1 /* 2 * validator/val_neg.c - validator aggressive negative caching functions. 3 * 4 * Copyright (c) 2008, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with aggressive negative caching. 41 * This creates new denials of existance, and proofs for absence of types 42 * from cached NSEC records. 43 */ 44 #include "config.h" 45 #ifdef HAVE_OPENSSL_SSL_H 46 #include "openssl/ssl.h" 47 #define NSEC3_SHA_LEN SHA_DIGEST_LENGTH 48 #else 49 #define NSEC3_SHA_LEN 20 50 #endif 51 #include "validator/val_neg.h" 52 #include "validator/val_nsec.h" 53 #include "validator/val_nsec3.h" 54 #include "validator/val_utils.h" 55 #include "util/data/dname.h" 56 #include "util/data/msgreply.h" 57 #include "util/log.h" 58 #include "util/net_help.h" 59 #include "util/config_file.h" 60 #include "services/cache/rrset.h" 61 #include "services/cache/dns.h" 62 63 int val_neg_data_compare(const void* a, const void* b) 64 { 65 struct val_neg_data* x = (struct val_neg_data*)a; 66 struct val_neg_data* y = (struct val_neg_data*)b; 67 int m; 68 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 69 } 70 71 int val_neg_zone_compare(const void* a, const void* b) 72 { 73 struct val_neg_zone* x = (struct val_neg_zone*)a; 74 struct val_neg_zone* y = (struct val_neg_zone*)b; 75 int m; 76 if(x->dclass != y->dclass) { 77 if(x->dclass < y->dclass) 78 return -1; 79 return 1; 80 } 81 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 82 } 83 84 struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter) 85 { 86 struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1, 87 sizeof(*neg)); 88 if(!neg) { 89 log_err("Could not create neg cache: out of memory"); 90 return NULL; 91 } 92 neg->nsec3_max_iter = maxiter; 93 neg->max = 1024*1024; /* 1 M is thousands of entries */ 94 if(cfg) neg->max = cfg->neg_cache_size; 95 rbtree_init(&neg->tree, &val_neg_zone_compare); 96 lock_basic_init(&neg->lock); 97 lock_protect(&neg->lock, neg, sizeof(*neg)); 98 return neg; 99 } 100 101 size_t val_neg_get_mem(struct val_neg_cache* neg) 102 { 103 size_t result; 104 lock_basic_lock(&neg->lock); 105 result = sizeof(*neg) + neg->use; 106 lock_basic_unlock(&neg->lock); 107 return result; 108 } 109 110 /** clear datas on cache deletion */ 111 static void 112 neg_clear_datas(rbnode_t* n, void* ATTR_UNUSED(arg)) 113 { 114 struct val_neg_data* d = (struct val_neg_data*)n; 115 free(d->name); 116 free(d); 117 } 118 119 /** clear zones on cache deletion */ 120 static void 121 neg_clear_zones(rbnode_t* n, void* ATTR_UNUSED(arg)) 122 { 123 struct val_neg_zone* z = (struct val_neg_zone*)n; 124 /* delete all the rrset entries in the tree */ 125 traverse_postorder(&z->tree, &neg_clear_datas, NULL); 126 free(z->nsec3_salt); 127 free(z->name); 128 free(z); 129 } 130 131 void neg_cache_delete(struct val_neg_cache* neg) 132 { 133 if(!neg) return; 134 lock_basic_destroy(&neg->lock); 135 /* delete all the zones in the tree */ 136 traverse_postorder(&neg->tree, &neg_clear_zones, NULL); 137 free(neg); 138 } 139 140 /** 141 * Put data element at the front of the LRU list. 142 * @param neg: negative cache with LRU start and end. 143 * @param data: this data is fronted. 144 */ 145 static void neg_lru_front(struct val_neg_cache* neg, 146 struct val_neg_data* data) 147 { 148 data->prev = NULL; 149 data->next = neg->first; 150 if(!neg->first) 151 neg->last = data; 152 else neg->first->prev = data; 153 neg->first = data; 154 } 155 156 /** 157 * Remove data element from LRU list. 158 * @param neg: negative cache with LRU start and end. 159 * @param data: this data is removed from the list. 160 */ 161 static void neg_lru_remove(struct val_neg_cache* neg, 162 struct val_neg_data* data) 163 { 164 if(data->prev) 165 data->prev->next = data->next; 166 else neg->first = data->next; 167 if(data->next) 168 data->next->prev = data->prev; 169 else neg->last = data->prev; 170 } 171 172 /** 173 * Touch LRU for data element, put it at the start of the LRU list. 174 * @param neg: negative cache with LRU start and end. 175 * @param data: this data is used. 176 */ 177 static void neg_lru_touch(struct val_neg_cache* neg, 178 struct val_neg_data* data) 179 { 180 if(data == neg->first) 181 return; /* nothing to do */ 182 /* remove from current lru position */ 183 neg_lru_remove(neg, data); 184 /* add at front */ 185 neg_lru_front(neg, data); 186 } 187 188 /** 189 * Delete a zone element from the negative cache. 190 * May delete other zone elements to keep tree coherent, or 191 * only mark the element as 'not in use'. 192 * @param neg: negative cache. 193 * @param z: zone element to delete. 194 */ 195 static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z) 196 { 197 struct val_neg_zone* p, *np; 198 if(!z) return; 199 log_assert(z->in_use); 200 log_assert(z->count > 0); 201 z->in_use = 0; 202 203 /* go up the tree and reduce counts */ 204 p = z; 205 while(p) { 206 log_assert(p->count > 0); 207 p->count --; 208 p = p->parent; 209 } 210 211 /* remove zones with zero count */ 212 p = z; 213 while(p && p->count == 0) { 214 np = p->parent; 215 (void)rbtree_delete(&neg->tree, &p->node); 216 neg->use -= p->len + sizeof(*p); 217 free(p->nsec3_salt); 218 free(p->name); 219 free(p); 220 p = np; 221 } 222 } 223 224 void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el) 225 { 226 struct val_neg_zone* z; 227 struct val_neg_data* p, *np; 228 if(!el) return; 229 z = el->zone; 230 log_assert(el->in_use); 231 log_assert(el->count > 0); 232 el->in_use = 0; 233 234 /* remove it from the lru list */ 235 neg_lru_remove(neg, el); 236 237 /* go up the tree and reduce counts */ 238 p = el; 239 while(p) { 240 log_assert(p->count > 0); 241 p->count --; 242 p = p->parent; 243 } 244 245 /* delete 0 count items from tree */ 246 p = el; 247 while(p && p->count == 0) { 248 np = p->parent; 249 (void)rbtree_delete(&z->tree, &p->node); 250 neg->use -= p->len + sizeof(*p); 251 free(p->name); 252 free(p); 253 p = np; 254 } 255 256 /* check if the zone is now unused */ 257 if(z->tree.count == 0) { 258 neg_delete_zone(neg, z); 259 } 260 } 261 262 /** 263 * Create more space in negative cache 264 * The oldest elements are deleted until enough space is present. 265 * Empty zones are deleted. 266 * @param neg: negative cache. 267 * @param need: how many bytes are needed. 268 */ 269 static void neg_make_space(struct val_neg_cache* neg, size_t need) 270 { 271 /* delete elements until enough space or its empty */ 272 while(neg->last && neg->max < neg->use + need) { 273 neg_delete_data(neg, neg->last); 274 } 275 } 276 277 struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg, 278 uint8_t* nm, size_t len, uint16_t dclass) 279 { 280 struct val_neg_zone lookfor; 281 struct val_neg_zone* result; 282 lookfor.node.key = &lookfor; 283 lookfor.name = nm; 284 lookfor.len = len; 285 lookfor.labs = dname_count_labels(lookfor.name); 286 lookfor.dclass = dclass; 287 288 result = (struct val_neg_zone*) 289 rbtree_search(&neg->tree, lookfor.node.key); 290 return result; 291 } 292 293 /** 294 * Find the given data 295 * @param zone: negative zone 296 * @param nm: what to look for. 297 * @param len: length of nm 298 * @param labs: labels in nm 299 * @return data or NULL if not found. 300 */ 301 static struct val_neg_data* neg_find_data(struct val_neg_zone* zone, 302 uint8_t* nm, size_t len, int labs) 303 { 304 struct val_neg_data lookfor; 305 struct val_neg_data* result; 306 lookfor.node.key = &lookfor; 307 lookfor.name = nm; 308 lookfor.len = len; 309 lookfor.labs = labs; 310 311 result = (struct val_neg_data*) 312 rbtree_search(&zone->tree, lookfor.node.key); 313 return result; 314 } 315 316 /** 317 * Calculate space needed for the data and all its parents 318 * @param rep: NSEC entries. 319 * @return size. 320 */ 321 static size_t calc_data_need(struct reply_info* rep) 322 { 323 uint8_t* d; 324 size_t i, len, res = 0; 325 326 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 327 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 328 d = rep->rrsets[i]->rk.dname; 329 len = rep->rrsets[i]->rk.dname_len; 330 res = sizeof(struct val_neg_data) + len; 331 while(!dname_is_root(d)) { 332 log_assert(len > 1); /* not root label */ 333 dname_remove_label(&d, &len); 334 res += sizeof(struct val_neg_data) + len; 335 } 336 } 337 } 338 return res; 339 } 340 341 /** 342 * Calculate space needed for zone and all its parents 343 * @param d: name of zone 344 * @param len: length of name 345 * @return size. 346 */ 347 static size_t calc_zone_need(uint8_t* d, size_t len) 348 { 349 size_t res = sizeof(struct val_neg_zone) + len; 350 while(!dname_is_root(d)) { 351 log_assert(len > 1); /* not root label */ 352 dname_remove_label(&d, &len); 353 res += sizeof(struct val_neg_zone) + len; 354 } 355 return res; 356 } 357 358 /** 359 * Find closest existing parent zone of the given name. 360 * @param neg: negative cache. 361 * @param nm: name to look for 362 * @param nm_len: length of nm 363 * @param labs: labelcount of nm. 364 * @param qclass: class. 365 * @return the zone or NULL if none found. 366 */ 367 static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg, 368 uint8_t* nm, size_t nm_len, int labs, uint16_t qclass) 369 { 370 struct val_neg_zone key; 371 struct val_neg_zone* result; 372 rbnode_t* res = NULL; 373 key.node.key = &key; 374 key.name = nm; 375 key.len = nm_len; 376 key.labs = labs; 377 key.dclass = qclass; 378 if(rbtree_find_less_equal(&neg->tree, &key, &res)) { 379 /* exact match */ 380 result = (struct val_neg_zone*)res; 381 } else { 382 /* smaller element (or no element) */ 383 int m; 384 result = (struct val_neg_zone*)res; 385 if(!result || result->dclass != qclass) 386 return NULL; 387 /* count number of labels matched */ 388 (void)dname_lab_cmp(result->name, result->labs, key.name, 389 key.labs, &m); 390 while(result) { /* go up until qname is subdomain of stub */ 391 if(result->labs <= m) 392 break; 393 result = result->parent; 394 } 395 } 396 return result; 397 } 398 399 /** 400 * Find closest existing parent data for the given name. 401 * @param zone: to look in. 402 * @param nm: name to look for 403 * @param nm_len: length of nm 404 * @param labs: labelcount of nm. 405 * @return the data or NULL if none found. 406 */ 407 static struct val_neg_data* neg_closest_data_parent( 408 struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs) 409 { 410 struct val_neg_data key; 411 struct val_neg_data* result; 412 rbnode_t* res = NULL; 413 key.node.key = &key; 414 key.name = nm; 415 key.len = nm_len; 416 key.labs = labs; 417 if(rbtree_find_less_equal(&zone->tree, &key, &res)) { 418 /* exact match */ 419 result = (struct val_neg_data*)res; 420 } else { 421 /* smaller element (or no element) */ 422 int m; 423 result = (struct val_neg_data*)res; 424 if(!result) 425 return NULL; 426 /* count number of labels matched */ 427 (void)dname_lab_cmp(result->name, result->labs, key.name, 428 key.labs, &m); 429 while(result) { /* go up until qname is subdomain of stub */ 430 if(result->labs <= m) 431 break; 432 result = result->parent; 433 } 434 } 435 return result; 436 } 437 438 /** 439 * Create a single zone node 440 * @param nm: name for zone (copied) 441 * @param nm_len: length of name 442 * @param labs: labels in name. 443 * @param dclass: class of zone, host order. 444 * @return new zone or NULL on failure 445 */ 446 static struct val_neg_zone* neg_setup_zone_node( 447 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass) 448 { 449 struct val_neg_zone* zone = 450 (struct val_neg_zone*)calloc(1, sizeof(*zone)); 451 if(!zone) { 452 return NULL; 453 } 454 zone->node.key = zone; 455 zone->name = memdup(nm, nm_len); 456 if(!zone->name) { 457 free(zone); 458 return NULL; 459 } 460 zone->len = nm_len; 461 zone->labs = labs; 462 zone->dclass = dclass; 463 464 rbtree_init(&zone->tree, &val_neg_data_compare); 465 return zone; 466 } 467 468 /** 469 * Create a linked list of parent zones, starting at longname ending on 470 * the parent (can be NULL, creates to the root). 471 * @param nm: name for lowest in chain 472 * @param nm_len: length of name 473 * @param labs: labels in name. 474 * @param dclass: class of zone. 475 * @param parent: NULL for to root, else so it fits under here. 476 * @return zone; a chain of zones and their parents up to the parent. 477 * or NULL on malloc failure 478 */ 479 static struct val_neg_zone* neg_zone_chain( 480 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass, 481 struct val_neg_zone* parent) 482 { 483 int i; 484 int tolabs = parent?parent->labs:0; 485 struct val_neg_zone* zone, *prev = NULL, *first = NULL; 486 487 /* create the new subtree, i is labelcount of current creation */ 488 /* this creates a 'first' to z->parent=NULL list of zones */ 489 for(i=labs; i!=tolabs; i--) { 490 /* create new item */ 491 zone = neg_setup_zone_node(nm, nm_len, i, dclass); 492 if(!zone) { 493 /* need to delete other allocations in this routine!*/ 494 struct val_neg_zone* p=first, *np; 495 while(p) { 496 np = p->parent; 497 free(p); 498 free(p->name); 499 p = np; 500 } 501 return NULL; 502 } 503 if(i == labs) { 504 first = zone; 505 } else { 506 prev->parent = zone; 507 } 508 /* prepare for next name */ 509 prev = zone; 510 dname_remove_label(&nm, &nm_len); 511 } 512 return first; 513 } 514 515 void val_neg_zone_take_inuse(struct val_neg_zone* zone) 516 { 517 if(!zone->in_use) { 518 struct val_neg_zone* p; 519 zone->in_use = 1; 520 /* increase usage count of all parents */ 521 for(p=zone; p; p = p->parent) { 522 p->count++; 523 } 524 } 525 } 526 527 struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg, 528 uint8_t* nm, size_t nm_len, uint16_t dclass) 529 { 530 struct val_neg_zone* zone; 531 struct val_neg_zone* parent; 532 struct val_neg_zone* p, *np; 533 int labs = dname_count_labels(nm); 534 535 /* find closest enclosing parent zone that (still) exists */ 536 parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass); 537 if(parent && query_dname_compare(parent->name, nm) == 0) 538 return parent; /* already exists, weird */ 539 /* if parent exists, it is in use */ 540 log_assert(!parent || parent->count > 0); 541 zone = neg_zone_chain(nm, nm_len, labs, dclass, parent); 542 if(!zone) { 543 return NULL; 544 } 545 546 /* insert the list of zones into the tree */ 547 p = zone; 548 while(p) { 549 np = p->parent; 550 /* mem use */ 551 neg->use += sizeof(struct val_neg_zone) + p->len; 552 /* insert in tree */ 553 (void)rbtree_insert(&neg->tree, &p->node); 554 /* last one needs proper parent pointer */ 555 if(np == NULL) 556 p->parent = parent; 557 p = np; 558 } 559 return zone; 560 } 561 562 /** find zone name of message, returns the SOA record */ 563 static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep) 564 { 565 size_t i; 566 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 567 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA) 568 return rep->rrsets[i]; 569 } 570 return NULL; 571 } 572 573 /** see if the reply has NSEC records worthy of caching */ 574 static int reply_has_nsec(struct reply_info* rep) 575 { 576 size_t i; 577 struct packed_rrset_data* d; 578 if(rep->security != sec_status_secure) 579 return 0; 580 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 581 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 582 d = (struct packed_rrset_data*)rep->rrsets[i]-> 583 entry.data; 584 if(d->security == sec_status_secure) 585 return 1; 586 } 587 } 588 return 0; 589 } 590 591 592 /** 593 * Create single node of data element. 594 * @param nm: name (copied) 595 * @param nm_len: length of name 596 * @param labs: labels in name. 597 * @return element with name nm, or NULL malloc failure. 598 */ 599 static struct val_neg_data* neg_setup_data_node( 600 uint8_t* nm, size_t nm_len, int labs) 601 { 602 struct val_neg_data* el; 603 el = (struct val_neg_data*)calloc(1, sizeof(*el)); 604 if(!el) { 605 return NULL; 606 } 607 el->node.key = el; 608 el->name = memdup(nm, nm_len); 609 if(!el->name) { 610 free(el); 611 return NULL; 612 } 613 el->len = nm_len; 614 el->labs = labs; 615 return el; 616 } 617 618 /** 619 * Create chain of data element and parents 620 * @param nm: name 621 * @param nm_len: length of name 622 * @param labs: labels in name. 623 * @param parent: up to where to make, if NULL up to root label. 624 * @return lowest element with name nm, or NULL malloc failure. 625 */ 626 static struct val_neg_data* neg_data_chain( 627 uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent) 628 { 629 int i; 630 int tolabs = parent?parent->labs:0; 631 struct val_neg_data* el, *first = NULL, *prev = NULL; 632 633 /* create the new subtree, i is labelcount of current creation */ 634 /* this creates a 'first' to z->parent=NULL list of zones */ 635 for(i=labs; i!=tolabs; i--) { 636 /* create new item */ 637 el = neg_setup_data_node(nm, nm_len, i); 638 if(!el) { 639 /* need to delete other allocations in this routine!*/ 640 struct val_neg_data* p = first, *np; 641 while(p) { 642 np = p->parent; 643 free(p); 644 free(p->name); 645 p = np; 646 } 647 return NULL; 648 } 649 if(i == labs) { 650 first = el; 651 } else { 652 prev->parent = el; 653 } 654 655 /* prepare for next name */ 656 prev = el; 657 dname_remove_label(&nm, &nm_len); 658 } 659 return first; 660 } 661 662 /** 663 * Remove NSEC records between start and end points. 664 * By walking the tree, the tree is sorted canonically. 665 * @param neg: negative cache. 666 * @param zone: the zone 667 * @param el: element to start walking at. 668 * @param nsec: the nsec record with the end point 669 */ 670 static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone, 671 struct val_neg_data* el, struct ub_packed_rrset_key* nsec) 672 { 673 struct packed_rrset_data* d = (struct packed_rrset_data*)nsec-> 674 entry.data; 675 uint8_t* end; 676 size_t end_len; 677 int end_labs, m; 678 rbnode_t* walk, *next; 679 struct val_neg_data* cur; 680 uint8_t buf[257]; 681 /* get endpoint */ 682 if(!d || d->count == 0 || d->rr_len[0] < 2+1) 683 return; 684 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) { 685 end = d->rr_data[0]+2; 686 end_len = dname_valid(end, d->rr_len[0]-2); 687 end_labs = dname_count_labels(end); 688 } else { 689 /* NSEC3 */ 690 if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf))) 691 return; 692 end = buf; 693 end_labs = dname_count_size_labels(end, &end_len); 694 } 695 696 /* sanity check, both owner and end must be below the zone apex */ 697 if(!dname_subdomain_c(el->name, zone->name) || 698 !dname_subdomain_c(end, zone->name)) 699 return; 700 701 /* detect end of zone NSEC ; wipe until the end of zone */ 702 if(query_dname_compare(end, zone->name) == 0) { 703 end = NULL; 704 } 705 706 walk = rbtree_next(&el->node); 707 while(walk && walk != RBTREE_NULL) { 708 cur = (struct val_neg_data*)walk; 709 /* sanity check: must be larger than start */ 710 if(dname_canon_lab_cmp(cur->name, cur->labs, 711 el->name, el->labs, &m) <= 0) { 712 /* r == 0 skip original record. */ 713 /* r < 0 too small! */ 714 walk = rbtree_next(walk); 715 continue; 716 } 717 /* stop at endpoint, also data at empty nonterminals must be 718 * removed (no NSECs there) so everything between 719 * start and end */ 720 if(end && dname_canon_lab_cmp(cur->name, cur->labs, 721 end, end_labs, &m) >= 0) { 722 break; 723 } 724 /* this element has to be deleted, but we cannot do it 725 * now, because we are walking the tree still ... */ 726 /* get the next element: */ 727 next = rbtree_next(walk); 728 /* now delete the original element, this may trigger 729 * rbtree rebalances, but really, the next element is 730 * the one we need. 731 * But it may trigger delete of other data and the 732 * entire zone. However, if that happens, this is done 733 * by deleting the *parents* of the element for deletion, 734 * and maybe also the entire zone if it is empty. 735 * But parents are smaller in canonical compare, thus, 736 * if a larger element exists, then it is not a parent, 737 * it cannot get deleted, the zone cannot get empty. 738 * If the next==NULL, then zone can be empty. */ 739 if(cur->in_use) 740 neg_delete_data(neg, cur); 741 walk = next; 742 } 743 } 744 745 void neg_insert_data(struct val_neg_cache* neg, 746 struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec) 747 { 748 struct packed_rrset_data* d; 749 struct val_neg_data* parent; 750 struct val_neg_data* el; 751 uint8_t* nm = nsec->rk.dname; 752 size_t nm_len = nsec->rk.dname_len; 753 int labs = dname_count_labels(nsec->rk.dname); 754 755 d = (struct packed_rrset_data*)nsec->entry.data; 756 if( !(d->security == sec_status_secure || 757 (d->security == sec_status_unchecked && d->rrsig_count > 0))) 758 return; 759 log_nametypeclass(VERB_ALGO, "negcache rr", 760 nsec->rk.dname, ntohs(nsec->rk.type), 761 ntohs(nsec->rk.rrset_class)); 762 763 /* find closest enclosing parent data that (still) exists */ 764 parent = neg_closest_data_parent(zone, nm, nm_len, labs); 765 if(parent && query_dname_compare(parent->name, nm) == 0) { 766 /* perfect match already exists */ 767 log_assert(parent->count > 0); 768 el = parent; 769 } else { 770 struct val_neg_data* p, *np; 771 772 /* create subtree for perfect match */ 773 /* if parent exists, it is in use */ 774 log_assert(!parent || parent->count > 0); 775 776 el = neg_data_chain(nm, nm_len, labs, parent); 777 if(!el) { 778 log_err("out of memory inserting NSEC negative cache"); 779 return; 780 } 781 el->in_use = 0; /* set on below */ 782 783 /* insert the list of zones into the tree */ 784 p = el; 785 while(p) { 786 np = p->parent; 787 /* mem use */ 788 neg->use += sizeof(struct val_neg_data) + p->len; 789 /* insert in tree */ 790 p->zone = zone; 791 (void)rbtree_insert(&zone->tree, &p->node); 792 /* last one needs proper parent pointer */ 793 if(np == NULL) 794 p->parent = parent; 795 p = np; 796 } 797 } 798 799 if(!el->in_use) { 800 struct val_neg_data* p; 801 802 el->in_use = 1; 803 /* increase usage count of all parents */ 804 for(p=el; p; p = p->parent) { 805 p->count++; 806 } 807 808 neg_lru_front(neg, el); 809 } else { 810 /* in use, bring to front, lru */ 811 neg_lru_touch(neg, el); 812 } 813 814 /* if nsec3 store last used parameters */ 815 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) { 816 int h; 817 uint8_t* s; 818 size_t slen, it; 819 if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) && 820 it <= neg->nsec3_max_iter && 821 (h != zone->nsec3_hash || it != zone->nsec3_iter || 822 slen != zone->nsec3_saltlen || 823 memcmp(zone->nsec3_salt, s, slen) != 0)) { 824 uint8_t* sa = memdup(s, slen); 825 if(sa) { 826 free(zone->nsec3_salt); 827 zone->nsec3_salt = sa; 828 zone->nsec3_saltlen = slen; 829 zone->nsec3_hash = h; 830 zone->nsec3_iter = it; 831 } 832 } 833 } 834 835 /* wipe out the cache items between NSEC start and end */ 836 wipeout(neg, zone, el, nsec); 837 } 838 839 void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep) 840 { 841 size_t i, need; 842 struct ub_packed_rrset_key* soa; 843 struct val_neg_zone* zone; 844 /* see if secure nsecs inside */ 845 if(!reply_has_nsec(rep)) 846 return; 847 /* find the zone name in message */ 848 soa = reply_find_soa(rep); 849 if(!soa) 850 return; 851 852 log_nametypeclass(VERB_ALGO, "negcache insert for zone", 853 soa->rk.dname, LDNS_RR_TYPE_SOA, ntohs(soa->rk.rrset_class)); 854 855 /* ask for enough space to store all of it */ 856 need = calc_data_need(rep) + 857 calc_zone_need(soa->rk.dname, soa->rk.dname_len); 858 lock_basic_lock(&neg->lock); 859 neg_make_space(neg, need); 860 861 /* find or create the zone entry */ 862 zone = neg_find_zone(neg, soa->rk.dname, soa->rk.dname_len, 863 ntohs(soa->rk.rrset_class)); 864 if(!zone) { 865 if(!(zone = neg_create_zone(neg, soa->rk.dname, 866 soa->rk.dname_len, ntohs(soa->rk.rrset_class)))) { 867 lock_basic_unlock(&neg->lock); 868 log_err("out of memory adding negative zone"); 869 return; 870 } 871 } 872 val_neg_zone_take_inuse(zone); 873 874 /* insert the NSECs */ 875 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 876 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC) 877 continue; 878 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 879 zone->name)) continue; 880 /* insert NSEC into this zone's tree */ 881 neg_insert_data(neg, zone, rep->rrsets[i]); 882 } 883 if(zone->tree.count == 0) { 884 /* remove empty zone if inserts failed */ 885 neg_delete_zone(neg, zone); 886 } 887 lock_basic_unlock(&neg->lock); 888 } 889 890 /** 891 * Lookup closest data record. For NSEC denial. 892 * @param zone: zone to look in 893 * @param qname: name to look for. 894 * @param len: length of name 895 * @param labs: labels in name 896 * @param data: data element, exact or smaller or NULL 897 * @return true if exact match. 898 */ 899 static int neg_closest_data(struct val_neg_zone* zone, 900 uint8_t* qname, size_t len, int labs, struct val_neg_data** data) 901 { 902 struct val_neg_data key; 903 rbnode_t* r; 904 key.node.key = &key; 905 key.name = qname; 906 key.len = len; 907 key.labs = labs; 908 if(rbtree_find_less_equal(&zone->tree, &key, &r)) { 909 /* exact match */ 910 *data = (struct val_neg_data*)r; 911 return 1; 912 } else { 913 /* smaller match */ 914 *data = (struct val_neg_data*)r; 915 return 0; 916 } 917 } 918 919 int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len, 920 uint16_t qclass, struct rrset_cache* rrset_cache, uint32_t now) 921 { 922 /* lookup closest zone */ 923 struct val_neg_zone* zone; 924 struct val_neg_data* data; 925 int labs; 926 struct ub_packed_rrset_key* nsec; 927 struct packed_rrset_data* d; 928 uint32_t flags; 929 uint8_t* wc; 930 struct query_info qinfo; 931 if(!neg) return 0; 932 933 log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname, 934 LDNS_RR_TYPE_DLV, qclass); 935 936 labs = dname_count_labels(qname); 937 lock_basic_lock(&neg->lock); 938 zone = neg_closest_zone_parent(neg, qname, len, labs, qclass); 939 while(zone && !zone->in_use) 940 zone = zone->parent; 941 if(!zone) { 942 lock_basic_unlock(&neg->lock); 943 return 0; 944 } 945 log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0, 946 zone->dclass); 947 948 /* DLV is defined to use NSEC only */ 949 if(zone->nsec3_hash) { 950 lock_basic_unlock(&neg->lock); 951 return 0; 952 } 953 954 /* lookup closest data record */ 955 (void)neg_closest_data(zone, qname, len, labs, &data); 956 while(data && !data->in_use) 957 data = data->parent; 958 if(!data) { 959 lock_basic_unlock(&neg->lock); 960 return 0; 961 } 962 log_nametypeclass(VERB_ALGO, "negcache rr", data->name, 963 LDNS_RR_TYPE_NSEC, zone->dclass); 964 965 /* lookup rrset in rrset cache */ 966 flags = 0; 967 if(query_dname_compare(data->name, zone->name) == 0) 968 flags = PACKED_RRSET_NSEC_AT_APEX; 969 nsec = rrset_cache_lookup(rrset_cache, data->name, data->len, 970 LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0); 971 972 /* check if secure and TTL ok */ 973 if(!nsec) { 974 lock_basic_unlock(&neg->lock); 975 return 0; 976 } 977 d = (struct packed_rrset_data*)nsec->entry.data; 978 if(!d || now > d->ttl) { 979 lock_rw_unlock(&nsec->entry.lock); 980 /* delete data record if expired */ 981 neg_delete_data(neg, data); 982 lock_basic_unlock(&neg->lock); 983 return 0; 984 } 985 if(d->security != sec_status_secure) { 986 lock_rw_unlock(&nsec->entry.lock); 987 neg_delete_data(neg, data); 988 lock_basic_unlock(&neg->lock); 989 return 0; 990 } 991 verbose(VERB_ALGO, "negcache got secure rrset"); 992 993 /* check NSEC security */ 994 /* check if NSEC proves no DLV type exists */ 995 /* check if NSEC proves NXDOMAIN for qname */ 996 qinfo.qname = qname; 997 qinfo.qtype = LDNS_RR_TYPE_DLV; 998 qinfo.qclass = qclass; 999 if(!nsec_proves_nodata(nsec, &qinfo, &wc) && 1000 !val_nsec_proves_name_error(nsec, qname)) { 1001 /* the NSEC is not a denial for the DLV */ 1002 lock_rw_unlock(&nsec->entry.lock); 1003 lock_basic_unlock(&neg->lock); 1004 verbose(VERB_ALGO, "negcache not proven"); 1005 return 0; 1006 } 1007 /* so the NSEC was a NODATA proof, or NXDOMAIN proof. */ 1008 1009 /* no need to check for wildcard NSEC; no wildcards in DLV repos */ 1010 /* no need to lookup SOA record for client; no response message */ 1011 1012 lock_rw_unlock(&nsec->entry.lock); 1013 /* if OK touch the LRU for neg_data element */ 1014 neg_lru_touch(neg, data); 1015 lock_basic_unlock(&neg->lock); 1016 verbose(VERB_ALGO, "negcache DLV denial proven"); 1017 return 1; 1018 } 1019 1020 /** see if the reply has signed NSEC records and return the signer */ 1021 static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len, 1022 uint16_t* dclass) 1023 { 1024 size_t i; 1025 struct packed_rrset_data* d; 1026 uint8_t* s; 1027 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 1028 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC || 1029 ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) { 1030 d = (struct packed_rrset_data*)rep->rrsets[i]-> 1031 entry.data; 1032 /* return first signer name of first NSEC */ 1033 if(d->rrsig_count != 0) { 1034 val_find_rrset_signer(rep->rrsets[i], 1035 &s, signer_len); 1036 if(s && *signer_len) { 1037 *dclass = ntohs(rep->rrsets[i]-> 1038 rk.rrset_class); 1039 return s; 1040 } 1041 } 1042 } 1043 } 1044 return 0; 1045 } 1046 1047 void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep, 1048 uint8_t* zone_name) 1049 { 1050 size_t i, need; 1051 uint8_t* signer; 1052 size_t signer_len; 1053 uint16_t dclass; 1054 struct val_neg_zone* zone; 1055 /* no SOA in this message, find RRSIG over NSEC's signer name. 1056 * note the NSEC records are maybe not validated yet */ 1057 signer = reply_nsec_signer(rep, &signer_len, &dclass); 1058 if(!signer) 1059 return; 1060 if(!dname_subdomain_c(signer, zone_name)) { 1061 /* the signer is not in the bailiwick, throw it out */ 1062 return; 1063 } 1064 1065 log_nametypeclass(VERB_ALGO, "negcache insert referral ", 1066 signer, LDNS_RR_TYPE_NS, dclass); 1067 1068 /* ask for enough space to store all of it */ 1069 need = calc_data_need(rep) + calc_zone_need(signer, signer_len); 1070 lock_basic_lock(&neg->lock); 1071 neg_make_space(neg, need); 1072 1073 /* find or create the zone entry */ 1074 zone = neg_find_zone(neg, signer, signer_len, dclass); 1075 if(!zone) { 1076 if(!(zone = neg_create_zone(neg, signer, signer_len, 1077 dclass))) { 1078 lock_basic_unlock(&neg->lock); 1079 log_err("out of memory adding negative zone"); 1080 return; 1081 } 1082 } 1083 val_neg_zone_take_inuse(zone); 1084 1085 /* insert the NSECs */ 1086 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 1087 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC && 1088 ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3) 1089 continue; 1090 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 1091 zone->name)) continue; 1092 /* insert NSEC into this zone's tree */ 1093 neg_insert_data(neg, zone, rep->rrsets[i]); 1094 } 1095 if(zone->tree.count == 0) { 1096 /* remove empty zone if inserts failed */ 1097 neg_delete_zone(neg, zone); 1098 } 1099 lock_basic_unlock(&neg->lock); 1100 } 1101 1102 /** 1103 * Check that an NSEC3 rrset does not have a type set. 1104 * None of the nsec3s in a hash-collision are allowed to have the type. 1105 * (since we do not know which one is the nsec3 looked at, flags, ..., we 1106 * ignore the cached item and let it bypass negative caching). 1107 * @param k: the nsec3 rrset to check. 1108 * @param t: type to check 1109 * @return true if no RRs have the type. 1110 */ 1111 static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t) 1112 { 1113 int count = (int)((struct packed_rrset_data*)k->entry.data)->count; 1114 int i; 1115 for(i=0; i<count; i++) 1116 if(nsec3_has_type(k, i, t)) 1117 return 0; 1118 return 1; 1119 } 1120 1121 /** 1122 * See if rrset exists in rrset cache. 1123 * If it does, the bit is checked, and if not expired, it is returned 1124 * allocated in region. 1125 * @param rrset_cache: rrset cache 1126 * @param qname: to lookup rrset name 1127 * @param qname_len: length of qname. 1128 * @param qtype: type of rrset to lookup, host order 1129 * @param qclass: class of rrset to lookup, host order 1130 * @param flags: flags for rrset to lookup 1131 * @param region: where to alloc result 1132 * @param checkbit: if true, a bit in the nsec typemap is checked for absence. 1133 * @param checktype: which bit to check 1134 * @param now: to check ttl against 1135 * @return rrset or NULL 1136 */ 1137 static struct ub_packed_rrset_key* 1138 grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len, 1139 uint16_t qtype, uint16_t qclass, uint32_t flags, 1140 struct regional* region, int checkbit, uint16_t checktype, 1141 uint32_t now) 1142 { 1143 struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache, 1144 qname, qname_len, qtype, qclass, flags, now, 0); 1145 struct packed_rrset_data* d; 1146 if(!k) return NULL; 1147 d = (struct packed_rrset_data*)k->entry.data; 1148 if(d->ttl < now) { 1149 lock_rw_unlock(&k->entry.lock); 1150 return NULL; 1151 } 1152 /* only secure or unchecked records that have signatures. */ 1153 if( ! ( d->security == sec_status_secure || 1154 (d->security == sec_status_unchecked && 1155 d->rrsig_count > 0) ) ) { 1156 lock_rw_unlock(&k->entry.lock); 1157 return NULL; 1158 } 1159 /* check if checktype is absent */ 1160 if(checkbit && ( 1161 (qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) || 1162 (qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype)) 1163 )) { 1164 lock_rw_unlock(&k->entry.lock); 1165 return NULL; 1166 } 1167 /* looks OK! copy to region and return it */ 1168 r = packed_rrset_copy_region(k, region, now); 1169 /* if it failed, we return the NULL */ 1170 lock_rw_unlock(&k->entry.lock); 1171 return r; 1172 } 1173 1174 /** find nsec3 closest encloser in neg cache */ 1175 static struct val_neg_data* 1176 neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1177 int qlabs, ldns_buffer* buf, uint8_t* hashnc, size_t* nclen) 1178 { 1179 struct val_neg_data* data; 1180 uint8_t hashce[NSEC3_SHA_LEN]; 1181 uint8_t b32[257]; 1182 size_t celen, b32len; 1183 1184 *nclen = 0; 1185 while(qlabs > 0) { 1186 /* hash */ 1187 if(!(celen=nsec3_get_hashed(buf, qname, qname_len, 1188 zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt, 1189 zone->nsec3_saltlen, hashce, sizeof(hashce)))) 1190 return NULL; 1191 if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name, 1192 zone->len, b32, sizeof(b32)))) 1193 return NULL; 1194 1195 /* lookup (exact match only) */ 1196 data = neg_find_data(zone, b32, b32len, zone->labs+1); 1197 if(data && data->in_use) { 1198 /* found ce match! */ 1199 return data; 1200 } 1201 1202 *nclen = celen; 1203 memmove(hashnc, hashce, celen); 1204 dname_remove_label(&qname, &qname_len); 1205 qlabs --; 1206 } 1207 return NULL; 1208 } 1209 1210 /** check nsec3 parameters on nsec3 rrset with current zone values */ 1211 static int 1212 neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset) 1213 { 1214 int h; 1215 uint8_t* s; 1216 size_t slen, it; 1217 if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen)) 1218 return 0; 1219 return (h == zone->nsec3_hash && it == zone->nsec3_iter && 1220 slen == zone->nsec3_saltlen && 1221 memcmp(zone->nsec3_salt, s, slen) == 0); 1222 } 1223 1224 /** get next closer for nsec3 proof */ 1225 static struct ub_packed_rrset_key* 1226 neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen, 1227 struct rrset_cache* rrset_cache, struct regional* region, 1228 uint32_t now, uint8_t* b32, size_t maxb32) 1229 { 1230 struct ub_packed_rrset_key* nc_rrset; 1231 struct val_neg_data* data; 1232 size_t b32len; 1233 1234 if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name, 1235 zone->len, b32, maxb32))) 1236 return NULL; 1237 (void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data); 1238 if(!data && zone->tree.count != 0) { 1239 /* could be before the first entry ; return the last 1240 * entry (possibly the rollover nsec3 at end) */ 1241 data = (struct val_neg_data*)rbtree_last(&zone->tree); 1242 } 1243 while(data && !data->in_use) 1244 data = data->parent; 1245 if(!data) 1246 return NULL; 1247 /* got a data element in tree, grab it */ 1248 nc_rrset = grab_nsec(rrset_cache, data->name, data->len, 1249 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now); 1250 if(!nc_rrset) 1251 return NULL; 1252 if(!neg_params_ok(zone, nc_rrset)) 1253 return NULL; 1254 return nc_rrset; 1255 } 1256 1257 /** neg cache nsec3 proof procedure*/ 1258 static struct dns_msg* 1259 neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1260 int qlabs, ldns_buffer* buf, struct rrset_cache* rrset_cache, 1261 struct regional* region, uint32_t now, uint8_t* topname) 1262 { 1263 struct dns_msg* msg; 1264 struct val_neg_data* data; 1265 uint8_t hashnc[NSEC3_SHA_LEN]; 1266 size_t nclen; 1267 struct ub_packed_rrset_key* ce_rrset, *nc_rrset; 1268 struct nsec3_cached_hash c; 1269 uint8_t nc_b32[257]; 1270 1271 /* for NSEC3 ; determine the closest encloser for which we 1272 * can find an exact match. Remember the hashed lower name, 1273 * since that is the one we need a closest match for. 1274 * If we find a match straight away, then it becomes NODATA. 1275 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation. 1276 * Also check that parameters are the same on closest encloser 1277 * and on closest match. 1278 */ 1279 if(!zone->nsec3_hash) 1280 return NULL; /* not nsec3 zone */ 1281 1282 if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf, 1283 hashnc, &nclen))) { 1284 return NULL; 1285 } 1286 1287 /* grab the ce rrset */ 1288 ce_rrset = grab_nsec(rrset_cache, data->name, data->len, 1289 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1, 1290 LDNS_RR_TYPE_DS, now); 1291 if(!ce_rrset) 1292 return NULL; 1293 if(!neg_params_ok(zone, ce_rrset)) 1294 return NULL; 1295 1296 if(nclen == 0) { 1297 /* exact match, just check the type bits */ 1298 /* need: -SOA, -DS, +NS */ 1299 if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) || 1300 nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) || 1301 !nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS)) 1302 return NULL; 1303 if(!(msg = dns_msg_create(qname, qname_len, 1304 LDNS_RR_TYPE_DS, zone->dclass, region, 1))) 1305 return NULL; 1306 /* TTL reduced in grab_nsec */ 1307 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1308 return NULL; 1309 return msg; 1310 } 1311 1312 /* optout is not allowed without knowing the trust-anchor in use, 1313 * otherwise the optout could spoof away that anchor */ 1314 if(!topname) 1315 return NULL; 1316 1317 /* if there is no exact match, it must be in an optout span 1318 * (an existing DS implies an NSEC3 must exist) */ 1319 nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache, 1320 region, now, nc_b32, sizeof(nc_b32)); 1321 if(!nc_rrset) 1322 return NULL; 1323 if(!neg_params_ok(zone, nc_rrset)) 1324 return NULL; 1325 if(!nsec3_has_optout(nc_rrset, 0)) 1326 return NULL; 1327 c.hash = hashnc; 1328 c.hash_len = nclen; 1329 c.b32 = nc_b32+1; 1330 c.b32_len = (size_t)nc_b32[0]; 1331 if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) { 1332 /* nc_rrset covers the next closer name. 1333 * ce_rrset equals a closer encloser. 1334 * nc_rrset is optout. 1335 * No need to check wildcard for type DS */ 1336 /* capacity=3: ce + nc + soa(if needed) */ 1337 if(!(msg = dns_msg_create(qname, qname_len, 1338 LDNS_RR_TYPE_DS, zone->dclass, region, 3))) 1339 return NULL; 1340 /* now=0 because TTL was reduced in grab_nsec */ 1341 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1342 return NULL; 1343 if(!dns_msg_authadd(msg, region, nc_rrset, 0)) 1344 return NULL; 1345 return msg; 1346 } 1347 return NULL; 1348 } 1349 1350 /** 1351 * Add SOA record for external responses. 1352 * @param rrset_cache: to look into. 1353 * @param now: current time. 1354 * @param region: where to perform the allocation 1355 * @param msg: current msg with NSEC. 1356 * @param zone: val_neg_zone if we have one. 1357 * @return false on lookup or alloc failure. 1358 */ 1359 static int add_soa(struct rrset_cache* rrset_cache, uint32_t now, 1360 struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone) 1361 { 1362 struct ub_packed_rrset_key* soa; 1363 uint8_t* nm; 1364 size_t nmlen; 1365 uint16_t dclass; 1366 if(zone) { 1367 nm = zone->name; 1368 nmlen = zone->len; 1369 dclass = zone->dclass; 1370 } else { 1371 /* Assumes the signer is the zone SOA to add */ 1372 nm = reply_nsec_signer(msg->rep, &nmlen, &dclass); 1373 if(!nm) 1374 return 0; 1375 } 1376 soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA, 1377 dclass, PACKED_RRSET_SOA_NEG, now, 0); 1378 if(!soa) 1379 return 0; 1380 if(!dns_msg_authadd(msg, region, soa, now)) { 1381 lock_rw_unlock(&soa->entry.lock); 1382 return 0; 1383 } 1384 lock_rw_unlock(&soa->entry.lock); 1385 return 1; 1386 } 1387 1388 struct dns_msg* 1389 val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo, 1390 struct regional* region, struct rrset_cache* rrset_cache, 1391 ldns_buffer* buf, uint32_t now, int addsoa, uint8_t* topname) 1392 { 1393 struct dns_msg* msg; 1394 struct ub_packed_rrset_key* rrset; 1395 uint8_t* zname; 1396 size_t zname_len; 1397 int zname_labs; 1398 struct val_neg_zone* zone; 1399 1400 /* only for DS queries */ 1401 if(qinfo->qtype != LDNS_RR_TYPE_DS) 1402 return NULL; 1403 log_assert(!topname || dname_subdomain_c(qinfo->qname, topname)); 1404 1405 /* see if info from neg cache is available 1406 * For NSECs, because there is no optout; a DS next to a delegation 1407 * always has exactly an NSEC for it itself; check its DS bit. 1408 * flags=0 (not the zone apex). 1409 */ 1410 rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len, 1411 LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1, 1412 qinfo->qtype, now); 1413 if(rrset) { 1414 /* return msg with that rrset */ 1415 if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, 1416 qinfo->qtype, qinfo->qclass, region, 2))) 1417 return NULL; 1418 /* TTL already subtracted in grab_nsec */ 1419 if(!dns_msg_authadd(msg, region, rrset, 0)) 1420 return NULL; 1421 if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) 1422 return NULL; 1423 return msg; 1424 } 1425 1426 /* check NSEC3 neg cache for type DS */ 1427 /* need to look one zone higher for DS type */ 1428 zname = qinfo->qname; 1429 zname_len = qinfo->qname_len; 1430 dname_remove_label(&zname, &zname_len); 1431 zname_labs = dname_count_labels(zname); 1432 1433 /* lookup closest zone */ 1434 lock_basic_lock(&neg->lock); 1435 zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs, 1436 qinfo->qclass); 1437 while(zone && !zone->in_use) 1438 zone = zone->parent; 1439 /* check that the zone is not too high up so that we do not pick data 1440 * out of a zone that is above the last-seen key (or trust-anchor). */ 1441 if(zone && topname) { 1442 if(!dname_subdomain_c(zone->name, topname)) 1443 zone = NULL; 1444 } 1445 if(!zone) { 1446 lock_basic_unlock(&neg->lock); 1447 return NULL; 1448 } 1449 1450 msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len, 1451 zname_labs+1, buf, rrset_cache, region, now, topname); 1452 if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) { 1453 lock_basic_unlock(&neg->lock); 1454 return NULL; 1455 } 1456 lock_basic_unlock(&neg->lock); 1457 return msg; 1458 } 1459