xref: /freebsd/contrib/unbound/validator/val_neg.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*
2  * validator/val_neg.c - validator aggressive negative caching functions.
3  *
4  * Copyright (c) 2008, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * The functions help with aggressive negative caching.
41  * This creates new denials of existance, and proofs for absence of types
42  * from cached NSEC records.
43  */
44 #include "config.h"
45 #ifdef HAVE_OPENSSL_SSL_H
46 #include "openssl/ssl.h"
47 #define NSEC3_SHA_LEN SHA_DIGEST_LENGTH
48 #else
49 #define NSEC3_SHA_LEN 20
50 #endif
51 #include "validator/val_neg.h"
52 #include "validator/val_nsec.h"
53 #include "validator/val_nsec3.h"
54 #include "validator/val_utils.h"
55 #include "util/data/dname.h"
56 #include "util/data/msgreply.h"
57 #include "util/log.h"
58 #include "util/net_help.h"
59 #include "util/config_file.h"
60 #include "services/cache/rrset.h"
61 #include "services/cache/dns.h"
62 
63 int val_neg_data_compare(const void* a, const void* b)
64 {
65 	struct val_neg_data* x = (struct val_neg_data*)a;
66 	struct val_neg_data* y = (struct val_neg_data*)b;
67 	int m;
68 	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
69 }
70 
71 int val_neg_zone_compare(const void* a, const void* b)
72 {
73 	struct val_neg_zone* x = (struct val_neg_zone*)a;
74 	struct val_neg_zone* y = (struct val_neg_zone*)b;
75 	int m;
76 	if(x->dclass != y->dclass) {
77 		if(x->dclass < y->dclass)
78 			return -1;
79 		return 1;
80 	}
81 	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
82 }
83 
84 struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter)
85 {
86 	struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1,
87 		sizeof(*neg));
88 	if(!neg) {
89 		log_err("Could not create neg cache: out of memory");
90 		return NULL;
91 	}
92 	neg->nsec3_max_iter = maxiter;
93 	neg->max = 1024*1024; /* 1 M is thousands of entries */
94 	if(cfg) neg->max = cfg->neg_cache_size;
95 	rbtree_init(&neg->tree, &val_neg_zone_compare);
96 	lock_basic_init(&neg->lock);
97 	lock_protect(&neg->lock, neg, sizeof(*neg));
98 	return neg;
99 }
100 
101 size_t val_neg_get_mem(struct val_neg_cache* neg)
102 {
103 	size_t result;
104 	lock_basic_lock(&neg->lock);
105 	result = sizeof(*neg) + neg->use;
106 	lock_basic_unlock(&neg->lock);
107 	return result;
108 }
109 
110 /** clear datas on cache deletion */
111 static void
112 neg_clear_datas(rbnode_t* n, void* ATTR_UNUSED(arg))
113 {
114 	struct val_neg_data* d = (struct val_neg_data*)n;
115 	free(d->name);
116 	free(d);
117 }
118 
119 /** clear zones on cache deletion */
120 static void
121 neg_clear_zones(rbnode_t* n, void* ATTR_UNUSED(arg))
122 {
123 	struct val_neg_zone* z = (struct val_neg_zone*)n;
124 	/* delete all the rrset entries in the tree */
125 	traverse_postorder(&z->tree, &neg_clear_datas, NULL);
126 	free(z->nsec3_salt);
127 	free(z->name);
128 	free(z);
129 }
130 
131 void neg_cache_delete(struct val_neg_cache* neg)
132 {
133 	if(!neg) return;
134 	lock_basic_destroy(&neg->lock);
135 	/* delete all the zones in the tree */
136 	traverse_postorder(&neg->tree, &neg_clear_zones, NULL);
137 	free(neg);
138 }
139 
140 /**
141  * Put data element at the front of the LRU list.
142  * @param neg: negative cache with LRU start and end.
143  * @param data: this data is fronted.
144  */
145 static void neg_lru_front(struct val_neg_cache* neg,
146 	struct val_neg_data* data)
147 {
148 	data->prev = NULL;
149 	data->next = neg->first;
150 	if(!neg->first)
151 		neg->last = data;
152 	else	neg->first->prev = data;
153 	neg->first = data;
154 }
155 
156 /**
157  * Remove data element from LRU list.
158  * @param neg: negative cache with LRU start and end.
159  * @param data: this data is removed from the list.
160  */
161 static void neg_lru_remove(struct val_neg_cache* neg,
162 	struct val_neg_data* data)
163 {
164 	if(data->prev)
165 		data->prev->next = data->next;
166 	else	neg->first = data->next;
167 	if(data->next)
168 		data->next->prev = data->prev;
169 	else	neg->last = data->prev;
170 }
171 
172 /**
173  * Touch LRU for data element, put it at the start of the LRU list.
174  * @param neg: negative cache with LRU start and end.
175  * @param data: this data is used.
176  */
177 static void neg_lru_touch(struct val_neg_cache* neg,
178 	struct val_neg_data* data)
179 {
180 	if(data == neg->first)
181 		return; /* nothing to do */
182 	/* remove from current lru position */
183 	neg_lru_remove(neg, data);
184 	/* add at front */
185 	neg_lru_front(neg, data);
186 }
187 
188 /**
189  * Delete a zone element from the negative cache.
190  * May delete other zone elements to keep tree coherent, or
191  * only mark the element as 'not in use'.
192  * @param neg: negative cache.
193  * @param z: zone element to delete.
194  */
195 static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z)
196 {
197 	struct val_neg_zone* p, *np;
198 	if(!z) return;
199 	log_assert(z->in_use);
200 	log_assert(z->count > 0);
201 	z->in_use = 0;
202 
203 	/* go up the tree and reduce counts */
204 	p = z;
205 	while(p) {
206 		log_assert(p->count > 0);
207 		p->count --;
208 		p = p->parent;
209 	}
210 
211 	/* remove zones with zero count */
212 	p = z;
213 	while(p && p->count == 0) {
214 		np = p->parent;
215 		(void)rbtree_delete(&neg->tree, &p->node);
216 		neg->use -= p->len + sizeof(*p);
217 		free(p->nsec3_salt);
218 		free(p->name);
219 		free(p);
220 		p = np;
221 	}
222 }
223 
224 void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el)
225 {
226 	struct val_neg_zone* z;
227 	struct val_neg_data* p, *np;
228 	if(!el) return;
229 	z = el->zone;
230 	log_assert(el->in_use);
231 	log_assert(el->count > 0);
232 	el->in_use = 0;
233 
234 	/* remove it from the lru list */
235 	neg_lru_remove(neg, el);
236 
237 	/* go up the tree and reduce counts */
238 	p = el;
239 	while(p) {
240 		log_assert(p->count > 0);
241 		p->count --;
242 		p = p->parent;
243 	}
244 
245 	/* delete 0 count items from tree */
246 	p = el;
247 	while(p && p->count == 0) {
248 		np = p->parent;
249 		(void)rbtree_delete(&z->tree, &p->node);
250 		neg->use -= p->len + sizeof(*p);
251 		free(p->name);
252 		free(p);
253 		p = np;
254 	}
255 
256 	/* check if the zone is now unused */
257 	if(z->tree.count == 0) {
258 		neg_delete_zone(neg, z);
259 	}
260 }
261 
262 /**
263  * Create more space in negative cache
264  * The oldest elements are deleted until enough space is present.
265  * Empty zones are deleted.
266  * @param neg: negative cache.
267  * @param need: how many bytes are needed.
268  */
269 static void neg_make_space(struct val_neg_cache* neg, size_t need)
270 {
271 	/* delete elements until enough space or its empty */
272 	while(neg->last && neg->max < neg->use + need) {
273 		neg_delete_data(neg, neg->last);
274 	}
275 }
276 
277 struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg,
278 	uint8_t* nm, size_t len, uint16_t dclass)
279 {
280 	struct val_neg_zone lookfor;
281 	struct val_neg_zone* result;
282 	lookfor.node.key = &lookfor;
283 	lookfor.name = nm;
284 	lookfor.len = len;
285 	lookfor.labs = dname_count_labels(lookfor.name);
286 	lookfor.dclass = dclass;
287 
288 	result = (struct val_neg_zone*)
289 		rbtree_search(&neg->tree, lookfor.node.key);
290 	return result;
291 }
292 
293 /**
294  * Find the given data
295  * @param zone: negative zone
296  * @param nm: what to look for.
297  * @param len: length of nm
298  * @param labs: labels in nm
299  * @return data or NULL if not found.
300  */
301 static struct val_neg_data* neg_find_data(struct val_neg_zone* zone,
302 	uint8_t* nm, size_t len, int labs)
303 {
304 	struct val_neg_data lookfor;
305 	struct val_neg_data* result;
306 	lookfor.node.key = &lookfor;
307 	lookfor.name = nm;
308 	lookfor.len = len;
309 	lookfor.labs = labs;
310 
311 	result = (struct val_neg_data*)
312 		rbtree_search(&zone->tree, lookfor.node.key);
313 	return result;
314 }
315 
316 /**
317  * Calculate space needed for the data and all its parents
318  * @param rep: NSEC entries.
319  * @return size.
320  */
321 static size_t calc_data_need(struct reply_info* rep)
322 {
323 	uint8_t* d;
324 	size_t i, len, res = 0;
325 
326 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
327 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
328 			d = rep->rrsets[i]->rk.dname;
329 			len = rep->rrsets[i]->rk.dname_len;
330 			res = sizeof(struct val_neg_data) + len;
331 			while(!dname_is_root(d)) {
332 				log_assert(len > 1); /* not root label */
333 				dname_remove_label(&d, &len);
334 				res += sizeof(struct val_neg_data) + len;
335 			}
336 		}
337 	}
338 	return res;
339 }
340 
341 /**
342  * Calculate space needed for zone and all its parents
343  * @param d: name of zone
344  * @param len: length of name
345  * @return size.
346  */
347 static size_t calc_zone_need(uint8_t* d, size_t len)
348 {
349 	size_t res = sizeof(struct val_neg_zone) + len;
350 	while(!dname_is_root(d)) {
351 		log_assert(len > 1); /* not root label */
352 		dname_remove_label(&d, &len);
353 		res += sizeof(struct val_neg_zone) + len;
354 	}
355 	return res;
356 }
357 
358 /**
359  * Find closest existing parent zone of the given name.
360  * @param neg: negative cache.
361  * @param nm: name to look for
362  * @param nm_len: length of nm
363  * @param labs: labelcount of nm.
364  * @param qclass: class.
365  * @return the zone or NULL if none found.
366  */
367 static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg,
368 	uint8_t* nm, size_t nm_len, int labs, uint16_t qclass)
369 {
370 	struct val_neg_zone key;
371 	struct val_neg_zone* result;
372 	rbnode_t* res = NULL;
373 	key.node.key = &key;
374 	key.name = nm;
375 	key.len = nm_len;
376 	key.labs = labs;
377 	key.dclass = qclass;
378 	if(rbtree_find_less_equal(&neg->tree, &key, &res)) {
379 		/* exact match */
380 		result = (struct val_neg_zone*)res;
381 	} else {
382 		/* smaller element (or no element) */
383 		int m;
384 		result = (struct val_neg_zone*)res;
385 		if(!result || result->dclass != qclass)
386 			return NULL;
387 		/* count number of labels matched */
388 		(void)dname_lab_cmp(result->name, result->labs, key.name,
389 			key.labs, &m);
390 		while(result) { /* go up until qname is subdomain of stub */
391 			if(result->labs <= m)
392 				break;
393 			result = result->parent;
394 		}
395 	}
396 	return result;
397 }
398 
399 /**
400  * Find closest existing parent data for the given name.
401  * @param zone: to look in.
402  * @param nm: name to look for
403  * @param nm_len: length of nm
404  * @param labs: labelcount of nm.
405  * @return the data or NULL if none found.
406  */
407 static struct val_neg_data* neg_closest_data_parent(
408 	struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs)
409 {
410 	struct val_neg_data key;
411 	struct val_neg_data* result;
412 	rbnode_t* res = NULL;
413 	key.node.key = &key;
414 	key.name = nm;
415 	key.len = nm_len;
416 	key.labs = labs;
417 	if(rbtree_find_less_equal(&zone->tree, &key, &res)) {
418 		/* exact match */
419 		result = (struct val_neg_data*)res;
420 	} else {
421 		/* smaller element (or no element) */
422 		int m;
423 		result = (struct val_neg_data*)res;
424 		if(!result)
425 			return NULL;
426 		/* count number of labels matched */
427 		(void)dname_lab_cmp(result->name, result->labs, key.name,
428 			key.labs, &m);
429 		while(result) { /* go up until qname is subdomain of stub */
430 			if(result->labs <= m)
431 				break;
432 			result = result->parent;
433 		}
434 	}
435 	return result;
436 }
437 
438 /**
439  * Create a single zone node
440  * @param nm: name for zone (copied)
441  * @param nm_len: length of name
442  * @param labs: labels in name.
443  * @param dclass: class of zone, host order.
444  * @return new zone or NULL on failure
445  */
446 static struct val_neg_zone* neg_setup_zone_node(
447 	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass)
448 {
449 	struct val_neg_zone* zone =
450 		(struct val_neg_zone*)calloc(1, sizeof(*zone));
451 	if(!zone) {
452 		return NULL;
453 	}
454 	zone->node.key = zone;
455 	zone->name = memdup(nm, nm_len);
456 	if(!zone->name) {
457 		free(zone);
458 		return NULL;
459 	}
460 	zone->len = nm_len;
461 	zone->labs = labs;
462 	zone->dclass = dclass;
463 
464 	rbtree_init(&zone->tree, &val_neg_data_compare);
465 	return zone;
466 }
467 
468 /**
469  * Create a linked list of parent zones, starting at longname ending on
470  * the parent (can be NULL, creates to the root).
471  * @param nm: name for lowest in chain
472  * @param nm_len: length of name
473  * @param labs: labels in name.
474  * @param dclass: class of zone.
475  * @param parent: NULL for to root, else so it fits under here.
476  * @return zone; a chain of zones and their parents up to the parent.
477  *  	or NULL on malloc failure
478  */
479 static struct val_neg_zone* neg_zone_chain(
480 	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass,
481 	struct val_neg_zone* parent)
482 {
483 	int i;
484 	int tolabs = parent?parent->labs:0;
485 	struct val_neg_zone* zone, *prev = NULL, *first = NULL;
486 
487 	/* create the new subtree, i is labelcount of current creation */
488 	/* this creates a 'first' to z->parent=NULL list of zones */
489 	for(i=labs; i!=tolabs; i--) {
490 		/* create new item */
491 		zone = neg_setup_zone_node(nm, nm_len, i, dclass);
492 		if(!zone) {
493 			/* need to delete other allocations in this routine!*/
494 			struct val_neg_zone* p=first, *np;
495 			while(p) {
496 				np = p->parent;
497 				free(p);
498 				free(p->name);
499 				p = np;
500 			}
501 			return NULL;
502 		}
503 		if(i == labs) {
504 			first = zone;
505 		} else {
506 			prev->parent = zone;
507 		}
508 		/* prepare for next name */
509 		prev = zone;
510 		dname_remove_label(&nm, &nm_len);
511 	}
512 	return first;
513 }
514 
515 void val_neg_zone_take_inuse(struct val_neg_zone* zone)
516 {
517 	if(!zone->in_use) {
518 		struct val_neg_zone* p;
519 		zone->in_use = 1;
520 		/* increase usage count of all parents */
521 		for(p=zone; p; p = p->parent) {
522 			p->count++;
523 		}
524 	}
525 }
526 
527 struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg,
528 	uint8_t* nm, size_t nm_len, uint16_t dclass)
529 {
530 	struct val_neg_zone* zone;
531 	struct val_neg_zone* parent;
532 	struct val_neg_zone* p, *np;
533 	int labs = dname_count_labels(nm);
534 
535 	/* find closest enclosing parent zone that (still) exists */
536 	parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass);
537 	if(parent && query_dname_compare(parent->name, nm) == 0)
538 		return parent; /* already exists, weird */
539 	/* if parent exists, it is in use */
540 	log_assert(!parent || parent->count > 0);
541 	zone = neg_zone_chain(nm, nm_len, labs, dclass, parent);
542 	if(!zone) {
543 		return NULL;
544 	}
545 
546 	/* insert the list of zones into the tree */
547 	p = zone;
548 	while(p) {
549 		np = p->parent;
550 		/* mem use */
551 		neg->use += sizeof(struct val_neg_zone) + p->len;
552 		/* insert in tree */
553 		(void)rbtree_insert(&neg->tree, &p->node);
554 		/* last one needs proper parent pointer */
555 		if(np == NULL)
556 			p->parent = parent;
557 		p = np;
558 	}
559 	return zone;
560 }
561 
562 /** find zone name of message, returns the SOA record */
563 static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep)
564 {
565 	size_t i;
566 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
567 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA)
568 			return rep->rrsets[i];
569 	}
570 	return NULL;
571 }
572 
573 /** see if the reply has NSEC records worthy of caching */
574 static int reply_has_nsec(struct reply_info* rep)
575 {
576 	size_t i;
577 	struct packed_rrset_data* d;
578 	if(rep->security != sec_status_secure)
579 		return 0;
580 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
581 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
582 			d = (struct packed_rrset_data*)rep->rrsets[i]->
583 				entry.data;
584 			if(d->security == sec_status_secure)
585 				return 1;
586 		}
587 	}
588 	return 0;
589 }
590 
591 
592 /**
593  * Create single node of data element.
594  * @param nm: name (copied)
595  * @param nm_len: length of name
596  * @param labs: labels in name.
597  * @return element with name nm, or NULL malloc failure.
598  */
599 static struct val_neg_data* neg_setup_data_node(
600 	uint8_t* nm, size_t nm_len, int labs)
601 {
602 	struct val_neg_data* el;
603 	el = (struct val_neg_data*)calloc(1, sizeof(*el));
604 	if(!el) {
605 		return NULL;
606 	}
607 	el->node.key = el;
608 	el->name = memdup(nm, nm_len);
609 	if(!el->name) {
610 		free(el);
611 		return NULL;
612 	}
613 	el->len = nm_len;
614 	el->labs = labs;
615 	return el;
616 }
617 
618 /**
619  * Create chain of data element and parents
620  * @param nm: name
621  * @param nm_len: length of name
622  * @param labs: labels in name.
623  * @param parent: up to where to make, if NULL up to root label.
624  * @return lowest element with name nm, or NULL malloc failure.
625  */
626 static struct val_neg_data* neg_data_chain(
627 	uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent)
628 {
629 	int i;
630 	int tolabs = parent?parent->labs:0;
631 	struct val_neg_data* el, *first = NULL, *prev = NULL;
632 
633 	/* create the new subtree, i is labelcount of current creation */
634 	/* this creates a 'first' to z->parent=NULL list of zones */
635 	for(i=labs; i!=tolabs; i--) {
636 		/* create new item */
637 		el = neg_setup_data_node(nm, nm_len, i);
638 		if(!el) {
639 			/* need to delete other allocations in this routine!*/
640 			struct val_neg_data* p = first, *np;
641 			while(p) {
642 				np = p->parent;
643 				free(p);
644 				free(p->name);
645 				p = np;
646 			}
647 			return NULL;
648 		}
649 		if(i == labs) {
650 			first = el;
651 		} else {
652 			prev->parent = el;
653 		}
654 
655 		/* prepare for next name */
656 		prev = el;
657 		dname_remove_label(&nm, &nm_len);
658 	}
659 	return first;
660 }
661 
662 /**
663  * Remove NSEC records between start and end points.
664  * By walking the tree, the tree is sorted canonically.
665  * @param neg: negative cache.
666  * @param zone: the zone
667  * @param el: element to start walking at.
668  * @param nsec: the nsec record with the end point
669  */
670 static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone,
671 	struct val_neg_data* el, struct ub_packed_rrset_key* nsec)
672 {
673 	struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
674 		entry.data;
675 	uint8_t* end;
676 	size_t end_len;
677 	int end_labs, m;
678 	rbnode_t* walk, *next;
679 	struct val_neg_data* cur;
680 	uint8_t buf[257];
681 	/* get endpoint */
682 	if(!d || d->count == 0 || d->rr_len[0] < 2+1)
683 		return;
684 	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) {
685 		end = d->rr_data[0]+2;
686 		end_len = dname_valid(end, d->rr_len[0]-2);
687 		end_labs = dname_count_labels(end);
688 	} else {
689 		/* NSEC3 */
690 		if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf)))
691 			return;
692 		end = buf;
693 		end_labs = dname_count_size_labels(end, &end_len);
694 	}
695 
696 	/* sanity check, both owner and end must be below the zone apex */
697 	if(!dname_subdomain_c(el->name, zone->name) ||
698 		!dname_subdomain_c(end, zone->name))
699 		return;
700 
701 	/* detect end of zone NSEC ; wipe until the end of zone */
702 	if(query_dname_compare(end, zone->name) == 0) {
703 		end = NULL;
704 	}
705 
706 	walk = rbtree_next(&el->node);
707 	while(walk && walk != RBTREE_NULL) {
708 		cur = (struct val_neg_data*)walk;
709 		/* sanity check: must be larger than start */
710 		if(dname_canon_lab_cmp(cur->name, cur->labs,
711 			el->name, el->labs, &m) <= 0) {
712 			/* r == 0 skip original record. */
713 			/* r < 0  too small! */
714 			walk = rbtree_next(walk);
715 			continue;
716 		}
717 		/* stop at endpoint, also data at empty nonterminals must be
718 		 * removed (no NSECs there) so everything between
719 		 * start and end */
720 		if(end && dname_canon_lab_cmp(cur->name, cur->labs,
721 			end, end_labs, &m) >= 0) {
722 			break;
723 		}
724 		/* this element has to be deleted, but we cannot do it
725 		 * now, because we are walking the tree still ... */
726 		/* get the next element: */
727 		next = rbtree_next(walk);
728 		/* now delete the original element, this may trigger
729 		 * rbtree rebalances, but really, the next element is
730 		 * the one we need.
731 		 * But it may trigger delete of other data and the
732 		 * entire zone. However, if that happens, this is done
733 		 * by deleting the *parents* of the element for deletion,
734 		 * and maybe also the entire zone if it is empty.
735 		 * But parents are smaller in canonical compare, thus,
736 		 * if a larger element exists, then it is not a parent,
737 		 * it cannot get deleted, the zone cannot get empty.
738 		 * If the next==NULL, then zone can be empty. */
739 		if(cur->in_use)
740 			neg_delete_data(neg, cur);
741 		walk = next;
742 	}
743 }
744 
745 void neg_insert_data(struct val_neg_cache* neg,
746 	struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec)
747 {
748 	struct packed_rrset_data* d;
749 	struct val_neg_data* parent;
750 	struct val_neg_data* el;
751 	uint8_t* nm = nsec->rk.dname;
752 	size_t nm_len = nsec->rk.dname_len;
753 	int labs = dname_count_labels(nsec->rk.dname);
754 
755 	d = (struct packed_rrset_data*)nsec->entry.data;
756 	if( !(d->security == sec_status_secure ||
757 		(d->security == sec_status_unchecked && d->rrsig_count > 0)))
758 		return;
759 	log_nametypeclass(VERB_ALGO, "negcache rr",
760 		nsec->rk.dname, ntohs(nsec->rk.type),
761 		ntohs(nsec->rk.rrset_class));
762 
763 	/* find closest enclosing parent data that (still) exists */
764 	parent = neg_closest_data_parent(zone, nm, nm_len, labs);
765 	if(parent && query_dname_compare(parent->name, nm) == 0) {
766 		/* perfect match already exists */
767 		log_assert(parent->count > 0);
768 		el = parent;
769 	} else {
770 		struct val_neg_data* p, *np;
771 
772 		/* create subtree for perfect match */
773 		/* if parent exists, it is in use */
774 		log_assert(!parent || parent->count > 0);
775 
776 		el = neg_data_chain(nm, nm_len, labs, parent);
777 		if(!el) {
778 			log_err("out of memory inserting NSEC negative cache");
779 			return;
780 		}
781 		el->in_use = 0; /* set on below */
782 
783 		/* insert the list of zones into the tree */
784 		p = el;
785 		while(p) {
786 			np = p->parent;
787 			/* mem use */
788 			neg->use += sizeof(struct val_neg_data) + p->len;
789 			/* insert in tree */
790 			p->zone = zone;
791 			(void)rbtree_insert(&zone->tree, &p->node);
792 			/* last one needs proper parent pointer */
793 			if(np == NULL)
794 				p->parent = parent;
795 			p = np;
796 		}
797 	}
798 
799 	if(!el->in_use) {
800 		struct val_neg_data* p;
801 
802 		el->in_use = 1;
803 		/* increase usage count of all parents */
804 		for(p=el; p; p = p->parent) {
805 			p->count++;
806 		}
807 
808 		neg_lru_front(neg, el);
809 	} else {
810 		/* in use, bring to front, lru */
811 		neg_lru_touch(neg, el);
812 	}
813 
814 	/* if nsec3 store last used parameters */
815 	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) {
816 		int h;
817 		uint8_t* s;
818 		size_t slen, it;
819 		if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) &&
820 			it <= neg->nsec3_max_iter &&
821 			(h != zone->nsec3_hash || it != zone->nsec3_iter ||
822 			slen != zone->nsec3_saltlen ||
823 			memcmp(zone->nsec3_salt, s, slen) != 0)) {
824 			uint8_t* sa = memdup(s, slen);
825 			if(sa) {
826 				free(zone->nsec3_salt);
827 				zone->nsec3_salt = sa;
828 				zone->nsec3_saltlen = slen;
829 				zone->nsec3_hash = h;
830 				zone->nsec3_iter = it;
831 			}
832 		}
833 	}
834 
835 	/* wipe out the cache items between NSEC start and end */
836 	wipeout(neg, zone, el, nsec);
837 }
838 
839 void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep)
840 {
841 	size_t i, need;
842 	struct ub_packed_rrset_key* soa;
843 	struct val_neg_zone* zone;
844 	/* see if secure nsecs inside */
845 	if(!reply_has_nsec(rep))
846 		return;
847 	/* find the zone name in message */
848 	soa = reply_find_soa(rep);
849 	if(!soa)
850 		return;
851 
852 	log_nametypeclass(VERB_ALGO, "negcache insert for zone",
853 		soa->rk.dname, LDNS_RR_TYPE_SOA, ntohs(soa->rk.rrset_class));
854 
855 	/* ask for enough space to store all of it */
856 	need = calc_data_need(rep) +
857 		calc_zone_need(soa->rk.dname, soa->rk.dname_len);
858 	lock_basic_lock(&neg->lock);
859 	neg_make_space(neg, need);
860 
861 	/* find or create the zone entry */
862 	zone = neg_find_zone(neg, soa->rk.dname, soa->rk.dname_len,
863 		ntohs(soa->rk.rrset_class));
864 	if(!zone) {
865 		if(!(zone = neg_create_zone(neg, soa->rk.dname,
866 			soa->rk.dname_len, ntohs(soa->rk.rrset_class)))) {
867 			lock_basic_unlock(&neg->lock);
868 			log_err("out of memory adding negative zone");
869 			return;
870 		}
871 	}
872 	val_neg_zone_take_inuse(zone);
873 
874 	/* insert the NSECs */
875 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
876 		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
877 			continue;
878 		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
879 			zone->name)) continue;
880 		/* insert NSEC into this zone's tree */
881 		neg_insert_data(neg, zone, rep->rrsets[i]);
882 	}
883 	if(zone->tree.count == 0) {
884 		/* remove empty zone if inserts failed */
885 		neg_delete_zone(neg, zone);
886 	}
887 	lock_basic_unlock(&neg->lock);
888 }
889 
890 /**
891  * Lookup closest data record. For NSEC denial.
892  * @param zone: zone to look in
893  * @param qname: name to look for.
894  * @param len: length of name
895  * @param labs: labels in name
896  * @param data: data element, exact or smaller or NULL
897  * @return true if exact match.
898  */
899 static int neg_closest_data(struct val_neg_zone* zone,
900 	uint8_t* qname, size_t len, int labs, struct val_neg_data** data)
901 {
902 	struct val_neg_data key;
903 	rbnode_t* r;
904 	key.node.key = &key;
905 	key.name = qname;
906 	key.len = len;
907 	key.labs = labs;
908 	if(rbtree_find_less_equal(&zone->tree, &key, &r)) {
909 		/* exact match */
910 		*data = (struct val_neg_data*)r;
911 		return 1;
912 	} else {
913 		/* smaller match */
914 		*data = (struct val_neg_data*)r;
915 		return 0;
916 	}
917 }
918 
919 int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len,
920         uint16_t qclass, struct rrset_cache* rrset_cache, uint32_t now)
921 {
922 	/* lookup closest zone */
923 	struct val_neg_zone* zone;
924 	struct val_neg_data* data;
925 	int labs;
926 	struct ub_packed_rrset_key* nsec;
927 	struct packed_rrset_data* d;
928 	uint32_t flags;
929 	uint8_t* wc;
930 	struct query_info qinfo;
931 	if(!neg) return 0;
932 
933 	log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname,
934 		LDNS_RR_TYPE_DLV, qclass);
935 
936 	labs = dname_count_labels(qname);
937 	lock_basic_lock(&neg->lock);
938 	zone = neg_closest_zone_parent(neg, qname, len, labs, qclass);
939 	while(zone && !zone->in_use)
940 		zone = zone->parent;
941 	if(!zone) {
942 		lock_basic_unlock(&neg->lock);
943 		return 0;
944 	}
945 	log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0,
946 		zone->dclass);
947 
948 	/* DLV is defined to use NSEC only */
949 	if(zone->nsec3_hash) {
950 		lock_basic_unlock(&neg->lock);
951 		return 0;
952 	}
953 
954 	/* lookup closest data record */
955 	(void)neg_closest_data(zone, qname, len, labs, &data);
956 	while(data && !data->in_use)
957 		data = data->parent;
958 	if(!data) {
959 		lock_basic_unlock(&neg->lock);
960 		return 0;
961 	}
962 	log_nametypeclass(VERB_ALGO, "negcache rr", data->name,
963 		LDNS_RR_TYPE_NSEC, zone->dclass);
964 
965 	/* lookup rrset in rrset cache */
966 	flags = 0;
967 	if(query_dname_compare(data->name, zone->name) == 0)
968 		flags = PACKED_RRSET_NSEC_AT_APEX;
969 	nsec = rrset_cache_lookup(rrset_cache, data->name, data->len,
970 		LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0);
971 
972 	/* check if secure and TTL ok */
973 	if(!nsec) {
974 		lock_basic_unlock(&neg->lock);
975 		return 0;
976 	}
977 	d = (struct packed_rrset_data*)nsec->entry.data;
978 	if(!d || now > d->ttl) {
979 		lock_rw_unlock(&nsec->entry.lock);
980 		/* delete data record if expired */
981 		neg_delete_data(neg, data);
982 		lock_basic_unlock(&neg->lock);
983 		return 0;
984 	}
985 	if(d->security != sec_status_secure) {
986 		lock_rw_unlock(&nsec->entry.lock);
987 		neg_delete_data(neg, data);
988 		lock_basic_unlock(&neg->lock);
989 		return 0;
990 	}
991 	verbose(VERB_ALGO, "negcache got secure rrset");
992 
993 	/* check NSEC security */
994 	/* check if NSEC proves no DLV type exists */
995 	/* check if NSEC proves NXDOMAIN for qname */
996 	qinfo.qname = qname;
997 	qinfo.qtype = LDNS_RR_TYPE_DLV;
998 	qinfo.qclass = qclass;
999 	if(!nsec_proves_nodata(nsec, &qinfo, &wc) &&
1000 		!val_nsec_proves_name_error(nsec, qname)) {
1001 		/* the NSEC is not a denial for the DLV */
1002 		lock_rw_unlock(&nsec->entry.lock);
1003 		lock_basic_unlock(&neg->lock);
1004 		verbose(VERB_ALGO, "negcache not proven");
1005 		return 0;
1006 	}
1007 	/* so the NSEC was a NODATA proof, or NXDOMAIN proof. */
1008 
1009 	/* no need to check for wildcard NSEC; no wildcards in DLV repos */
1010 	/* no need to lookup SOA record for client; no response message */
1011 
1012 	lock_rw_unlock(&nsec->entry.lock);
1013 	/* if OK touch the LRU for neg_data element */
1014 	neg_lru_touch(neg, data);
1015 	lock_basic_unlock(&neg->lock);
1016 	verbose(VERB_ALGO, "negcache DLV denial proven");
1017 	return 1;
1018 }
1019 
1020 /** see if the reply has signed NSEC records and return the signer */
1021 static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len,
1022 	uint16_t* dclass)
1023 {
1024 	size_t i;
1025 	struct packed_rrset_data* d;
1026 	uint8_t* s;
1027 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1028 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC ||
1029 			ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) {
1030 			d = (struct packed_rrset_data*)rep->rrsets[i]->
1031 				entry.data;
1032 			/* return first signer name of first NSEC */
1033 			if(d->rrsig_count != 0) {
1034 				val_find_rrset_signer(rep->rrsets[i],
1035 					&s, signer_len);
1036 				if(s && *signer_len) {
1037 					*dclass = ntohs(rep->rrsets[i]->
1038 						rk.rrset_class);
1039 					return s;
1040 				}
1041 			}
1042 		}
1043 	}
1044 	return 0;
1045 }
1046 
1047 void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep,
1048 	uint8_t* zone_name)
1049 {
1050 	size_t i, need;
1051 	uint8_t* signer;
1052 	size_t signer_len;
1053 	uint16_t dclass;
1054 	struct val_neg_zone* zone;
1055 	/* no SOA in this message, find RRSIG over NSEC's signer name.
1056 	 * note the NSEC records are maybe not validated yet */
1057 	signer = reply_nsec_signer(rep, &signer_len, &dclass);
1058 	if(!signer)
1059 		return;
1060 	if(!dname_subdomain_c(signer, zone_name)) {
1061 		/* the signer is not in the bailiwick, throw it out */
1062 		return;
1063 	}
1064 
1065 	log_nametypeclass(VERB_ALGO, "negcache insert referral ",
1066 		signer, LDNS_RR_TYPE_NS, dclass);
1067 
1068 	/* ask for enough space to store all of it */
1069 	need = calc_data_need(rep) + calc_zone_need(signer, signer_len);
1070 	lock_basic_lock(&neg->lock);
1071 	neg_make_space(neg, need);
1072 
1073 	/* find or create the zone entry */
1074 	zone = neg_find_zone(neg, signer, signer_len, dclass);
1075 	if(!zone) {
1076 		if(!(zone = neg_create_zone(neg, signer, signer_len,
1077 			dclass))) {
1078 			lock_basic_unlock(&neg->lock);
1079 			log_err("out of memory adding negative zone");
1080 			return;
1081 		}
1082 	}
1083 	val_neg_zone_take_inuse(zone);
1084 
1085 	/* insert the NSECs */
1086 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1087 		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC &&
1088 			ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3)
1089 			continue;
1090 		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
1091 			zone->name)) continue;
1092 		/* insert NSEC into this zone's tree */
1093 		neg_insert_data(neg, zone, rep->rrsets[i]);
1094 	}
1095 	if(zone->tree.count == 0) {
1096 		/* remove empty zone if inserts failed */
1097 		neg_delete_zone(neg, zone);
1098 	}
1099 	lock_basic_unlock(&neg->lock);
1100 }
1101 
1102 /**
1103  * Check that an NSEC3 rrset does not have a type set.
1104  * None of the nsec3s in a hash-collision are allowed to have the type.
1105  * (since we do not know which one is the nsec3 looked at, flags, ..., we
1106  * ignore the cached item and let it bypass negative caching).
1107  * @param k: the nsec3 rrset to check.
1108  * @param t: type to check
1109  * @return true if no RRs have the type.
1110  */
1111 static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t)
1112 {
1113 	int count = (int)((struct packed_rrset_data*)k->entry.data)->count;
1114 	int i;
1115 	for(i=0; i<count; i++)
1116 		if(nsec3_has_type(k, i, t))
1117 			return 0;
1118 	return 1;
1119 }
1120 
1121 /**
1122  * See if rrset exists in rrset cache.
1123  * If it does, the bit is checked, and if not expired, it is returned
1124  * allocated in region.
1125  * @param rrset_cache: rrset cache
1126  * @param qname: to lookup rrset name
1127  * @param qname_len: length of qname.
1128  * @param qtype: type of rrset to lookup, host order
1129  * @param qclass: class of rrset to lookup, host order
1130  * @param flags: flags for rrset to lookup
1131  * @param region: where to alloc result
1132  * @param checkbit: if true, a bit in the nsec typemap is checked for absence.
1133  * @param checktype: which bit to check
1134  * @param now: to check ttl against
1135  * @return rrset or NULL
1136  */
1137 static struct ub_packed_rrset_key*
1138 grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len,
1139 	uint16_t qtype, uint16_t qclass, uint32_t flags,
1140 	struct regional* region, int checkbit, uint16_t checktype,
1141 	uint32_t now)
1142 {
1143 	struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache,
1144 		qname, qname_len, qtype, qclass, flags, now, 0);
1145 	struct packed_rrset_data* d;
1146 	if(!k) return NULL;
1147 	d = (struct packed_rrset_data*)k->entry.data;
1148 	if(d->ttl < now) {
1149 		lock_rw_unlock(&k->entry.lock);
1150 		return NULL;
1151 	}
1152 	/* only secure or unchecked records that have signatures. */
1153 	if( ! ( d->security == sec_status_secure ||
1154 		(d->security == sec_status_unchecked &&
1155 		d->rrsig_count > 0) ) ) {
1156 		lock_rw_unlock(&k->entry.lock);
1157 		return NULL;
1158 	}
1159 	/* check if checktype is absent */
1160 	if(checkbit && (
1161 		(qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) ||
1162 		(qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype))
1163 		)) {
1164 		lock_rw_unlock(&k->entry.lock);
1165 		return NULL;
1166 	}
1167 	/* looks OK! copy to region and return it */
1168 	r = packed_rrset_copy_region(k, region, now);
1169 	/* if it failed, we return the NULL */
1170 	lock_rw_unlock(&k->entry.lock);
1171 	return r;
1172 }
1173 
1174 /** find nsec3 closest encloser in neg cache */
1175 static struct val_neg_data*
1176 neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1177 		int qlabs, ldns_buffer* buf, uint8_t* hashnc, size_t* nclen)
1178 {
1179 	struct val_neg_data* data;
1180 	uint8_t hashce[NSEC3_SHA_LEN];
1181 	uint8_t b32[257];
1182 	size_t celen, b32len;
1183 
1184 	*nclen = 0;
1185 	while(qlabs > 0) {
1186 		/* hash */
1187 		if(!(celen=nsec3_get_hashed(buf, qname, qname_len,
1188 			zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt,
1189 			zone->nsec3_saltlen, hashce, sizeof(hashce))))
1190 			return NULL;
1191 		if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name,
1192 			zone->len, b32, sizeof(b32))))
1193 			return NULL;
1194 
1195 		/* lookup (exact match only) */
1196 		data = neg_find_data(zone, b32, b32len, zone->labs+1);
1197 		if(data && data->in_use) {
1198 			/* found ce match! */
1199 			return data;
1200 		}
1201 
1202 		*nclen = celen;
1203 		memmove(hashnc, hashce, celen);
1204 		dname_remove_label(&qname, &qname_len);
1205 		qlabs --;
1206 	}
1207 	return NULL;
1208 }
1209 
1210 /** check nsec3 parameters on nsec3 rrset with current zone values */
1211 static int
1212 neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset)
1213 {
1214 	int h;
1215 	uint8_t* s;
1216 	size_t slen, it;
1217 	if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen))
1218 		return 0;
1219 	return (h == zone->nsec3_hash && it == zone->nsec3_iter &&
1220 		slen == zone->nsec3_saltlen &&
1221 		memcmp(zone->nsec3_salt, s, slen) == 0);
1222 }
1223 
1224 /** get next closer for nsec3 proof */
1225 static struct ub_packed_rrset_key*
1226 neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen,
1227 	struct rrset_cache* rrset_cache, struct regional* region,
1228 	uint32_t now, uint8_t* b32, size_t maxb32)
1229 {
1230 	struct ub_packed_rrset_key* nc_rrset;
1231 	struct val_neg_data* data;
1232 	size_t b32len;
1233 
1234 	if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name,
1235 		zone->len, b32, maxb32)))
1236 		return NULL;
1237 	(void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data);
1238 	if(!data && zone->tree.count != 0) {
1239 		/* could be before the first entry ; return the last
1240 		 * entry (possibly the rollover nsec3 at end) */
1241 		data = (struct val_neg_data*)rbtree_last(&zone->tree);
1242 	}
1243 	while(data && !data->in_use)
1244 		data = data->parent;
1245 	if(!data)
1246 		return NULL;
1247 	/* got a data element in tree, grab it */
1248 	nc_rrset = grab_nsec(rrset_cache, data->name, data->len,
1249 		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now);
1250 	if(!nc_rrset)
1251 		return NULL;
1252 	if(!neg_params_ok(zone, nc_rrset))
1253 		return NULL;
1254 	return nc_rrset;
1255 }
1256 
1257 /** neg cache nsec3 proof procedure*/
1258 static struct dns_msg*
1259 neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1260 		int qlabs, ldns_buffer* buf, struct rrset_cache* rrset_cache,
1261 		struct regional* region, uint32_t now, uint8_t* topname)
1262 {
1263 	struct dns_msg* msg;
1264 	struct val_neg_data* data;
1265 	uint8_t hashnc[NSEC3_SHA_LEN];
1266 	size_t nclen;
1267 	struct ub_packed_rrset_key* ce_rrset, *nc_rrset;
1268 	struct nsec3_cached_hash c;
1269 	uint8_t nc_b32[257];
1270 
1271 	/* for NSEC3 ; determine the closest encloser for which we
1272 	 * can find an exact match. Remember the hashed lower name,
1273 	 * since that is the one we need a closest match for.
1274 	 * If we find a match straight away, then it becomes NODATA.
1275 	 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation.
1276 	 * Also check that parameters are the same on closest encloser
1277 	 * and on closest match.
1278 	 */
1279 	if(!zone->nsec3_hash)
1280 		return NULL; /* not nsec3 zone */
1281 
1282 	if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf,
1283 		hashnc, &nclen))) {
1284 		return NULL;
1285 	}
1286 
1287 	/* grab the ce rrset */
1288 	ce_rrset = grab_nsec(rrset_cache, data->name, data->len,
1289 		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1,
1290 		LDNS_RR_TYPE_DS, now);
1291 	if(!ce_rrset)
1292 		return NULL;
1293 	if(!neg_params_ok(zone, ce_rrset))
1294 		return NULL;
1295 
1296 	if(nclen == 0) {
1297 		/* exact match, just check the type bits */
1298 		/* need: -SOA, -DS, +NS */
1299 		if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) ||
1300 			nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) ||
1301 			!nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS))
1302 			return NULL;
1303 		if(!(msg = dns_msg_create(qname, qname_len,
1304 			LDNS_RR_TYPE_DS, zone->dclass, region, 1)))
1305 			return NULL;
1306 		/* TTL reduced in grab_nsec */
1307 		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1308 			return NULL;
1309 		return msg;
1310 	}
1311 
1312 	/* optout is not allowed without knowing the trust-anchor in use,
1313 	 * otherwise the optout could spoof away that anchor */
1314 	if(!topname)
1315 		return NULL;
1316 
1317 	/* if there is no exact match, it must be in an optout span
1318 	 * (an existing DS implies an NSEC3 must exist) */
1319 	nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache,
1320 		region, now, nc_b32, sizeof(nc_b32));
1321 	if(!nc_rrset)
1322 		return NULL;
1323 	if(!neg_params_ok(zone, nc_rrset))
1324 		return NULL;
1325 	if(!nsec3_has_optout(nc_rrset, 0))
1326 		return NULL;
1327 	c.hash = hashnc;
1328 	c.hash_len = nclen;
1329 	c.b32 = nc_b32+1;
1330 	c.b32_len = (size_t)nc_b32[0];
1331 	if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) {
1332 		/* nc_rrset covers the next closer name.
1333 		 * ce_rrset equals a closer encloser.
1334 		 * nc_rrset is optout.
1335 		 * No need to check wildcard for type DS */
1336 		/* capacity=3: ce + nc + soa(if needed) */
1337 		if(!(msg = dns_msg_create(qname, qname_len,
1338 			LDNS_RR_TYPE_DS, zone->dclass, region, 3)))
1339 			return NULL;
1340 		/* now=0 because TTL was reduced in grab_nsec */
1341 		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1342 			return NULL;
1343 		if(!dns_msg_authadd(msg, region, nc_rrset, 0))
1344 			return NULL;
1345 		return msg;
1346 	}
1347 	return NULL;
1348 }
1349 
1350 /**
1351  * Add SOA record for external responses.
1352  * @param rrset_cache: to look into.
1353  * @param now: current time.
1354  * @param region: where to perform the allocation
1355  * @param msg: current msg with NSEC.
1356  * @param zone: val_neg_zone if we have one.
1357  * @return false on lookup or alloc failure.
1358  */
1359 static int add_soa(struct rrset_cache* rrset_cache, uint32_t now,
1360 	struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone)
1361 {
1362 	struct ub_packed_rrset_key* soa;
1363 	uint8_t* nm;
1364 	size_t nmlen;
1365 	uint16_t dclass;
1366 	if(zone) {
1367 		nm = zone->name;
1368 		nmlen = zone->len;
1369 		dclass = zone->dclass;
1370 	} else {
1371 		/* Assumes the signer is the zone SOA to add */
1372 		nm = reply_nsec_signer(msg->rep, &nmlen, &dclass);
1373 		if(!nm)
1374 			return 0;
1375 	}
1376 	soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA,
1377 		dclass, PACKED_RRSET_SOA_NEG, now, 0);
1378 	if(!soa)
1379 		return 0;
1380 	if(!dns_msg_authadd(msg, region, soa, now)) {
1381 		lock_rw_unlock(&soa->entry.lock);
1382 		return 0;
1383 	}
1384 	lock_rw_unlock(&soa->entry.lock);
1385 	return 1;
1386 }
1387 
1388 struct dns_msg*
1389 val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo,
1390 	struct regional* region, struct rrset_cache* rrset_cache,
1391 	ldns_buffer* buf, uint32_t now, int addsoa, uint8_t* topname)
1392 {
1393 	struct dns_msg* msg;
1394 	struct ub_packed_rrset_key* rrset;
1395 	uint8_t* zname;
1396 	size_t zname_len;
1397 	int zname_labs;
1398 	struct val_neg_zone* zone;
1399 
1400 	/* only for DS queries */
1401 	if(qinfo->qtype != LDNS_RR_TYPE_DS)
1402 		return NULL;
1403 	log_assert(!topname || dname_subdomain_c(qinfo->qname, topname));
1404 
1405 	/* see if info from neg cache is available
1406 	 * For NSECs, because there is no optout; a DS next to a delegation
1407 	 * always has exactly an NSEC for it itself; check its DS bit.
1408 	 * flags=0 (not the zone apex).
1409 	 */
1410 	rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len,
1411 		LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1,
1412 		qinfo->qtype, now);
1413 	if(rrset) {
1414 		/* return msg with that rrset */
1415 		if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len,
1416 			qinfo->qtype, qinfo->qclass, region, 2)))
1417 			return NULL;
1418 		/* TTL already subtracted in grab_nsec */
1419 		if(!dns_msg_authadd(msg, region, rrset, 0))
1420 			return NULL;
1421 		if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL))
1422 			return NULL;
1423 		return msg;
1424 	}
1425 
1426 	/* check NSEC3 neg cache for type DS */
1427 	/* need to look one zone higher for DS type */
1428 	zname = qinfo->qname;
1429 	zname_len = qinfo->qname_len;
1430 	dname_remove_label(&zname, &zname_len);
1431 	zname_labs = dname_count_labels(zname);
1432 
1433 	/* lookup closest zone */
1434 	lock_basic_lock(&neg->lock);
1435 	zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs,
1436 		qinfo->qclass);
1437 	while(zone && !zone->in_use)
1438 		zone = zone->parent;
1439 	/* check that the zone is not too high up so that we do not pick data
1440 	 * out of a zone that is above the last-seen key (or trust-anchor). */
1441 	if(zone && topname) {
1442 		if(!dname_subdomain_c(zone->name, topname))
1443 			zone = NULL;
1444 	}
1445 	if(!zone) {
1446 		lock_basic_unlock(&neg->lock);
1447 		return NULL;
1448 	}
1449 
1450 	msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len,
1451 		zname_labs+1, buf, rrset_cache, region, now, topname);
1452 	if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) {
1453 		lock_basic_unlock(&neg->lock);
1454 		return NULL;
1455 	}
1456 	lock_basic_unlock(&neg->lock);
1457 	return msg;
1458 }
1459