; 1056 } 1057 return sec_status_secure; 1058 } 1059 1060 enum sec_status 1061 nsec3_prove_nameerror(struct module_env* env, struct val_env* ve, 1062 struct ub_packed_rrset_key** list, size_t num, 1063 struct query_info* qinfo, struct key_entry_key* kkey) 1064 { 1065 rbtree_t ct; 1066 struct nsec3_filter flt; 1067 1068 if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) 1069 return sec_status_bogus; /* no valid NSEC3s, bogus */ 1070 rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ 1071 filter_init(&flt, list, num, qinfo); /* init RR iterator */ 1072 if(!flt.zone) 1073 return sec_status_bogus; /* no RRs */ 1074 if(nsec3_iteration_count_high(ve, &flt, kkey)) 1075 return sec_status_insecure; /* iteration count too high */ 1076 log_nametypeclass(VERB_ALGO, "start nsec3 nameerror proof, zone", 1077 flt.zone, 0, 0); 1078 return nsec3_do_prove_nameerror(env, &flt, &ct, qinfo); 1079 } 1080 1081 /* 1082 * No code to handle qtype=NSEC3 specially. 1083 * This existed in early drafts, but was later (-05) removed. 1084 */ 1085 1086 /** Do the nodata proof */ 1087 static enum sec_status 1088 nsec3_do_prove_nodata(struct module_env* env, struct nsec3_filter* flt, 1089 rbtree_t* ct, struct query_info* qinfo) 1090 { 1091 struct ce_response ce; 1092 uint8_t* wc; 1093 size_t wclen; 1094 struct ub_packed_rrset_key* rrset; 1095 int rr; 1096 enum sec_status sec; 1097 1098 if(find_matching_nsec3(env, flt, ct, qinfo->qname, qinfo->qname_len, 1099 &rrset, &rr)) { 1100 /* cases 1 and 2 */ 1101 if(nsec3_has_type(rrset, rr, qinfo->qtype)) { 1102 verbose(VERB_ALGO, "proveNodata: Matching NSEC3 " 1103 "proved that type existed, bogus"); 1104 return sec_status_bogus; 1105 } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) { 1106 verbose(VERB_ALGO, "proveNodata: Matching NSEC3 " 1107 "proved that a CNAME existed, bogus"); 1108 return sec_status_bogus; 1109 } 1110 1111 /* 1112 * If type DS: filter_init zone find already found a parent 1113 * zone, so this nsec3 is from a parent zone. 1114 * o can be not a delegation (unusual query for normal name, 1115 * no DS anyway, but we can verify that). 1116 * o can be a delegation (which is the usual DS check). 1117 * o may not have the SOA bit set (only the top of the 1118 * zone, which must have been above the name, has that). 1119 * Except for the root; which is checked by itself. 1120 * 1121 * If not type DS: matching nsec3 must not be a delegation. 1122 */ 1123 if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1 1124 && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) && 1125 !dname_is_root(qinfo->qname)) { 1126 verbose(VERB_ALGO, "proveNodata: apex NSEC3 " 1127 "abused for no DS proof, bogus"); 1128 return sec_status_bogus; 1129 } else if(qinfo->qtype != LDNS_RR_TYPE_DS && 1130 nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) && 1131 !nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { 1132 if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) { 1133 verbose(VERB_ALGO, "proveNodata: matching " 1134 "NSEC3 is insecure delegation"); 1135 return sec_status_insecure; 1136 } 1137 verbose(VERB_ALGO, "proveNodata: matching " 1138 "NSEC3 is a delegation, bogus"); 1139 return sec_status_bogus; 1140 } 1141 return sec_status_secure; 1142 } 1143 1144 /* For cases 3 - 5, we need the proven closest encloser, and it 1145 * can't match qname. Although, at this point, we know that it 1146 * won't since we just checked that. */ 1147 sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce); 1148 if(sec == sec_status_bogus) { 1149 verbose(VERB_ALGO, "proveNodata: did not match qname, " 1150 "nor found a proven closest encloser."); 1151 return sec_status_bogus; 1152 } else if(sec==sec_status_insecure && qinfo->qtype!=LDNS_RR_TYPE_DS){ 1153 verbose(VERB_ALGO, "proveNodata: closest nsec3 is insecure " 1154 "delegation."); 1155 return sec_status_insecure; 1156 } 1157 1158 /* Case 3: removed */ 1159 1160 /* Case 4: */ 1161 log_assert(ce.ce); 1162 wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen); 1163 if(wc && find_matching_nsec3(env, flt, ct, wc, wclen, &rrset, &rr)) { 1164 /* found wildcard */ 1165 if(nsec3_has_type(rrset, rr, qinfo->qtype)) { 1166 verbose(VERB_ALGO, "nsec3 nodata proof: matching " 1167 "wildcard had qtype, bogus"); 1168 return sec_status_bogus; 1169 } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) { 1170 verbose(VERB_ALGO, "nsec3 nodata proof: matching " 1171 "wildcard had a CNAME, bogus"); 1172 return sec_status_bogus; 1173 } 1174 if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1 1175 && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { 1176 verbose(VERB_ALGO, "nsec3 nodata proof: matching " 1177 "wildcard for no DS proof has a SOA, bogus"); 1178 return sec_status_bogus; 1179 } else if(qinfo->qtype != LDNS_RR_TYPE_DS && 1180 nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) && 1181 !nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { 1182 verbose(VERB_ALGO, "nsec3 nodata proof: matching " 1183 "wilcard is a delegation, bogus"); 1184 return sec_status_bogus; 1185 } 1186 /* everything is peachy keen, except for optout spans */ 1187 if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { 1188 verbose(VERB_ALGO, "nsec3 nodata proof: matching " 1189 "wildcard is in optout range, insecure"); 1190 return sec_status_insecure; 1191 } 1192 return sec_status_secure; 1193 } 1194 1195 /* Case 5: */ 1196 /* Due to forwarders, cnames, and other collating effects, we 1197 * can see the ordinary unsigned data from a zone beneath an 1198 * insecure delegation under an optout here */ 1199 if(!ce.nc_rrset) { 1200 verbose(VERB_ALGO, "nsec3 nodata proof: no next closer nsec3"); 1201 return sec_status_bogus; 1202 } 1203 1204 /* We need to make sure that the covering NSEC3 is opt-out. */ 1205 log_assert(ce.nc_rrset); 1206 if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { 1207 if(qinfo->qtype == LDNS_RR_TYPE_DS) 1208 verbose(VERB_ALGO, "proveNodata: covering NSEC3 was not " 1209 "opt-out in an opt-out DS NOERROR/NODATA case."); 1210 else verbose(VERB_ALGO, "proveNodata: could not find matching " 1211 "NSEC3, nor matching wildcard, nor optout NSEC3 " 1212 "-- no more options, bogus."); 1213 return sec_status_bogus; 1214 } 1215 /* RFC5155 section 9.2: if nc has optout then no AD flag set */ 1216 return sec_status_insecure; 1217 } 1218 1219 enum sec_status 1220 nsec3_prove_nodata(struct module_env* env, struct val_env* ve, 1221 struct ub_packed_rrset_key** list, size_t num, 1222 struct query_info* qinfo, struct key_entry_key* kkey) 1223 { 1224 rbtree_t ct; 1225 struct nsec3_filter flt; 1226 1227 if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) 1228 return sec_status_bogus; /* no valid NSEC3s, bogus */ 1229 rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ 1230 filter_init(&flt, list, num, qinfo); /* init RR iterator */ 1231 if(!flt.zone) 1232 return sec_status_bogus; /* no RRs */ 1233 if(nsec3_iteration_count_high(ve, &flt, kkey)) 1234 return sec_status_insecure; /* iteration count too high */ 1235 return nsec3_do_prove_nodata(env, &flt, &ct, qinfo); 1236 } 1237 1238 enum sec_status 1239 nsec3_prove_wildcard(struct module_env* env, struct val_env* ve, 1240 struct ub_packed_rrset_key** list, size_t num, 1241 struct query_info* qinfo, struct key_entry_key* kkey, uint8_t* wc) 1242 { 1243 rbtree_t ct; 1244 struct nsec3_filter flt; 1245 struct ce_response ce; 1246 uint8_t* nc; 1247 size_t nc_len; 1248 size_t wclen; 1249 (void)dname_count_size_labels(wc, &wclen); 1250 1251 if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) 1252 return sec_status_bogus; /* no valid NSEC3s, bogus */ 1253 rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ 1254 filter_init(&flt, list, num, qinfo); /* init RR iterator */ 1255 if(!flt.zone) 1256 return sec_status_bogus; /* no RRs */ 1257 if(nsec3_iteration_count_high(ve, &flt, kkey)) 1258 return sec_status_insecure; /* iteration count too high */ 1259 1260 /* We know what the (purported) closest encloser is by just 1261 * looking at the supposed generating wildcard. 1262 * The *. has already been removed from the wc name. 1263 */ 1264 memset(&ce, 0, sizeof(ce)); 1265 ce.ce = wc; 1266 ce.ce_len = wclen; 1267 1268 /* Now we still need to prove that the original data did not exist. 1269 * Otherwise, we need to show that the next closer name is covered. */ 1270 next_closer(qinfo->qname, qinfo->qname_len, ce.ce, &nc, &nc_len); 1271 if(!find_covering_nsec3(env, &flt, &ct, nc, nc_len, 1272 &ce.nc_rrset, &ce.nc_rr)) { 1273 verbose(VERB_ALGO, "proveWildcard: did not find a covering " 1274 "NSEC3 that covered the next closer name."); 1275 return sec_status_bogus; 1276 } 1277 if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { 1278 verbose(VERB_ALGO, "proveWildcard: NSEC3 optout"); 1279 return sec_status_insecure; 1280 } 1281 return sec_status_secure; 1282 } 1283 1284 /** test if list is all secure */ 1285 static int 1286 list_is_secure(struct module_env* env, struct val_env* ve, 1287 struct ub_packed_rrset_key** list, size_t num, 1288 struct key_entry_key* kkey, char** reason) 1289 { 1290 struct packed_rrset_data* d; 1291 size_t i; 1292 for(i=0; i<num; i++) { 1293 d = (struct packed_rrset_data*)list[i]->entry.data; 1294 if(list[i]->rk.type != htons(LDNS_RR_TYPE_NSEC3)) 1295 continue; 1296 if(d->security == sec_status_secure) 1297 continue; 1298 rrset_check_sec_status(env->rrset_cache, list[i], *env->now); 1299 if(d->security == sec_status_secure) 1300 continue; 1301 d->security = val_verify_rrset_entry(env, ve, list[i], kkey, 1302 reason); 1303 if(d->security != sec_status_secure) { 1304 verbose(VERB_ALGO, "NSEC3 did not verify"); 1305 return 0; 1306 } 1307 rrset_update_sec_status(env->rrset_cache, list[i], *env->now); 1308 } 1309 return 1; 1310 } 1311 1312 enum sec_status 1313 nsec3_prove_nods(struct module_env* env, struct val_env* ve, 1314 struct ub_packed_rrset_key** list, size_t num, 1315 struct query_info* qinfo, struct key_entry_key* kkey, char** reason) 1316 { 1317 rbtree_t ct; 1318 struct nsec3_filter flt; 1319 struct ce_response ce; 1320 struct ub_packed_rrset_key* rrset; 1321 int rr; 1322 log_assert(qinfo->qtype == LDNS_RR_TYPE_DS); 1323 1324 if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) { 1325 *reason = "no valid NSEC3s"; 1326 return sec_status_bogus; /* no valid NSEC3s, bogus */ 1327 } 1328 if(!list_is_secure(env, ve, list, num, kkey, reason)) 1329 return sec_status_bogus; /* not all NSEC3 records secure */ 1330 rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ 1331 filter_init(&flt, list, num, qinfo); /* init RR iterator */ 1332 if(!flt.zone) { 1333 *reason = "no NSEC3 records"; 1334 return sec_status_bogus; /* no RRs */ 1335 } 1336 if(nsec3_iteration_count_high(ve, &flt, kkey)) 1337 return sec_status_insecure; /* iteration count too high */ 1338 1339 /* Look for a matching NSEC3 to qname -- this is the normal 1340 * NODATA case. */ 1341 if(find_matching_nsec3(env, &flt, &ct, qinfo->qname, qinfo->qname_len, 1342 &rrset, &rr)) { 1343 /* If the matching NSEC3 has the SOA bit set, it is from 1344 * the wrong zone (the child instead of the parent). If 1345 * it has the DS bit set, then we were lied to. */ 1346 if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) && 1347 qinfo->qname_len != 1) { 1348 verbose(VERB_ALGO, "nsec3 provenods: NSEC3 is from" 1349 " child zone, bogus"); 1350 *reason = "NSEC3 from child zone"; 1351 return sec_status_bogus; 1352 } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) { 1353 verbose(VERB_ALGO, "nsec3 provenods: NSEC3 has qtype" 1354 " DS, bogus"); 1355 *reason = "NSEC3 has DS in bitmap"; 1356 return sec_status_bogus; 1357 } 1358 /* If the NSEC3 RR doesn't have the NS bit set, then 1359 * this wasn't a delegation point. */ 1360 if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS)) 1361 return sec_status_indeterminate; 1362 /* Otherwise, this proves no DS. */ 1363 return sec_status_secure; 1364 } 1365 1366 /* Otherwise, we are probably in the opt-out case. */ 1367 if(nsec3_prove_closest_encloser(env, &flt, &ct, qinfo, 1, &ce) 1368 != sec_status_secure) { 1369 /* an insecure delegation *above* the qname does not prove 1370 * anything about this qname exactly, and bogus is bogus */ 1371 verbose(VERB_ALGO, "nsec3 provenods: did not match qname, " 1372 "nor found a proven closest encloser."); 1373 *reason = "no NSEC3 closest encloser"; 1374 return sec_status_bogus; 1375 } 1376 1377 /* robust extra check */ 1378 if(!ce.nc_rrset) { 1379 verbose(VERB_ALGO, "nsec3 nods proof: no next closer nsec3"); 1380 *reason = "no NSEC3 next closer"; 1381 return sec_status_bogus; 1382 } 1383 1384 /* we had the closest encloser proof, then we need to check that the 1385 * covering NSEC3 was opt-out -- the proveClosestEncloser step already 1386 * checked to see if the closest encloser was a delegation or DNAME. 1387 */ 1388 log_assert(ce.nc_rrset); 1389 if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { 1390 verbose(VERB_ALGO, "nsec3 provenods: covering NSEC3 was not " 1391 "opt-out in an opt-out DS NOERROR/NODATA case."); 1392 *reason = "covering NSEC3 was not opt-out in an opt-out " 1393 "DS NOERROR/NODATA case"; 1394 return sec_status_bogus; 1395 } 1396 /* RFC5155 section 9.2: if nc has optout then no AD flag set */ 1397 return sec_status_insecure; 1398 } 1399 1400 enum sec_status 1401 nsec3_prove_nxornodata(struct module_env* env, struct val_env* ve, 1402 struct ub_packed_rrset_key** list, size_t num, 1403 struct query_info* qinfo, struct key_entry_key* kkey, int* nodata) 1404 { 1405 enum sec_status sec, secnx; 1406 rbtree_t ct; 1407 struct nsec3_filter flt; 1408 *nodata = 0; 1409 1410 if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) 1411 return sec_status_bogus; /* no valid NSEC3s, bogus */ 1412 rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ 1413 filter_init(&flt, list, num, qinfo); /* init RR iterator */ 1414 if(!flt.zone) 1415 return sec_status_bogus; /* no RRs */ 1416 if(nsec3_iteration_count_high(ve, &flt, kkey)) 1417 return sec_status_insecure; /* iteration count too high */ 1418 1419 /* try nxdomain and nodata after another, while keeping the 1420 * hash cache intact */ 1421 1422 secnx = nsec3_do_prove_nameerror(env, &flt, &ct, qinfo); 1423 if(secnx==sec_status_secure) 1424 return sec_status_secure; 1425 sec = nsec3_do_prove_nodata(env, &flt, &ct, qinfo); 1426 if(sec==sec_status_secure) { 1427 *nodata = 1; 1428 } else if(sec == sec_status_insecure) { 1429 *nodata = 1; 1430 } else if(secnx == sec_status_insecure) { 1431 sec = sec_status_insecure; 1432 } 1433 return sec; 1434 } 1435